flash_fwd_kernel.h 8.15 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/******************************************************************************
 * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
 ******************************************************************************/

#pragma once

#include "cute/tensor.hpp"

#include <cutlass/cutlass.h>
#include <cutlass/arch/reg_reconfig.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include "cutlass/pipeline/pipeline.hpp"

#include "flash.h"
#include "utils.h"
#include "softmax.h"
#include "tile_scheduler.hpp"
#include "mainloop_fwd_sm90_tma_gmma_ws.hpp"
#include "epilogue_fwd_sm90_tma.hpp"

namespace flash {

using namespace cute;

template <typename Ktraits, bool Is_causal, typename TileScheduler>
__global__ void __launch_bounds__(Ktraits::kNWarps * cutlass::NumThreadsPerWarp, 1)
Tri Dao's avatar
Tri Dao committed
29
    compute_attn_ws(CUTE_GRID_CONSTANT typename CollectiveMainloopFwd<Ktraits, Is_causal>::Params const mainloop_params,
Tri Dao's avatar
Tri Dao committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
                    CUTE_GRID_CONSTANT typename CollectiveEpilogueFwd<Ktraits>::Params const epilogue_params,
                    CUTE_GRID_CONSTANT typename TileScheduler::Params const scheduler_params
                    ) {

    using Element = typename Ktraits::Element;
    using ElementAccum = typename Ktraits::ElementAccum;
    using SoftType = ElementAccum;
    using TileShape_MNK = typename Ktraits::TileShape_MNK;
    using ClusterShape = typename Ktraits::ClusterShape_MNK;

    static_assert(Ktraits::Is_WS);
    static constexpr bool Is_WS = Ktraits::Is_WS;

    static constexpr int NumMmaThreads = size(typename Ktraits::TiledMma0{});
    static constexpr int NumCopyThreads = !Is_WS ? 0 : cutlass::NumThreadsPerWarpGroup;
    static constexpr int kBlockM = Ktraits::kBlockM;
    // static constexpr int kBlockN = Ktraits::kBlockN;
    // constexpr int kHeadDim = Ktraits::kHeadDim;

    using CollectiveMainloop = CollectiveMainloopFwd<Ktraits, Is_causal>;
    using CollectiveEpilogue = CollectiveEpilogueFwd<Ktraits>;

    using MainloopPipeline = typename Ktraits::MainloopPipeline;
    using PipelineParams = typename MainloopPipeline::Params;
    using PipelineState = typename MainloopPipeline::PipelineState;

    extern __shared__ char shared_memory[];
    auto &shared_storage = *reinterpret_cast<typename Ktraits::SharedStorage*>(shared_memory);

    int const lane_predicate = cute::elect_one_sync();
    int const warp_idx = cutlass::canonical_warp_idx_sync();

    // Issue Tma Descriptor Prefetch from a single thread
    if (warp_idx == 0 && lane_predicate) {
        CollectiveMainloop::prefetch_tma_descriptors(mainloop_params);
        CollectiveEpilogue::prefetch_tma_descriptors(epilogue_params);
    }

    // Obtain warp index
    int const warp_group_thread_idx = threadIdx.x % cutlass::NumThreadsPerWarpGroup;

    PipelineParams pipeline_params;
    pipeline_params.transaction_bytes = CollectiveMainloop::TmaTransactionBytesK;
    int warp_group_idx = cutlass::canonical_warp_group_idx();
    pipeline_params.role = warp_group_idx == 0
        ? MainloopPipeline::ThreadCategory::Producer
        : MainloopPipeline::ThreadCategory::Consumer;
    pipeline_params.is_leader = warp_group_thread_idx == 0;
    pipeline_params.num_consumers = NumMmaThreads;

    if (warp_idx == 0 && lane_predicate) {
        shared_storage.barrier_Q.init(1 /*numThreads*/);
        shared_storage.barrier_O.init(size(ClusterShape{}) /*numThreads*/);
    }
    // We're counting on pipeline_k to call cutlass::arch::fence_barrier_init();
    MainloopPipeline pipeline_k(shared_storage.pipeline_k, pipeline_params, ClusterShape{});
    MainloopPipeline pipeline_v(shared_storage.pipeline_v, pipeline_params, ClusterShape{});

    CollectiveMainloop collective_mainloop;
    CollectiveEpilogue collective_epilogue;

    // We need this to guarantee that the Pipeline init is visible to all producers and consumer blocks in the Cluster
    if constexpr (size(ClusterShape{}) > 1) {
        cute::cluster_arrive_relaxed();
        cute::cluster_wait();
    } else {
        __syncthreads();
    }

    static_assert(Ktraits::kNWarps == 12 || Ktraits::kNWarps == 16);
    if (warp_group_idx == 0) {  // Producer
        cutlass::arch::warpgroup_reg_dealloc<Ktraits::kNWarps == 12 ? 24 : 32>();
        // cutlass::arch::warpgroup_reg_dealloc<56>();

        int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
        if (warp_idx_in_warpgroup == 0) {  // Load Q, K, V
            PipelineState smem_pipe_write_k = cutlass::make_producer_start_state<MainloopPipeline>();
            PipelineState smem_pipe_write_v = cutlass::make_producer_start_state<MainloopPipeline>();

            int work_idx = 0;

Tri Dao's avatar
Tri Dao committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
            TileScheduler scheduler(&shared_storage.tile_count_semaphore);
            for (auto work_tile_info = scheduler.get_initial_work();
                 work_tile_info.is_valid(scheduler_params);
                 work_tile_info = scheduler.template get_next_work</*IsProducer=*/true>(scheduler_params, work_tile_info)) {
                auto block_coord = work_tile_info.get_block_coord(scheduler_params);
                auto [m_block, bidh, bidb] = block_coord;

                int n_block_max = collective_mainloop.get_n_block_max(mainloop_params, m_block);
                if (Is_causal && n_block_max <= 0) {
                    scheduler.prefetch_next_work(scheduler_params, work_tile_info);
                    scheduler.broadcast_next_work(work_tile_info);
                    continue;
                }
                collective_mainloop.load(mainloop_params, pipeline_k, pipeline_v, smem_pipe_write_k, smem_pipe_write_v,
                                         shared_storage, scheduler, scheduler_params, work_tile_info, block_coord, work_idx);
                ++work_idx;
Tri Dao's avatar
Tri Dao committed
127
128
129
130
131
132
133
            }
            collective_mainloop.load_tail(pipeline_k, pipeline_v, smem_pipe_write_k, smem_pipe_write_v);
        }
    } else {  // Consumer
        cutlass::arch::warpgroup_reg_alloc<Ktraits::kNWarps == 12 ? 240 : 160>();
        // cutlass::arch::warpgroup_reg_alloc<Ktraits::kNWarps == 12 ? 224 : 160>();

Tri Dao's avatar
Tri Dao committed
134
        TileScheduler scheduler(&shared_storage.tile_count_semaphore);
Tri Dao's avatar
Tri Dao committed
135
136
137
138
        // Initialize matmul objects.
        typename Ktraits::TiledMma1 tiled_mma1;

        PipelineState smem_pipe_read_k, smem_pipe_read_v;
Tri Dao's avatar
Tri Dao committed
139
        // We don't need separate variables smem_pipe_release_k and smem_pipe_release_v
Tri Dao's avatar
Tri Dao committed
140
141
142
        // (like in Cutlass's gemm) because the read and release pipeline states are always the same.

        collective_mainloop.mma_init();
Tri Dao's avatar
Tri Dao committed
143
        scheduler.init_consumer();
Tri Dao's avatar
Tri Dao committed
144
145
146

        int work_idx = 0;
        CUTLASS_PRAGMA_NO_UNROLL
Tri Dao's avatar
Tri Dao committed
147
148
149
        for (auto work_tile_info = scheduler.get_initial_work();
             work_tile_info.is_valid(scheduler_params);
             work_tile_info = scheduler.template get_next_work</*IsProducer=*/false>(scheduler_params, work_tile_info)) {
Tri Dao's avatar
Tri Dao committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
            // Attention output (GEMM-II) accumulator.
            Tensor tOrO = partition_fragment_C(tiled_mma1, select<0, 2>(TileShape_MNK{}));
            flash::Softmax<2 * (2 * kBlockM / NumMmaThreads)> softmax;

            auto block_coord = work_tile_info.get_block_coord(scheduler_params);
            auto [m_block, bidh, bidb] = block_coord;

            int n_block_max = collective_mainloop.get_n_block_max(mainloop_params, m_block);
            if (Is_causal && n_block_max <= 0) {  // We exit early and write 0 to gO and -inf to gLSE.
                collective_epilogue.store_zero(epilogue_params, threadIdx.x - NumCopyThreads, block_coord);
                continue;
            }

            collective_mainloop.mma(mainloop_params, pipeline_k, pipeline_v, smem_pipe_read_k, smem_pipe_read_v,
                                    tOrO, softmax, n_block_max, threadIdx.x - NumCopyThreads, work_idx, m_block, shared_storage);
                                    // tOrO, softmax, n_block_max, threadIdx.x - NumCopyThreads + (work_idx >> 30), work_idx, shared_storage);
            collective_epilogue.store(epilogue_params, tOrO, softmax.row_sum, shared_storage, tiled_mma1,
                                      threadIdx.x - NumCopyThreads, block_coord);

            ++work_idx;
        }
        collective_epilogue.store_tail();
    }
Tri Dao's avatar
Tri Dao committed
173

Tri Dao's avatar
Tri Dao committed
174
175
176
}

} // namespace flash