test_flash_attn.py 63 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
import math

Tri Dao's avatar
Tri Dao committed
3
import pytest
Tri Dao's avatar
Tri Dao committed
4
5
6
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
Tri Dao's avatar
Tri Dao committed
7
8
9
10
11
12
13
14
15
from flash_attn import (
    flash_attn_func,
    flash_attn_kvpacked_func,
    flash_attn_qkvpacked_func,
    flash_attn_varlen_func,
    flash_attn_varlen_kvpacked_func,
    flash_attn_varlen_qkvpacked_func,
)
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
Tri Dao's avatar
Tri Dao committed
16
17
18
from flash_attn.flash_attn_interface import _get_block_size

MAX_HEADDIM_SM8x = 192
Tri Dao's avatar
Tri Dao committed
19

Tri Dao's avatar
Tri Dao committed
20

Tri Dao's avatar
Tri Dao committed
21
22
23
24
is_sm75 = torch.cuda.get_device_capability("cuda") == (7, 5)
is_sm8x = torch.cuda.get_device_capability("cuda")[0] == 8
is_sm80 = torch.cuda.get_device_capability("cuda") == (8, 0)
is_sm90 = torch.cuda.get_device_capability("cuda") == (9, 0)
Tri Dao's avatar
Tri Dao committed
25
26


Tri Dao's avatar
Tri Dao committed
27
28
29
def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random"):
    assert mode in ["full", "random", "third"]
    if mode == "full":
Tri Dao's avatar
Tri Dao committed
30
        lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
Tri Dao's avatar
Tri Dao committed
31
    elif mode == "random":
32
33
34
        lengths = torch.randint(
            max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device
        )
Tri Dao's avatar
Tri Dao committed
35
    elif mode == "third":
36
        lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
Tri Dao's avatar
Tri Dao committed
37
38
39
    padding_mask = (
        repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths
    )
Tri Dao's avatar
Tri Dao committed
40
41
42
    return padding_mask


Tri Dao's avatar
Tri Dao committed
43
44
45
def generate_qkv(
    q, k, v, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False
):
Tri Dao's avatar
Tri Dao committed
46
47
    """
    Arguments:
Tri Dao's avatar
Tri Dao committed
48
49
50
        q: (batch_size, seqlen_q, nheads, d)
        k: (batch_size, seqlen_k, nheads_k, d)
        v: (batch_size, seqlen_k, nheads_k, d)
Tri Dao's avatar
Tri Dao committed
51
52
53
54
        query_padding_mask: (batch_size, seqlen), bool
        key_padding_mask: (batch_size, seqlen), bool
    """
    assert not (kvpacked and qkvpacked)
Tri Dao's avatar
Tri Dao committed
55
56
57
58
    batch_size, seqlen_q, nheads, d = q.shape
    _, seqlen_k, nheads_k, _ = k.shape
    assert k.shape == (batch_size, seqlen_k, nheads_k, d)
    assert v.shape == (batch_size, seqlen_k, nheads_k, d)
Tri Dao's avatar
Tri Dao committed
59
60
61

    if query_padding_mask is not None:
        q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask)
Tri Dao's avatar
Tri Dao committed
62
63
64
        output_pad_fn = lambda output_unpad: pad_input(
            output_unpad, indices_q, batch_size, seqlen_q
        )
Tri Dao's avatar
Tri Dao committed
65
    else:
Tri Dao's avatar
Tri Dao committed
66
67
68
69
        q_unpad = rearrange(q, "b s h d -> (b s) h d")
        cu_seqlens_q = torch.arange(
            0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device
        )
Tri Dao's avatar
Tri Dao committed
70
        max_seqlen_q = seqlen_q
Tri Dao's avatar
Tri Dao committed
71
72
73
        output_pad_fn = lambda output_unpad: rearrange(
            output_unpad, "(b s) h d -> b s h d", b=batch_size
        )
Tri Dao's avatar
Tri Dao committed
74
75
76
77
78

    if key_padding_mask is not None:
        k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
        v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
    else:
Tri Dao's avatar
Tri Dao committed
79
80
81
82
83
        k_unpad = rearrange(k, "b s h d -> (b s) h d")
        v_unpad = rearrange(v, "b s h d -> (b s) h d")
        cu_seqlens_k = torch.arange(
            0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device
        )
Tri Dao's avatar
Tri Dao committed
84
        max_seqlen_k = seqlen_k
Tri Dao's avatar
Tri Dao committed
85
86
87

    if qkvpacked:
        assert (query_padding_mask == key_padding_mask).all()
Tri Dao's avatar
Tri Dao committed
88
        assert nheads == nheads_k
Tri Dao's avatar
Tri Dao committed
89
        qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
Tri Dao's avatar
Tri Dao committed
90
        qkv = torch.stack([q, k, v], dim=2)
Tri Dao's avatar
Tri Dao committed
91
        if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
92
            dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
Tri Dao's avatar
Tri Dao committed
93
        else:
Tri Dao's avatar
Tri Dao committed
94
95
96
97
98
99
100
101
102
103
104
            dqkv_pad_fn = lambda dqkv_unpad: rearrange(
                dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            qkv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            max_seqlen_q,
            qkv.detach().requires_grad_(),
            output_pad_fn,
            dqkv_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
105
106
    elif kvpacked:
        kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
Tri Dao's avatar
Tri Dao committed
107
        kv = torch.stack([k, v], dim=2)
Tri Dao's avatar
Tri Dao committed
108
109
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
110
            dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
Tri Dao's avatar
Tri Dao committed
111
        else:
Tri Dao's avatar
Tri Dao committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
            dkv_pad_fn = lambda dkv_unpad: rearrange(
                dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            q_unpad.detach().requires_grad_(),
            kv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            kv.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
128
129
130
    else:
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
131
            dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
Tri Dao's avatar
Tri Dao committed
132
        else:
Tri Dao's avatar
Tri Dao committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
            dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
        return (
            q_unpad.detach().requires_grad_(),
            k_unpad.detach().requires_grad_(),
            v_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            k.detach().requires_grad_(),
            v.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
149
150


151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
def construct_causal_mask(seqlen_q, seqlen_k, query_padding_mask=None, key_padding_mask=None,
                          device=None):
    row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
    col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
    sk = (
        seqlen_k
        if key_padding_mask is None
        else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
    )
    sq = (
        seqlen_q
        if query_padding_mask is None
        else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
    )
    return col_idx > row_idx + sk - sq


Tri Dao's avatar
Tri Dao committed
168
169
170
171
172
173
174
175
176
177
178
179
def attention_ref(
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
    upcast=True,
    reorder_ops=False,
):
Tri Dao's avatar
Tri Dao committed
180
181
182
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
Tri Dao's avatar
Tri Dao committed
183
184
        k: (batch_size, seqlen_k, nheads_k, head_dim)
        v: (batch_size, seqlen_k, nheads_k, head_dim)
Tri Dao's avatar
Tri Dao committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        query_padding_mask: (batch_size, seqlen_q)
        key_padding_mask: (batch_size, seqlen_k)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
        upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
            output back to fp16/bf16.
        reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
            without changing the math. This is to estimate the numerical error from operation
            reordering.
    Output:
        output: (batch_size, seqlen_q, nheads, head_dim)
        attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
    """
    dtype_og = q.dtype
    if upcast:
        q, k, v = q.float(), k.float(), v.float()
    seqlen_q, seqlen_k = q.shape[1], k.shape[1]
Tri Dao's avatar
Tri Dao committed
202
203
    k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
    v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
Tri Dao's avatar
Tri Dao committed
204
205
    d = q.shape[-1]
    if not reorder_ops:
Tri Dao's avatar
Tri Dao committed
206
        scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
Tri Dao's avatar
Tri Dao committed
207
    else:
Tri Dao's avatar
Tri Dao committed
208
        scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))
Tri Dao's avatar
Tri Dao committed
209
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
210
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
211
    if causal:
212
213
214
215
216
        # causal_mask = torch.triu(
        #     torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=q.device), 1
        # )
        causal_mask = construct_causal_mask(
            seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, q.device
Tri Dao's avatar
Tri Dao committed
217
218
        )
        scores.masked_fill_(causal_mask, float("-inf"))
Tri Dao's avatar
Tri Dao committed
219
    attention = torch.softmax(scores, dim=-1)
220
221
    if causal:  # Some rows are completely masked out so we fill them with zero instead of NaN
        attention = attention.masked_fill(torch.all(causal_mask, dim=-1, keepdim=True), 0.0)
Tri Dao's avatar
Tri Dao committed
222
223
224
225
226
    dropout_scaling = 1.0 / (1 - dropout_p)
    # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
    # output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
    if dropout_mask is not None:
        attention_drop = attention.masked_fill(~dropout_mask, 0.0)
Tri Dao's avatar
Tri Dao committed
227
228
    else:
        attention_drop = attention
Tri Dao's avatar
Tri Dao committed
229
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
Tri Dao's avatar
Tri Dao committed
230
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
231
232
        output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
        attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
233
234
235
    return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)


Tri Dao's avatar
Tri Dao committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
def attention_kvpacked_ref(
    q,
    kv,
    query_padding_mask=None,
    key_padding_mask=None,
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
    upcast=True,
    reorder_ops=False,
):
    return attention_ref(
        q,
        kv[:, :, 0],
        kv[:, :, 1],
        query_padding_mask,
        key_padding_mask,
        dropout_p,
        dropout_mask,
        upcast=upcast,
        causal=causal,
        reorder_ops=reorder_ops,
    )
Tri Dao's avatar
Tri Dao committed
259
260


Tri Dao's avatar
Tri Dao committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
def attention_qkvpacked_ref(
    qkv,
    key_padding_mask=None,
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
    upcast=True,
    reorder_ops=False,
):
    return attention_ref(
        qkv[:, :, 0],
        qkv[:, :, 1],
        qkv[:, :, 2],
        key_padding_mask,
        key_padding_mask,
        dropout_p,
        dropout_mask,
        upcast=upcast,
        causal=causal,
        reorder_ops=reorder_ops,
    )
Tri Dao's avatar
Tri Dao committed
282
283
284
285
286
287
288
289
290
291
292


def generate_sparsity_mask(seqlen, sparsity=0.3):
    repeats = seqlen // 16 // 2
    # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda'),
    #                     torch.tensor([0, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda'),
    #                     torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    nrow, ncol = seqlen // 16, seqlen // 256
Tri Dao's avatar
Tri Dao committed
293
    mask = torch.rand(nrow, ncol, device="cuda") < sparsity
Tri Dao's avatar
Tri Dao committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    return mask


def attention_blocksparse_ref(qkv, blockmask, attn_mask, dropout_p, dropout_mask):
    """
    Arguments:
        qkv: (batch_size, seqlen, 3, nheads, head_dim)
        blockmask: (seqlen / 16, seqlen / 256)
        attn_mask: (batch_size, seqlen)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen, seqlen)
    Output:
        output: (batch_size, seqlen, nheads, head_dim)
        attention: softmax after dropout
    """
    q, k, v = qkv.float().unbind(dim=2)
    d = qkv.shape[-1]
    seqlen = qkv.shape[1]
Tri Dao's avatar
Tri Dao committed
312
313
314
    scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
    scores.masked_fill_(rearrange(~attn_mask, "b s -> b 1 1 s"), float("-inf"))
    blockmask = repeat(blockmask, "s_16 s_256 -> (s_16 16) (s_256 256)")
Tri Dao's avatar
Tri Dao committed
315
    blockmask = blockmask[:seqlen, :seqlen]
Tri Dao's avatar
Tri Dao committed
316
    scores.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
317
    attention = torch.softmax(scores, dim=-1)
Tri Dao's avatar
Tri Dao committed
318
319
    attention = attention.masked_fill(rearrange(~attn_mask, "b s -> b 1 s 1"), 0.0)
    attention = attention.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), 0.0)
Tri Dao's avatar
Tri Dao committed
320
    attention_drop = attention.masked_fill(~dropout_mask, 0.0) / (1 - dropout_p)
Tri Dao's avatar
Tri Dao committed
321
322
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
    output.masked_fill_(rearrange(~attn_mask, "b s -> b s 1 1"), 0)
Tri Dao's avatar
Tri Dao committed
323
324
325
    return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype)


Tri Dao's avatar
Tri Dao committed
326
def convert_flash_attn_S_to_softmax(
327
    S, seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, head_dim, is_dropout, causal=False
Tri Dao's avatar
Tri Dao committed
328
):
Tri Dao's avatar
Tri Dao committed
329
330
    """FlashAttention stores the S matrix in a different way.
    Arguments:
Tri Dao's avatar
Tri Dao committed
331
        S: (batch_size, nheads, seqlen_q_rounded, seqlen_k_rounded)
332
333
        query_padding_mask: (batch_size, seqlen_q_rounded)
        key_padding_mask: (batch_size, seqlen_k_rounded)
Tri Dao's avatar
Tri Dao committed
334
    """
335
    seqlen_q_rounded, seqlen_k_rounded = S.shape[-2:]
Tri Dao's avatar
Tri Dao committed
336
    warps_n = 4
Tri Dao's avatar
Tri Dao committed
337
    blocksize_m, blocksize_n = _get_block_size(S.device, head_dim, is_dropout, causal)
338
339
    nblocks_n = (seqlen_k_rounded + blocksize_n - 1) // blocksize_n
    nblocks_m = (seqlen_q_rounded + blocksize_m - 1) // blocksize_m
Tri Dao's avatar
Tri Dao committed
340
    mmas_n = (blocksize_n + 16 - 1) // 16
Tri Dao's avatar
Tri Dao committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    S_flat = rearrange(
        S,
        "b h (nblocks_m blocksize_m) (nblocks_n blocksize_n) -> b h nblocks_m nblocks_n (blocksize_m blocksize_n)",
        blocksize_m=blocksize_m,
        blocksize_n=blocksize_n,
    )
    S_converted = rearrange(
        S_flat,
        "b h nblocks_m nblocks_n (mmas_n mmas_m warps_n eight four c2 c1 c0) -> b h (nblocks_m mmas_m warps_n c1 eight) (nblocks_n mmas_n c2 four c0)",
        mmas_n=mmas_n,
        warps_n=warps_n,
        eight=8,
        c0=2,
        c1=2,
        c2=2,
        four=4,
    )
358

Tri Dao's avatar
Tri Dao committed
359
    if causal:
360
361
362
363
364
        # causal_mask = torch.triu(
        #     torch.ones(seqlen_q_rounded, seqlen_k_rounded, dtype=torch.bool, device=q.device), 1
        # )
        causal_mask = construct_causal_mask(
            seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, S.device
Tri Dao's avatar
Tri Dao committed
365
        )
366
        causal_mask = F.pad(causal_mask, (0, seqlen_k_rounded - seqlen_k, 0, seqlen_q_rounded - seqlen_q), value=True)
Tri Dao's avatar
Tri Dao committed
367
        S_converted.masked_fill_(causal_mask, 0.0)
Tri Dao's avatar
Tri Dao committed
368
369
370

    # Need to zero out things not in attention_mask in case S was initialized with random values
    # and some of those values aren't overwritten.
371
    seqlen_q_og = query_padding_mask.shape[-1] if query_padding_mask is not None else seqlen_q_rounded
Tri Dao's avatar
Tri Dao committed
372
    if query_padding_mask is not None:
373
        query_padding_mask = F.pad(query_padding_mask, (0, seqlen_q_rounded - seqlen_q_og))
Tri Dao's avatar
Tri Dao committed
374
        S_converted = S_converted.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
375
376
    seqlen_k_og = key_padding_mask.shape[-1] if key_padding_mask is not None else seqlen_k
    if key_padding_mask is not None:
377
        key_padding_mask = F.pad(key_padding_mask, (0, seqlen_k_rounded - seqlen_k_og))
Tri Dao's avatar
Tri Dao committed
378
        S_converted = S_converted.masked_fill(rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0)
379
380
381
    S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q_rounded))
    S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k_rounded))
    return S_converted[:, :, :seqlen_q, :seqlen_k]
Tri Dao's avatar
Tri Dao committed
382
383


Tri Dao's avatar
Tri Dao committed
384
385
386
387
388
389
390
391
392
393
def normalize_flash_attn_S(
    attn_unnorm,
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
    is_dropout=False,
    causal=False,
):
Tri Dao's avatar
Tri Dao committed
394
395
396
397
398
399
400
401
402
403
404
405
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
        k, v: (batch_size, seqlen_k, nheads, head_dim)
        key_padding_mask: (batch_size, seqlen_q)
    Output:
        softmax_lse: (batch_size, nheads, seqlen_q)
        softmax_max: (batch_size, nheads, seqlen_q)
    """
    q, k, v = q.float(), k.float(), v.float()
    _, seqlen_q, _, head_dim = q.shape
    seqlen_k = k.shape[1]
Tri Dao's avatar
Tri Dao committed
406
    scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(head_dim), k)
Tri Dao's avatar
Tri Dao committed
407
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
408
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
409
    if causal:
410
411
412
413
414
        # causal_mask = torch.triu(
        #     torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=q.device), 1
        # )
        causal_mask = construct_causal_mask(
            seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, q.device
Tri Dao's avatar
Tri Dao committed
415
416
        )
        scores.masked_fill_(causal_mask, float("-inf"))
Tri Dao's avatar
Tri Dao committed
417
418
    _, block_size_n = _get_block_size(scores.device, head_dim, is_dropout, causal)
    scores_block = scores.split(block_size_n, dim=-1)
Tri Dao's avatar
Tri Dao committed
419
    lse_block = torch.stack([torch.logsumexp(s, dim=-1) for s in scores_block], dim=-1)
Tri Dao's avatar
Tri Dao committed
420
    lse = torch.logsumexp(lse_block, dim=-1)
421
422
423
    # lse could be -inf (i.e. all values in scores are -inf), and we want to set those to inf
    # so that when we do torch.exp(m - lse), we get 0.0 instead of NaN.
    lse[lse == float("-inf")] = float("inf")
Tri Dao's avatar
Tri Dao committed
424
425
426
    scores_max_block = torch.stack([torch.amax(s, dim=-1) for s in scores_block], dim=-1)
    cummax_block = torch.cummax(scores_max_block.flip(-1), dim=-1).values.flip(-1).unbind(dim=-1)
    attn_unnorm_block = attn_unnorm.split(block_size_n, dim=-1)
Tri Dao's avatar
Tri Dao committed
427
428
    attn_norm = torch.cat(
        [
429
            a * rearrange(torch.exp(m - lse), "b h s -> b h s 1")
Tri Dao's avatar
Tri Dao committed
430
431
432
433
            for a, m in zip(attn_unnorm_block, cummax_block)
        ],
        dim=-1,
    )
Tri Dao's avatar
Tri Dao committed
434
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
435
        attn_norm.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
436
437
438
    return attn_norm.to(dtype=attn_unnorm.dtype)


Tri Dao's avatar
Tri Dao committed
439
440
441
def get_dropout_fraction(
    dropout_mask, query_padding_mask=None, key_padding_mask=None, causal=False
):
Tri Dao's avatar
Tri Dao committed
442
443
444
445
446
447
448
449
    """
    dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k), bool. True means keep, False means drop.
    query_padding_mask: (batch_size, seqlen_q)
    key_padding_mask: (batch_size, seqlen_k)
    """
    batch_size, nheads, seqlen_q, seqlen_k = dropout_mask.shape
    dropped = ~dropout_mask
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
450
        dropped.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
Tri Dao's avatar
Tri Dao committed
451
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
452
        dropped.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
Tri Dao's avatar
Tri Dao committed
453
    if causal:
454
455
456
457
458
        # causal_mask = torch.triu(
        #     torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=dropout_mask.device), 1
        # )
        causal_mask = construct_causal_mask(
            seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, dropout_mask.device
Tri Dao's avatar
Tri Dao committed
459
        )
Tri Dao's avatar
Tri Dao committed
460
461
        dropped.masked_fill_(causal_mask, False)
    dropped_total = dropped.sum()
Tri Dao's avatar
Tri Dao committed
462
463
464
465
466
467
468
469
470
471
    query_lengths = (
        query_padding_mask.sum(dim=-1)
        if query_padding_mask is not None
        else torch.full((batch_size,), seqlen_q, device=dropout_mask.device)
    )
    key_lengths = (
        key_padding_mask.sum(dim=-1)
        if key_padding_mask is not None
        else torch.full((batch_size,), seqlen_k, device=dropout_mask.device)
    )
Tri Dao's avatar
Tri Dao committed
472
473
474
475
    if not causal:
        numel_per_batch = query_lengths * key_lengths
    else:
        numel_per_batch = torch.where(
476
477
478
            key_lengths <= query_lengths,
            key_lengths * (key_lengths + 1) / 2,
            query_lengths * key_lengths - (query_lengths * (query_lengths - 1) / 2),
Tri Dao's avatar
Tri Dao committed
479
480
481
482
        )
    return dropped_total / (numel_per_batch.sum() * nheads)


Tri Dao's avatar
Tri Dao committed
483
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
484
# @pytest.mark.parametrize('dtype', [torch.float16])
Tri Dao's avatar
Tri Dao committed
485
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
486
# @pytest.mark.parametrize('causal', [True])
Tri Dao's avatar
Tri Dao committed
487
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
488
489
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128])
Tri Dao's avatar
Tri Dao committed
490
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
491
# @pytest.mark.parametrize('seqlen', [128, 256, 384, 512, 768, 1024, 2048])
Tri Dao's avatar
Tri Dao committed
492
@pytest.mark.parametrize("seqlen", [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
Tri Dao's avatar
Tri Dao committed
493
# @pytest.mark.parametrize('seqlen', [97])
Tri Dao's avatar
Tri Dao committed
494
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
495
496
# @pytest.mark.parametrize('dropout_p', [0.17])
def test_flash_attn_qkvpacked(seqlen, d, dropout_p, causal, dtype):
Tri Dao's avatar
Tri Dao committed
497
    if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
Tri Dao's avatar
Tri Dao committed
498
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
499
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
500
501
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
502
503
    batch_size = 16
    nheads = 9
Tri Dao's avatar
Tri Dao committed
504
505
506
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
    )
Tri Dao's avatar
Tri Dao committed
507
508
    out, lse, S_dmask = flash_attn_qkvpacked_func(
        qkv, dropout_p, return_attn_probs=True, causal=causal
Tri Dao's avatar
Tri Dao committed
509
    )
Tri Dao's avatar
Tri Dao committed
510
511
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
512
513
            S_dmask, seqlen, seqlen, None, None, d, dropout_p > 0.0, causal=causal
        )
Tri Dao's avatar
Tri Dao committed
514
515
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
Tri Dao's avatar
Tri Dao committed
516
517
518
519
520
521
522
523
524
525
        attn = normalize_flash_attn_S(
            attn_unnorm,
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            None,
            None,
            dropout_p > 0.0,
            causal=causal,
        )
Tri Dao's avatar
Tri Dao committed
526
        dropout_fraction = get_dropout_fraction(dropout_mask, None, None, causal=causal).item()
Tri Dao's avatar
Tri Dao committed
527
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
528
529
530
531
    else:
        dropout_mask = None

    out_ref, attn_ref = attention_qkvpacked_ref(qkv, None, dropout_p, dropout_mask, causal=causal)
Tri Dao's avatar
Tri Dao committed
532
533
534
    out_pt, attn_pt = attention_qkvpacked_ref(
        qkv, None, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True
    )
Tri Dao's avatar
Tri Dao committed
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
    # v = qkv[:, :, 2].float()
    # qk = torch.einsum('bshd,bthd->bhst', qkv[:, :, 0], qkv[:, :, 1]).float()
    # if causal:
    #     causal_mask = torch.triu(torch.ones(seqlen, seqlen, dtype=torch.bool, device=qkv.device), 1)
    #     qk.masked_fill_(causal_mask, float('-inf'))
    # m = qk.amax(-1, keepdim=True)
    # s_tmp = torch.exp((qk - m) / math.sqrt(d))
    # p_tmp = torch.softmax(qk / math.sqrt(d), -1)
    # p_dropped = p_tmp if dropout_mask is None else p_tmp.masked_fill(~dropout_mask, 0)
    # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
    # qk_max1 = torch.max(qk[:, :, 128:, 192:], -1, keepdim=True).values
    # qk_max2 = torch.max(qk[:, :, 128:, 128:], -1, keepdim=True).values
    # qk_max3 = torch.max(qk[:, :, 128:, 64:], -1, keepdim=True).values
    # qk_max4 = torch.max(qk[:, :, 128:, :], -1, keepdim=True).values
    # o1 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 192:] - qk_max1) / math.sqrt(d)), v[:, 192:])
    # o2 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 128:] - qk_max2) / math.sqrt(d)), v[:, 128:])
    # o3 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 64:] - qk_max3) / math.sqrt(d)), v[:, 64:])
    # o4 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, :] - qk_max4) / math.sqrt(d)), v[:, :])
Tri Dao's avatar
Tri Dao committed
553
554
555
556
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
557
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
558
559
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
560
561
562
563
564
565

    g = torch.randn_like(out)
    # do_o = (g.float() * out.float()).sum(-1)
    # dv_tmp = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, :64], g[:, :64])
    # dv_tmp1 = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, 64:], g[:, 64:])
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
566
567
568
569
570
571
572
573
574
575
576
        (dqkv,) = torch.autograd.grad(out, qkv, g)
        (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
        (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
        print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
577
578
579

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
580
581
582
583
584
585
586
587
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()

    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
        assert abs(dropout_fraction - dropout_p) <= 0.01

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
588
589


Tri Dao's avatar
Tri Dao committed
590
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
591
# @pytest.mark.parametrize('dtype', [torch.float16])
Tri Dao's avatar
Tri Dao committed
592
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
593
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
594
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
595
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
596
@pytest.mark.parametrize("seqlen", [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
Tri Dao's avatar
Tri Dao committed
597
# @pytest.mark.parametrize('seqlen', [128])
Tri Dao's avatar
Tri Dao committed
598
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
599
# @pytest.mark.parametrize('dropout_p', [0.0])
Tri Dao's avatar
Tri Dao committed
600
def test_flash_attn_varlen_qkvpacked(seqlen, d, dropout_p, causal, dtype):
Tri Dao's avatar
Tri Dao committed
601
    if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
Tri Dao's avatar
Tri Dao committed
602
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
603
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
604
605
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
606
607
    batch_size = 5
    nheads = 6
Tri Dao's avatar
Tri Dao committed
608
609
610
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
    )
Tri Dao's avatar
Tri Dao committed
611

Tri Dao's avatar
Tri Dao committed
612
    key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode="random")
Tri Dao's avatar
Tri Dao committed
613
    # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full')
Tri Dao's avatar
Tri Dao committed
614

Tri Dao's avatar
Tri Dao committed
615
616
    qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv(
        *qkv.unbind(dim=2), key_padding_mask, key_padding_mask, qkvpacked=True
Tri Dao's avatar
Tri Dao committed
617
    )
Tri Dao's avatar
Tri Dao committed
618
619
620

    out_unpad, sm_lse, S_dmask = flash_attn_varlen_qkvpacked_func(
        qkv_unpad, cu_seqlens, max_seqlen, dropout_p, return_attn_probs=True, causal=causal
Tri Dao's avatar
Tri Dao committed
621
    )
Tri Dao's avatar
Tri Dao committed
622
623
624
    out = output_pad_fn(out_unpad)
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
625
626
            S_dmask, seqlen, seqlen, key_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal
        )
Tri Dao's avatar
Tri Dao committed
627
628
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
Tri Dao's avatar
Tri Dao committed
629
630
631
632
633
634
635
636
637
638
639
640
641
642
        attn = normalize_flash_attn_S(
            attn_unnorm,
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            key_padding_mask,
            key_padding_mask,
            dropout_p > 0.0,
            causal=causal,
        )
        dropout_fraction = get_dropout_fraction(
            dropout_mask, key_padding_mask, key_padding_mask, causal=causal
        ).item()
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
643
644
645
    else:
        dropout_mask = None

Tri Dao's avatar
Tri Dao committed
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    out_ref, attn_ref = attention_qkvpacked_ref(
        qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal
    )
    out_pt, attn_pt = attention_qkvpacked_ref(
        qkv,
        key_padding_mask,
        dropout_p,
        dropout_mask,
        causal=causal,
        upcast=False,
        reorder_ops=True,
    )
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
662
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
663
664
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
665
666
667

    g = torch.randn_like(out)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
668
        (dqkv_unpad,) = torch.autograd.grad(out, qkv_unpad, g)
Tri Dao's avatar
Tri Dao committed
669
        dqkv = dqkv_pad_fn(dqkv_unpad)
Tri Dao's avatar
Tri Dao committed
670
671
672
673
674
675
676
677
678
679
        (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
        (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
        print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
680
681
682

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
683
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
684

Tri Dao's avatar
Tri Dao committed
685
686
687
688
689
690
    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
        assert abs(dropout_fraction - dropout_p) <= 0.01

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
691
692


Tri Dao's avatar
Tri Dao committed
693
@pytest.mark.parametrize("kvpacked", [True, False])
694
# @pytest.mark.parametrize("kvpacked", [False])
Tri Dao's avatar
Tri Dao committed
695
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
696
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
697
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
698
# @pytest.mark.parametrize("mha_type", ["mha"])
Tri Dao's avatar
Tri Dao committed
699
@pytest.mark.parametrize("causal", [False, True])
700
# @pytest.mark.parametrize("causal", [True])
Tri Dao's avatar
Tri Dao committed
701
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
702
703
704
705
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
706
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
722
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
Tri Dao's avatar
Tri Dao committed
723
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
724
# @pytest.mark.parametrize("dropout_p", [0.17])
Tri Dao's avatar
Tri Dao committed
725
def test_flash_attn_output(seqlen_q, seqlen_k, d, dropout_p, causal, mha_type, dtype, kvpacked):
Tri Dao's avatar
Tri Dao committed
726
727
728
729
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
Tri Dao's avatar
Tri Dao committed
730
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
731
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
732
733
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
734
735
736
737
738
739
    batch_size = 16
    nheads = 9
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
740
741
742
        kv = torch.randn(
            batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
743
    else:
Tri Dao's avatar
Tri Dao committed
744
745
746
747
748
749
        k = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
750
751
752
753
754
755
756
757
758
759
760

    if kvpacked:
        out, lse, S_dmask = flash_attn_kvpacked_func(
            q, kv, dropout_p, return_attn_probs=True, causal=causal
        )
    else:
        out, lse, S_dmask = flash_attn_func(
            q, k, v, dropout_p, return_attn_probs=True, causal=causal
        )
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
761
762
            S_dmask, seqlen_q, seqlen_k, None, None, d, dropout_p > 0.0, causal=causal
        )
Tri Dao's avatar
Tri Dao committed
763
764
765
766
767
768
769
770
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
        if kvpacked:
            kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
            k_rep, v_rep = kv_rep.unbind(dim=2)
        else:
            k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
            v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
Tri Dao's avatar
Tri Dao committed
771
772
773
        attn = normalize_flash_attn_S(
            attn_unnorm, q, k_rep, v_rep, None, None, dropout_p > 0.0, causal=causal
        )
Tri Dao's avatar
Tri Dao committed
774
        dropout_fraction = get_dropout_fraction(dropout_mask, None, None, causal=causal).item()
Tri Dao's avatar
Tri Dao committed
775
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
776
777
    else:
        dropout_mask = None
Tri Dao's avatar
Tri Dao committed
778

Tri Dao's avatar
Tri Dao committed
779
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
780
781
782
783
784
785
786
787
788
789
790
791
792
793
        out_ref, attn_ref = attention_kvpacked_ref(
            q, kv, None, None, dropout_p, dropout_mask, causal=causal
        )
        out_pt, attn_pt = attention_kvpacked_ref(
            q,
            kv,
            None,
            None,
            dropout_p,
            dropout_mask,
            causal=causal,
            upcast=False,
            reorder_ops=True,
        )
Tri Dao's avatar
Tri Dao committed
794
    else:
Tri Dao's avatar
Tri Dao committed
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
        out_ref, attn_ref = attention_ref(
            q, k, v, None, None, dropout_p, dropout_mask, causal=causal
        )
        out_pt, attn_pt = attention_ref(
            q,
            k,
            v,
            None,
            None,
            dropout_p,
            dropout_mask,
            causal=causal,
            upcast=False,
            reorder_ops=True,
        )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
815
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
816
817
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
818
819
820
821
822

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        if kvpacked:
Tri Dao's avatar
Tri Dao committed
823
824
825
826
            (
                dq,
                dkv,
            ) = torch.autograd.grad(out, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
827
            dk, dv = dkv.unbind(2)
Tri Dao's avatar
Tri Dao committed
828
829
830
831
            (
                dq_ref,
                dkv_ref,
            ) = torch.autograd.grad(out_ref, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
832
            dk_ref, dv_ref = dkv_ref.unbind(2)
Tri Dao's avatar
Tri Dao committed
833
834
835
836
            (
                dq_pt,
                dkv_pt,
            ) = torch.autograd.grad(out_pt, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
837
838
            dk_pt, dv_pt = dkv_pt.unbind(2)
        else:
Tri Dao's avatar
Tri Dao committed
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
            (
                dq,
                dk,
                dv,
            ) = torch.autograd.grad(out, (q, k, v), g)
            (
                dq_ref,
                dk_ref,
                dv_ref,
            ) = torch.autograd.grad(out_ref, (q, k, v), g)
            (
                dq_pt,
                dk_pt,
                dv_pt,
            ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
866
867
868

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
869
870
871
872
873
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()

    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
        assert abs(dropout_fraction - dropout_p) <= 0.01
Tri Dao's avatar
Tri Dao committed
874

Tri Dao's avatar
Tri Dao committed
875
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
876
877
878
879
880
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()


Tri Dao's avatar
Tri Dao committed
881
@pytest.mark.parametrize("kvpacked", [True, False])
Tri Dao's avatar
Tri Dao committed
882
# @pytest.mark.parametrize('kvpacked', [False])
Tri Dao's avatar
Tri Dao committed
883
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
884
# @pytest.mark.parametrize('dtype', [torch.float16])
Tri Dao's avatar
Tri Dao committed
885
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
Tri Dao's avatar
Tri Dao committed
886
# @pytest.mark.parametrize('mha_type', ["mqa"])
Tri Dao's avatar
Tri Dao committed
887
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
888
# @pytest.mark.parametrize('causal', [True])
Tri Dao's avatar
Tri Dao committed
889
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
890
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
891
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
Tri Dao's avatar
Tri Dao committed
907
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
Tri Dao's avatar
Tri Dao committed
908
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
909
# @pytest.mark.parametrize('dropout_p', [0.0])
Tri Dao's avatar
Tri Dao committed
910
911
912
913
914
915
916
def test_flash_attn_varlen_output(
    seqlen_q, seqlen_k, d, dropout_p, causal, mha_type, dtype, kvpacked
):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
917
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
918
    device = "cuda"
919
920
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
921
922
923
924
925
926
    batch_size = 16
    nheads = 9
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
927
928
929
        kv = torch.randn(
            batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
930
    else:
Tri Dao's avatar
Tri Dao committed
931
932
933
934
935
936
        k = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
937

Tri Dao's avatar
Tri Dao committed
938
939
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
Tri Dao's avatar
Tri Dao committed
940
941
942
    # key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full')

    if kvpacked:
Tri Dao's avatar
Tri Dao committed
943
944
945
946
947
948
949
950
951
952
953
954
955
        (
            q_unpad,
            kv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            kv,
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        ) = generate_qkv(q, *kv.unbind(dim=2), query_padding_mask, key_padding_mask, kvpacked=True)
Tri Dao's avatar
Tri Dao committed
956
        out_unpad, sm_lse, S_dmask = flash_attn_varlen_kvpacked_func(
Tri Dao's avatar
Tri Dao committed
957
958
959
960
961
962
963
964
965
            q_unpad,
            kv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            return_attn_probs=True,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
966
967
        )
    else:
Tri Dao's avatar
Tri Dao committed
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
        (
            q_unpad,
            k_unpad,
            v_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            k,
            v,
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
Tri Dao's avatar
Tri Dao committed
983
        out_unpad, sm_lse, S_dmask = flash_attn_varlen_func(
Tri Dao's avatar
Tri Dao committed
984
985
986
987
988
989
990
991
992
993
            q_unpad,
            k_unpad,
            v_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            return_attn_probs=True,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
994
        )
Tri Dao's avatar
Tri Dao committed
995
996
    out = output_pad_fn(out_unpad)
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
997
        S_dmask_converted = convert_flash_attn_S_to_softmax(
998
999
            S_dmask, seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal
        )
Tri Dao's avatar
Tri Dao committed
1000
1001
1002
1003
1004
1005
1006
1007
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
        if kvpacked:
            kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
            k_rep, v_rep = kv_rep.unbind(dim=2)
        else:
            k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
            v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
Tri Dao's avatar
Tri Dao committed
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
        attn = normalize_flash_attn_S(
            attn_unnorm,
            q,
            k_rep,
            v_rep,
            query_padding_mask,
            key_padding_mask,
            dropout_p > 0.0,
            causal=causal,
        )
        dropout_fraction = get_dropout_fraction(
            dropout_mask, query_padding_mask, key_padding_mask, causal=causal
        ).item()
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
1022
1023
1024
1025
    else:
        dropout_mask = None

    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
        out_ref, attn_ref = attention_kvpacked_ref(
            q, kv, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal
        )
        out_pt, attn_pt = attention_kvpacked_ref(
            q,
            kv,
            query_padding_mask,
            key_padding_mask,
            dropout_p,
            dropout_mask,
            causal=causal,
            upcast=False,
            reorder_ops=True,
        )
Tri Dao's avatar
Tri Dao committed
1040
    else:
Tri Dao's avatar
Tri Dao committed
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
        out_ref, attn_ref = attention_ref(
            q, k, v, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal
        )
        out_pt, attn_pt = attention_ref(
            q,
            k,
            v,
            query_padding_mask,
            key_padding_mask,
            dropout_p,
            dropout_mask,
            causal=causal,
            upcast=False,
            reorder_ops=True,
        )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1061
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1062
1063
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
1064
1065
1066
1067

    g = torch.randn_like(out)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        if kvpacked:
Tri Dao's avatar
Tri Dao committed
1068
1069
1070
1071
            (
                dq_unpad,
                dkv_unpad,
            ) = torch.autograd.grad(out, (q_unpad, kv_unpad), g)
Tri Dao's avatar
Tri Dao committed
1072
            dk, dv = dkv_pad_fn(dkv_unpad).unbind(2)
Tri Dao's avatar
Tri Dao committed
1073
1074
1075
1076
            (
                dq_ref,
                dkv_ref,
            ) = torch.autograd.grad(out_ref, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1077
            dk_ref, dv_ref = dkv_ref.unbind(2)
Tri Dao's avatar
Tri Dao committed
1078
1079
1080
1081
            (
                dq_pt,
                dkv_pt,
            ) = torch.autograd.grad(out_pt, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1082
1083
            dk_pt, dv_pt = dkv_pt.unbind(2)
        else:
Tri Dao's avatar
Tri Dao committed
1084
1085
1086
1087
1088
            (
                dq_unpad,
                dk_unpad,
                dv_unpad,
            ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
Tri Dao's avatar
Tri Dao committed
1089
1090
            dk = dk_pad_fn(dk_unpad)
            dv = dk_pad_fn(dv_unpad)
Tri Dao's avatar
Tri Dao committed
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
            (
                dq_ref,
                dk_ref,
                dv_ref,
            ) = torch.autograd.grad(out_ref, (q, k, v), g)
            (
                dq_pt,
                dk_pt,
                dv_pt,
            ) = torch.autograd.grad(out_pt, (q, k, v), g)
Tri Dao's avatar
Tri Dao committed
1101
        dq = dq_pad_fn(dq_unpad)
Tri Dao's avatar
Tri Dao committed
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
1114
1115
1116

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
1117
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
1118

Tri Dao's avatar
Tri Dao committed
1119
1120
1121
    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
        assert abs(dropout_fraction - dropout_p) <= 0.01
Tri Dao's avatar
Tri Dao committed
1122

Tri Dao's avatar
Tri Dao committed
1123
1124
1125
1126
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1127

1128

Tri Dao's avatar
Tri Dao committed
1129
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64, 128])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
def test_flash_attn_causal(seqlen_q, seqlen_k, swap_sq_sk, d, dtype):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    causal = True
    # set seed
    torch.random.manual_seed(0)
    batch_size = 16
    nheads = 9
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    out = flash_attn_func(q, k, v, 0.0, causal=causal)
    out_ref, attn_ref = attention_ref(q, k, v, None, None, 0.0, None, causal=causal)
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        None,
        None,
        0.0,
        None,
        causal=causal,
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        (
            dq,
            dk,
            dv,
        ) = torch.autograd.grad(out, (q, k, v), g)
        (
            dq_ref,
            dk_ref,
            dv_ref,
        ) = torch.autograd.grad(out_ref, (q, k, v), g)
        (
            dq_pt,
            dk_pt,
            dv_pt,
        ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [128])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize("seqlen_q,seqlen_k", [(256, 128)])
def test_flash_attn_varlen_causal(seqlen_q, seqlen_k, swap_sq_sk, d, dtype):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    causal = True
    # set seed
    torch.random.manual_seed(0)
    batch_size = 16
    nheads = 9
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
    (
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        q,
        k,
        v,
        output_pad_fn,
        dq_pad_fn,
        dk_pad_fn,
    ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
    out_unpad = flash_attn_varlen_func(
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        0.0,
        causal=causal,
    )
    out = output_pad_fn(out_unpad)
    out_ref, attn_ref = attention_ref(
        q, k, v, query_padding_mask, key_padding_mask, 0.0, None, causal=causal
    )
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        query_padding_mask,
        key_padding_mask,
        0.0,
        None,
        causal=causal,
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        (
            dq_unpad,
            dk_unpad,
            dv_unpad,
        ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
        dq = dq_pad_fn(dq_unpad)
        dk = dk_pad_fn(dk_unpad)
        dv = dk_pad_fn(dv_unpad)
        (
            dq_ref,
            dk_ref,
            dv_ref,
        ) = torch.autograd.grad(out_ref, (q, k, v), g)
        (
            dq_pt,
            dk_pt,
            dv_pt,
        ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5


# @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
@pytest.mark.parametrize("dtype", [torch.float16])
Tri Dao's avatar
Tri Dao committed
1372
@pytest.mark.parametrize("causal", [False, True])
1373
1374
# @pytest.mark.parametrize('causal', [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1375
# @pytest.mark.parametrize('d', [32, 56, 64, 80, 96, 128])
1376
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192])
Tri Dao's avatar
Tri Dao committed
1377
# @pytest.mark.parametrize('d', [128])
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (239, 1),
        (3, 799),
        (799, 3),
        (1024, 128),
        (97, 97),
        (128, 128),
        (200, 200),
        (256, 256),
        (257, 257),
        (384, 384),
        (512, 512),
        (768, 768),
        (1024, 1024),
    ],
)
@pytest.mark.parametrize('dropout_p', [0.0, 0.17])
# @pytest.mark.parametrize("dropout_p", [0.0])
def test_flash_attn_race_condition(seqlen_q, seqlen_k, d, dropout_p, causal, dtype):
Tri Dao's avatar
Tri Dao committed
1400
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
1401
1402
    # set seed
    torch.random.manual_seed(0)
1403
    batch_size = 60  # Sometimes we need large batch size for the race conditions to trigger
Tri Dao's avatar
Tri Dao committed
1404
    nheads = 4
1405
1406
1407
1408
1409
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    torch.random.manual_seed(42)
    out0, lse0, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
Tri Dao's avatar
Tri Dao committed
1410
    g = torch.randn_like(out0)
1411
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
1412
1413
1414
1415
1416
        (
            dq0,
            dk0,
            dv0,
        ) = torch.autograd.grad(out0, (q, k, v), g)
1417
        # Numerical error if we just do any arithmetic on dq
1418
        dq_atol = 2 * ((dq0 + 0.3 - 0.3) - dq0).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1419

1420
1421
1422
    for i in range(250):
        torch.random.manual_seed(42)
        out, lse, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
Tri Dao's avatar
Tri Dao committed
1423
1424
        assert torch.equal(out, out0)
        assert torch.equal(lse, lse0)
Tri Dao's avatar
Tri Dao committed
1425

1426
        if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
1427
1428
1429
1430
1431
1432
            (
                dq,
                dk,
                dv,
            ) = torch.autograd.grad(out, (q, k, v), g)
            dq_equal = torch.allclose(dq, dq0, atol=dq_atol)
1433
            if not dq_equal:
1434
1435
1436
                print(f"Iter {i}, {dq_atol = }, dQ max diff: {(dq - dq0).abs().max().item()}")
            assert torch.equal(dv, dv0)
            assert torch.equal(dk, dk0)
1437
            assert dq_equal
1438
1439


Tri Dao's avatar
Tri Dao committed
1440
1441
@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
1442
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
1443
@pytest.mark.parametrize("d", [16, 32, 64])
1444
# @pytest.mark.parametrize('d', [16])
Tri Dao's avatar
Tri Dao committed
1445
@pytest.mark.parametrize("seqlen", [1, 2, 5, 17, 128])
1446
1447
# @pytest.mark.parametrize('seqlen', [2])
def test_flash_attn_bwd_overflow(seqlen, d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
1448
    """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
1449
1450
    in the case where seqlen % 128 != 0.
    """
Tri Dao's avatar
Tri Dao committed
1451
    device = "cuda"
1452
1453
1454
1455
1456
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    nheads = 5
    q = torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 5
Tri Dao's avatar
Tri Dao committed
1457
1458
1459
1460
    k, v = [
        torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 3
        for _ in range(2)
    ]
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
    q.requires_grad_(True)
    k.requires_grad_(True)
    v.requires_grad_(True)
    out = flash_attn_func(q, k, v, causal=causal)
    g = torch.randn_like(out)
    out.backward(g)
    q_pt = q.detach().clone().requires_grad_(True)
    k_pt = k.detach().clone().requires_grad_(True)
    v_pt = v.detach().clone().requires_grad_(True)
    out_pt, _ = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
    out_pt.backward(g)
    q_ref = q.detach().clone().requires_grad_(True)
    k_ref = k.detach().clone().requires_grad_(True)
    v_ref = v.detach().clone().requires_grad_(True)
    out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
    out_ref.backward(g)
Tri Dao's avatar
Tri Dao committed
1477
1478
1479
1480
1481
1482
    print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
    print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
    print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
    print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
    print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
    print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
1483
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
    assert (q.grad - q_ref.grad).abs().max().item() <= 5 * (
        q_pt.grad - q_ref.grad
    ).abs().max().item() + 1e-3
    assert (k.grad - k_ref.grad).abs().max().item() <= 5 * (
        k_pt.grad - k_ref.grad
    ).abs().max().item() + 1e-3
    assert (v.grad - v_ref.grad).abs().max().item() <= 5 * (
        v_pt.grad - v_ref.grad
    ).abs().max().item() + 1e-3


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
1496
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
1497
@pytest.mark.parametrize("causal", [False, True])
1498
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
1499
@pytest.mark.parametrize("d", [64, 128])
1500
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
1501
@pytest.mark.parametrize("seqlen", [97, 128, 200, 256])
1502
1503
# @pytest.mark.parametrize('seqlen', [128])
def test_flash_attn_bwd_transpose(seqlen, d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
1504
    """We previously had a bug where we were using the wrong strides of dout, which shows up
1505
1506
    when dout is not contiguous.
    """
Tri Dao's avatar
Tri Dao committed
1507
    device = "cuda"
1508
1509
1510
1511
    # set seed
    torch.random.manual_seed(0)
    batch_size = 5
    nheads = 2
Tri Dao's avatar
Tri Dao committed
1512
1513
1514
1515
    q, k, v = [
        torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda", requires_grad=True)
        for _ in range(3)
    ]
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
    out = rearrange(flash_attn_func(q, k, v, causal=causal), "b s ... -> s b ...")
    # So g is not contiguous
    g = torch.randn(seqlen, 2 * batch_size, nheads, d, dtype=dtype, device="cuda")[:, ::2]
    out.backward(g)
    q_pt = q.detach().clone().requires_grad_(True)
    k_pt = k.detach().clone().requires_grad_(True)
    v_pt = v.detach().clone().requires_grad_(True)
    out_pt, attn_pt = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
    out_pt = rearrange(out_pt, "b s ... -> s b ...")
    out_pt.backward(g)
    q_ref = q.detach().clone().requires_grad_(True)
    k_ref = k.detach().clone().requires_grad_(True)
    v_ref = v.detach().clone().requires_grad_(True)
    out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
    out_ref = rearrange(out_ref, "b s ... -> s b ...")
    out_ref.backward(g)
Tri Dao's avatar
Tri Dao committed
1532
1533
1534
1535
1536
1537
    print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
    print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
    print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
    print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
    print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
    print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
1538
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
    assert (q.grad - q_ref.grad).abs().max().item() <= 2 * (
        q_pt.grad - q_ref.grad
    ).abs().max().item()
    assert (k.grad - k_ref.grad).abs().max().item() <= 2 * (
        k_pt.grad - k_ref.grad
    ).abs().max().item()
    assert (v.grad - v_ref.grad).abs().max().item() <= 2 * (
        v_pt.grad - v_ref.grad
    ).abs().max().item()


@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
1552
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
1553
@pytest.mark.parametrize("d", [16, 32, 64])
1554
1555
# @pytest.mark.parametrize('d', [16])
def test_flash_attn_bwd_varlen_overflow(d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
1556
    """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
1557
1558
    in the case where seqlen % 128 != 0 or varlen.
    """
Tri Dao's avatar
Tri Dao committed
1559
    device = "cuda"
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
    # set seed
    torch.random.manual_seed(0)
    nheads = 5
    q_cuseqlen = torch.tensor([0, 76, 110, 256], device=device, dtype=torch.int32)
    k_cuseqlen = torch.tensor([0, 1, 2, 3], device=device, dtype=torch.int32)
    Mq = 256
    Mk = 3

    q = torch.randn([Mq, nheads, d], dtype=dtype, device=device) * 3
    k, v = [torch.randn([Mk, nheads, d], dtype=dtype, device=device) * 3 for _ in range(2)]
    q.requires_grad_(True)
    k.requires_grad_(True)
    v.requires_grad_(True)

    out = flash_attn_varlen_func(q, k, v, q_cuseqlen, k_cuseqlen, Mq, Mk, causal=causal)
    g = torch.randn_like(out)
    out.backward(g)

    assert not q.grad.isnan().any()
    assert not k.grad.isnan().any()
    assert not v.grad.isnan().any()