test_gptj.py 7.57 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
import time
Tri Dao's avatar
Tri Dao committed
2
3
4
5

import torch
import pytest

Tri Dao's avatar
Tri Dao committed
6
from transformers import GPTJConfig, AutoTokenizer
Tri Dao's avatar
Tri Dao committed
7
8
9
10
11
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM

from flash_attn.models.gpt import GPTLMHeadModel
from flash_attn.models.gptj import remap_state_dict_hf_gptj, gptj_config_to_gpt2_config
from flash_attn.utils.pretrained import state_dict_from_pretrained
Tri Dao's avatar
Tri Dao committed
12
from flash_attn.utils.generation import update_graph_cache
Tri Dao's avatar
Tri Dao committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39


@pytest.mark.parametrize('model_name', ["EleutherAI/gpt-j-6B"])
def test_gptj_state_dict(model_name):
    config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name))
    pretrained_state_dict = remap_state_dict_hf_gptj(state_dict_from_pretrained(model_name), config)
    model = GPTLMHeadModel(config, device='meta')  # Without device='meta' init is very slow
    state_dict = model.state_dict()
    rotary_inv_freq_keys = {f'transformer.layers.{l}.mixer.rotary_emb.inv_freq'
                            for l in range(config.n_layer)}
    assert state_dict.keys() == pretrained_state_dict.keys() | rotary_inv_freq_keys
    for k in state_dict.keys() - rotary_inv_freq_keys:
        assert state_dict[k].shape == pretrained_state_dict[k].shape


@pytest.mark.parametrize('model_name', ["EleutherAI/gpt-j-6B"])
def test_gptj_optimized(model_name):
    """Check that our implementation of GPT-J (with all optimizations enabled) matches the
    HF implementation: the output of our forward pass in fp16 should be around the same as the HF
    forward pass in fp16, when compared to the HF forward pass in fp32.
    """
    dtype = torch.float16
    device = 'cuda'
    config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name))
    config.use_flash_attn = False  # FlashAttention doesn't support hdim 256 yet
    config.fused_bias_fc = True
    config.fused_mlp = True
40
    config.fused_dropout_add_ln = True
Tri Dao's avatar
Tri Dao committed
41
42
43
44
45
46
47
48
    config.residual_in_fp32 = True

    model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
    model.eval()

    torch.manual_seed(0)
    batch_size = 2
    max_seqlen = 256
Tri Dao's avatar
Tri Dao committed
49
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
Tri Dao's avatar
Tri Dao committed
50
    input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long,
Tri Dao's avatar
Tri Dao committed
51
                              device=device)
Tri Dao's avatar
Tri Dao committed
52
53
54
55
56
    with torch.no_grad():
        out = model.transformer(input_ids)
        logits = model(input_ids).logits
    del model

Tri Dao's avatar
Tri Dao committed
57
58
    # Without device_map, the model is loaded on the CPU, which is very slow
    model_ref = GPTJForCausalLM.from_pretrained(model_name, device_map={"": device})
Tri Dao's avatar
Tri Dao committed
59
60
61
62
63
64
    model_ref.eval()
    with torch.no_grad():
        out_ref = model_ref.transformer(input_ids).last_hidden_state
        logits_ref = model_ref(input_ids).logits
    del model_ref

Tri Dao's avatar
Tri Dao committed
65
66
    model_hf = GPTJForCausalLM.from_pretrained(model_name, torch_dtype=dtype,
                                               device_map={"": device})
Tri Dao's avatar
Tri Dao committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    model_hf.eval()
    out_hf = model_hf.transformer(input_ids).last_hidden_state
    logits_hf = model_hf(input_ids).logits
    del model_hf

    print(f'Output max diff: {(out - out_ref).abs().max().item()}')
    print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
    print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}')
    print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}')
    assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()

    print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}')
    print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}')
    print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}')
    print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}')
    assert (logits - logits_ref).abs().max().item() < 3 * (logits_hf - logits_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171


@pytest.mark.parametrize('model_name', ["EleutherAI/gpt-j-6B"])
def test_gptj_generation(model_name):
    """Check that our implementation of GPT-J (with all optimizations enabled) matches the
    HF implementation: the output of our forward pass in fp16 should be around the same as the HF
    forward pass in fp16, when compared to the HF forward pass in fp32.
    """
    dtype = torch.float16
    device = 'cuda'
    config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name))
    config.use_flash_attn = False  # FlashAttention doesn't support hdim 256 yet
    config.fused_bias_fc = True
    config.fused_mlp = True
    config.fused_dropout_add_ln = True
    # Only prenorm supports residual_in_fp32
    config.residual_in_fp32 = True

    tokenizer = AutoTokenizer.from_pretrained(model_name)
    eos_token_id = tokenizer.eos_token_id

    torch.manual_seed(0)
    batch_size = 1
    seqlen = 100
    max_length = 150
    input_ids = torch.randint(0, config.vocab_size, (batch_size, seqlen), dtype=torch.long,
                              device=device)

    model_hf = GPTJForCausalLM.from_pretrained(model_name, torch_dtype=dtype,
                                               device_map={"": device})
    model_hf.eval()
    print("HF fp16")
    torch.cuda.synchronize()
    start = time.time()
    out_hf = model_hf.generate(input_ids=input_ids, max_length=max_length,
                               return_dict_in_generate=True, output_scores=True)
    torch.cuda.synchronize()
    print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
    del model_hf

    model_ref = GPTJForCausalLM.from_pretrained(model_name, device_map={"": device})
    model_ref.eval()
    with torch.no_grad():
        logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1):-1]
    del model_ref

    model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
    model.eval()

    print('Without CUDA graph')
    torch.cuda.synchronize()
    start = time.time()
    out = model.generate(input_ids=input_ids, max_length=max_length,
                         eos_token_id=eos_token_id, fused_ft_kernel=True,
                         # eos_token_id=eos_token_id, fused_ft_kernel=False,
                         return_dict_in_generate=True, output_scores=True, timing=True,
                         teacher_outputs=out_hf.sequences)
    torch.cuda.synchronize()
    print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')

    # Capture graph outside the timing loop
    batch_size, seqlen_og = input_ids.shape
    model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
    print('With CUDA graph')
    torch.cuda.synchronize()
    start = time.time()
    out_cg = model.generate(input_ids=input_ids, max_length=max_length,
                            fused_ft_kernel=True, cg=True,
                            return_dict_in_generate=True, output_scores=True, timing=True,
                            teacher_outputs=out_hf.sequences)
    torch.cuda.synchronize()
    print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')

    with torch.no_grad():
        logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1):-1]
    logits_hf = torch.stack(out_hf.scores, dim=1)
    logits = torch.stack(out.scores, dim=1)
    logits_cg = torch.stack(out_cg.scores, dim=1)

    del model

    hf_error = (logits_hf - logits_ref).abs().max().item()
    assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error

    print(f'HF fp16 logits max diff: {hf_error}')
    print(f'Logits max diff: {(logits - logits_ref).abs().max().item() }')
    assert (logits - logits_ref).abs().max().item() < 2 * hf_error
    print(f'Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }')
    assert torch.equal(logits_cg, logits)