"test/srt/test_vision_openai_server_common.py" did not exist on "d373a48c9875f1bb43fde05215a42179b453f81c"
test_gptj.py 3.71 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
import re

import torch
import pytest

Tri Dao's avatar
Tri Dao committed
6
from transformers import GPTJConfig, AutoTokenizer
Tri Dao's avatar
Tri Dao committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM

from flash_attn.models.gpt import GPTLMHeadModel
from flash_attn.models.gptj import remap_state_dict_hf_gptj, gptj_config_to_gpt2_config
from flash_attn.utils.pretrained import state_dict_from_pretrained


@pytest.mark.parametrize('model_name', ["EleutherAI/gpt-j-6B"])
def test_gptj_state_dict(model_name):
    config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name))
    pretrained_state_dict = remap_state_dict_hf_gptj(state_dict_from_pretrained(model_name), config)
    model = GPTLMHeadModel(config, device='meta')  # Without device='meta' init is very slow
    state_dict = model.state_dict()
    rotary_inv_freq_keys = {f'transformer.layers.{l}.mixer.rotary_emb.inv_freq'
                            for l in range(config.n_layer)}
    assert state_dict.keys() == pretrained_state_dict.keys() | rotary_inv_freq_keys
    for k in state_dict.keys() - rotary_inv_freq_keys:
        assert state_dict[k].shape == pretrained_state_dict[k].shape


@pytest.mark.parametrize('model_name', ["EleutherAI/gpt-j-6B"])
def test_gptj_optimized(model_name):
    """Check that our implementation of GPT-J (with all optimizations enabled) matches the
    HF implementation: the output of our forward pass in fp16 should be around the same as the HF
    forward pass in fp16, when compared to the HF forward pass in fp32.
    """
    dtype = torch.float16
    device = 'cuda'
    config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name))
    config.use_flash_attn = False  # FlashAttention doesn't support hdim 256 yet
    config.fused_bias_fc = True
    config.fused_mlp = True
39
    config.fused_dropout_add_ln = True
Tri Dao's avatar
Tri Dao committed
40
41
42
43
44
45
46
47
    config.residual_in_fp32 = True

    model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
    model.eval()

    torch.manual_seed(0)
    batch_size = 2
    max_seqlen = 256
Tri Dao's avatar
Tri Dao committed
48
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
Tri Dao's avatar
Tri Dao committed
49
    input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long,
Tri Dao's avatar
Tri Dao committed
50
                              device=device)
Tri Dao's avatar
Tri Dao committed
51
52
53
54
55
    with torch.no_grad():
        out = model.transformer(input_ids)
        logits = model(input_ids).logits
    del model

Tri Dao's avatar
Tri Dao committed
56
57
    # Without device_map, the model is loaded on the CPU, which is very slow
    model_ref = GPTJForCausalLM.from_pretrained(model_name, device_map={"": device})
Tri Dao's avatar
Tri Dao committed
58
59
60
61
62
63
    model_ref.eval()
    with torch.no_grad():
        out_ref = model_ref.transformer(input_ids).last_hidden_state
        logits_ref = model_ref(input_ids).logits
    del model_ref

Tri Dao's avatar
Tri Dao committed
64
65
    model_hf = GPTJForCausalLM.from_pretrained(model_name, torch_dtype=dtype,
                                               device_map={"": device})
Tri Dao's avatar
Tri Dao committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    model_hf.eval()
    out_hf = model_hf.transformer(input_ids).last_hidden_state
    logits_hf = model_hf(input_ids).logits
    del model_hf

    print(f'Output max diff: {(out - out_ref).abs().max().item()}')
    print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
    print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}')
    print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}')
    assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()

    print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}')
    print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}')
    print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}')
    print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}')
    assert (logits - logits_ref).abs().max().item() < 3 * (logits_hf - logits_ref).abs().max().item()