test_cross_entropy.py 1.57 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
import math

Tri Dao's avatar
Tri Dao committed
3
import pytest
Tri Dao's avatar
Tri Dao committed
4
5
6
import torch
import torch.nn.functional as F
from einops import rearrange
7
from flash_attn.losses.cross_entropy import CrossEntropyLossApex
Tri Dao's avatar
Tri Dao committed
8

Tri Dao's avatar
Tri Dao committed
9
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8
Tri Dao's avatar
Tri Dao committed
10
11


Tri Dao's avatar
Tri Dao committed
12
13
14
@pytest.mark.parametrize(
    "dtype", [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else [])
)
Tri Dao's avatar
Tri Dao committed
15
# @pytest.mark.parametrize('dtype', [torch.float16])
Tri Dao's avatar
Tri Dao committed
16
@pytest.mark.parametrize("inplace_backward", [False, True])
Tri Dao's avatar
Tri Dao committed
17
# @pytest.mark.parametrize('inplace_backward', [False])
Tri Dao's avatar
Tri Dao committed
18
19
@pytest.mark.parametrize("smoothing", [0.0, 0.9])
@pytest.mark.parametrize("vocab_size", [50257])
20
def test_cross_entropy_loss_apex(vocab_size, smoothing, inplace_backward, dtype):
Tri Dao's avatar
Tri Dao committed
21
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
22
23
24
25
26
    rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4)
    # set seed
    torch.random.manual_seed(0)
    batch_size = 8
    seqlen = 128
Tri Dao's avatar
Tri Dao committed
27
28
29
    x_pt = torch.randn(
        batch_size * seqlen, vocab_size, device=device, dtype=dtype, requires_grad=True
    )
Tri Dao's avatar
Tri Dao committed
30
31
32
    x = x_pt.detach().clone().requires_grad_()
    y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device)
    y[torch.randperm(batch_size * seqlen)[:10]] = -100
33
34
    model_pt = torch.nn.CrossEntropyLoss(label_smoothing=smoothing)
    model = CrossEntropyLossApex(label_smoothing=smoothing, inplace_backward=inplace_backward)
Tri Dao's avatar
Tri Dao committed
35
36
37
38
39
40
41
42
    out = model(x, y)
    out_pt = model_pt(x_pt.float(), y)
    assert torch.allclose(out, out_pt, rtol=rtol, atol=atol)

    g = torch.randn_like(out)
    out_pt.backward(g)
    out.backward(g)
    assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol)