test_cross_entropy.py 1.55 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
import math

import torch
import torch.nn.functional as F
import pytest

from einops import rearrange

9
from flash_attn.losses.cross_entropy import CrossEntropyLossApex
Tri Dao's avatar
Tri Dao committed
10
11
12
13
14
15
16
17

is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8


@pytest.mark.parametrize('dtype', [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else []))
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize('inplace_backward', [False, True])
# @pytest.mark.parametrize('inplace_backward', [False])
18
@pytest.mark.parametrize('smoothing', [0.0, 0.9])
Tri Dao's avatar
Tri Dao committed
19
@pytest.mark.parametrize('vocab_size', [50257])
20
def test_cross_entropy_loss_apex(vocab_size, smoothing, inplace_backward, dtype):
Tri Dao's avatar
Tri Dao committed
21
22
23
24
25
26
27
28
29
30
    device = 'cuda'
    rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4)
    # set seed
    torch.random.manual_seed(0)
    batch_size = 8
    seqlen = 128
    x_pt = torch.randn(batch_size * seqlen, vocab_size, device=device, dtype=dtype, requires_grad=True)
    x = x_pt.detach().clone().requires_grad_()
    y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device)
    y[torch.randperm(batch_size * seqlen)[:10]] = -100
31
32
    model_pt = torch.nn.CrossEntropyLoss(label_smoothing=smoothing)
    model = CrossEntropyLossApex(label_smoothing=smoothing, inplace_backward=inplace_backward)
Tri Dao's avatar
Tri Dao committed
33
34
35
36
37
38
39
40
    out = model(x, y)
    out_pt = model_pt(x_pt.float(), y)
    assert torch.allclose(out, out_pt, rtol=rtol, atol=atol)

    g = torch.randn_like(out)
    out_pt.backward(g)
    out.backward(g)
    assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol)