flash_fwd_kernel.h 9.72 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/******************************************************************************
 * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
 ******************************************************************************/

#pragma once

#include "cute/tensor.hpp"

#include <cutlass/cutlass.h>
#include <cutlass/arch/reg_reconfig.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include "cutlass/pipeline/pipeline.hpp"

#include "flash.h"
#include "utils.h"
#include "softmax.h"
#include "tile_scheduler.hpp"
#include "mainloop_fwd_sm90_tma_gmma_ws.hpp"
#include "epilogue_fwd_sm90_tma.hpp"

namespace flash {

using namespace cute;

template <typename Ktraits, bool Is_causal, typename TileScheduler>
__global__ void __launch_bounds__(Ktraits::kNWarps * cutlass::NumThreadsPerWarp, 1)
    compute_attn_ws(CUTE_GRID_CONSTANT Flash_fwd_params const params,
                    CUTE_GRID_CONSTANT typename CollectiveMainloopFwd<Ktraits, Is_causal>::Params const mainloop_params,
                    CUTE_GRID_CONSTANT typename CollectiveEpilogueFwd<Ktraits>::Params const epilogue_params,
                    CUTE_GRID_CONSTANT typename TileScheduler::Params const scheduler_params
                    ) {

    using Element = typename Ktraits::Element;
    using ElementAccum = typename Ktraits::ElementAccum;
    using SoftType = ElementAccum;
    using TileShape_MNK = typename Ktraits::TileShape_MNK;
    using ClusterShape = typename Ktraits::ClusterShape_MNK;

    static_assert(Ktraits::Is_WS);
    static constexpr bool Is_WS = Ktraits::Is_WS;

    static constexpr int NumMmaThreads = size(typename Ktraits::TiledMma0{});
    static constexpr int NumCopyThreads = !Is_WS ? 0 : cutlass::NumThreadsPerWarpGroup;
    static constexpr int kBlockM = Ktraits::kBlockM;
    // static constexpr int kBlockN = Ktraits::kBlockN;
    // constexpr int kHeadDim = Ktraits::kHeadDim;

    using CollectiveMainloop = CollectiveMainloopFwd<Ktraits, Is_causal>;
    using CollectiveEpilogue = CollectiveEpilogueFwd<Ktraits>;

    using MainloopPipeline = typename Ktraits::MainloopPipeline;
    using PipelineParams = typename MainloopPipeline::Params;
    using PipelineState = typename MainloopPipeline::PipelineState;

    extern __shared__ char shared_memory[];
    auto &shared_storage = *reinterpret_cast<typename Ktraits::SharedStorage*>(shared_memory);

    int const lane_predicate = cute::elect_one_sync();
    int const warp_idx = cutlass::canonical_warp_idx_sync();

    // Issue Tma Descriptor Prefetch from a single thread
    if (warp_idx == 0 && lane_predicate) {
        CollectiveMainloop::prefetch_tma_descriptors(mainloop_params);
        CollectiveEpilogue::prefetch_tma_descriptors(epilogue_params);
    }

    // Obtain warp index
    int const warp_group_thread_idx = threadIdx.x % cutlass::NumThreadsPerWarpGroup;

    PipelineParams pipeline_params;
    pipeline_params.transaction_bytes = CollectiveMainloop::TmaTransactionBytesK;
    int warp_group_idx = cutlass::canonical_warp_group_idx();
    pipeline_params.role = warp_group_idx == 0
        ? MainloopPipeline::ThreadCategory::Producer
        : MainloopPipeline::ThreadCategory::Consumer;
    pipeline_params.is_leader = warp_group_thread_idx == 0;
    pipeline_params.num_consumers = NumMmaThreads;

    if (warp_idx == 0 && lane_predicate) {
        shared_storage.barrier_Q.init(1 /*numThreads*/);
        shared_storage.barrier_O.init(size(ClusterShape{}) /*numThreads*/);
    }
    // We're counting on pipeline_k to call cutlass::arch::fence_barrier_init();
    MainloopPipeline pipeline_k(shared_storage.pipeline_k, pipeline_params, ClusterShape{});
    MainloopPipeline pipeline_v(shared_storage.pipeline_v, pipeline_params, ClusterShape{});

    CollectiveMainloop collective_mainloop;
    CollectiveEpilogue collective_epilogue;

    // We need this to guarantee that the Pipeline init is visible to all producers and consumer blocks in the Cluster
    if constexpr (size(ClusterShape{}) > 1) {
        cute::cluster_arrive_relaxed();
        cute::cluster_wait();
    } else {
        __syncthreads();
    }

    static_assert(Ktraits::kNWarps == 12 || Ktraits::kNWarps == 16);
    if (warp_group_idx == 0) {  // Producer
        cutlass::arch::warpgroup_reg_dealloc<Ktraits::kNWarps == 12 ? 24 : 32>();
        // cutlass::arch::warpgroup_reg_dealloc<56>();
        // StaticPersistentTileScheduler scheduler{params.m_block_divmod, params.head_divmod, params.total_blocks};
        // auto work_tile_info = scheduler.get_current_work();
        TileScheduler scheduler;

        int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
        if (warp_idx_in_warpgroup == 0) {  // Load Q, K, V
            PipelineState smem_pipe_write_k = cutlass::make_producer_start_state<MainloopPipeline>();
            PipelineState smem_pipe_write_v = cutlass::make_producer_start_state<MainloopPipeline>();

            int work_idx = 0;

            // auto get_tile_count = [&] () {
            //     cutlass::arch::NamedBarrier::sync(NumMmaThreads + 2 * cutlass::NumThreadsPerWarp, 10 /*id*/);
            //     return shared_storage.tile_count_semaphore;
            // };

            // while (work_tile_info.is_valid()) {
            // for (int tile_count = blockIdx.x; tile_count < params.total_blocks; tile_count = get_tile_count()) {
            // for (int tile_count_semaphore = blockIdx.x; tile_count_semaphore < params.total_blocks; tile_count_semaphore = __shfl_sync(0xffffffff, tile_count_semaphore, 0)) {
            for (auto work_tile_info = scheduler.get_initial_work(); work_tile_info.is_valid(scheduler_params); work_tile_info = scheduler.get_next_work(scheduler_params, work_tile_info)) {
                int tile_count_semaphore = 0;
                collective_mainloop.load(params, mainloop_params, scheduler_params, pipeline_k, pipeline_v, smem_pipe_write_k, smem_pipe_write_v,
                                         shared_storage, work_tile_info, work_idx, tile_count_semaphore);
                // ++work_idx;
                // work_tile_info = scheduler.fetch_next_work();
            }
            collective_mainloop.load_tail(pipeline_k, pipeline_v, smem_pipe_write_k, smem_pipe_write_v);
        }
    } else {  // Consumer
        cutlass::arch::warpgroup_reg_alloc<Ktraits::kNWarps == 12 ? 240 : 160>();
        // cutlass::arch::warpgroup_reg_alloc<Ktraits::kNWarps == 12 ? 224 : 160>();

        // Initialize matmul objects.
        typename Ktraits::TiledMma1 tiled_mma1;

        TileScheduler scheduler{};

        PipelineState smem_pipe_read_k, smem_pipe_read_v;
        // We don't need separate variables smem_pip_release_k and smem_pipe_release_v
        // (like in Cutlass's gemm) because the read and release pipeline states are always the same.

        auto get_tile_count = [&] () {
            // cutlass::arch::NamedBarrier::sync(NumMmaThreads + 2 * cutlass::NumThreadsPerWarp, 10 /*id*/);
            cutlass::arch::NamedBarrier::sync(NumMmaThreads + cutlass::NumThreadsPerWarp, 10 /*id*/);
            return shared_storage.tile_count_semaphore;
        };

        collective_mainloop.mma_init();

        int work_idx = 0;
        CUTLASS_PRAGMA_NO_UNROLL
        // for (int work_idx = 0; work_idx * gridDim.x + blockIdx.x < params.total_blocks; ++work_idx) {
        // for (int tile_count_semaphore = blockIdx.x, work_idx = 0; tile_count_semaphore < params.total_blocks; tile_count_semaphore = get_tile_count()) {
        for (auto work_tile_info = scheduler.get_initial_work(); work_tile_info.is_valid(scheduler_params); work_tile_info = scheduler.get_next_work(scheduler_params, work_tile_info)) {
            // Attention output (GEMM-II) accumulator.
            Tensor tOrO = partition_fragment_C(tiled_mma1, select<0, 2>(TileShape_MNK{}));
            flash::Softmax<2 * (2 * kBlockM / NumMmaThreads)> softmax;

            // int m_block;
            // int bidh, bidb;
            // // bidb = params.head_divmod.divmod(bidh, params.m_block_divmod.divmod(m_block, work_idx * gridDim.x + blockIdx.x));
            // bidb = params.head_divmod.divmod(bidh, params.m_block_divmod.divmod(m_block, tile_count_semaphore));
            // cute::tuple<int32_t, int32_t, int32_t> block_coord = {m_block, bidh, bidb};
            auto block_coord = work_tile_info.get_block_coord(scheduler_params);
            auto [m_block, bidh, bidb] = block_coord;

            int n_block_max = collective_mainloop.get_n_block_max(mainloop_params, m_block);
            if (Is_causal && n_block_max <= 0) {  // We exit early and write 0 to gO and -inf to gLSE.
                // Need sync to avoid the case where the producer issues 2 arrives before the consumer can issue 1 wait
                cutlass::arch::NamedBarrier::arrive(NumMmaThreads + cutlass::NumThreadsPerWarp, 7 /*id*/);
                collective_epilogue.store_zero(epilogue_params, threadIdx.x - NumCopyThreads, block_coord);
                continue;
            }

            collective_mainloop.mma(mainloop_params, pipeline_k, pipeline_v, smem_pipe_read_k, smem_pipe_read_v,
                                    tOrO, softmax, n_block_max, threadIdx.x - NumCopyThreads, work_idx, m_block, shared_storage);
                                    // tOrO, softmax, n_block_max, threadIdx.x - NumCopyThreads + (work_idx >> 30), work_idx, shared_storage);
                                    // tOrO, softmax, n_block_max, threadIdx.x - NumCopyThreads, 0, shared_storage);
            collective_epilogue.store(epilogue_params, tOrO, softmax.row_sum, shared_storage, tiled_mma1,
                                      threadIdx.x - NumCopyThreads, block_coord);

            ++work_idx;
            // work_tile_info = scheduler.fetch_next_work();
        }
        collective_epilogue.store_tail();
    }
}

} // namespace flash