flash_api.cpp 70 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
/******************************************************************************
2
 * Copyright (c) 2024, Tri Dao.
Tri Dao's avatar
Tri Dao committed
3
4
 ******************************************************************************/

Tri Dao's avatar
Tri Dao committed
5
6
7
// Include these 2 headers instead of torch/extension.h since we don't need all of the torch headers.
#include <torch/python.h>
#include <torch/nn/functional.h>
Tri Dao's avatar
Tri Dao committed
8
9
10
11
12
13
14
15
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>

#include <cutlass/numeric_types.h>

#include "flash.h"
#include "static_switch.h"

16
#define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA")
Tri Dao's avatar
Tri Dao committed
17
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
18
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
Tri Dao's avatar
Tri Dao committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38


void set_params_fprop(Flash_fwd_params &params,
                      // sizes
                      const size_t b,
                      const size_t seqlen_q,
                      const size_t seqlen_k,
                      const size_t seqlen_q_rounded,
                      const size_t seqlen_k_rounded,
                      const size_t h,
                      const size_t h_k,
                      const size_t d,
                      const size_t d_rounded,
                      // device pointers
                      const at::Tensor q,
                      const at::Tensor k,
                      const at::Tensor v,
                      at::Tensor out,
                      void *cu_seqlens_q_d,
                      void *cu_seqlens_k_d,
39
                      void *seqused_k,
Tri Dao's avatar
Tri Dao committed
40
41
42
43
                      void *p_d,
                      void *softmax_lse_d,
                      float p_dropout,
                      float softmax_scale,
Tri Dao's avatar
Tri Dao committed
44
                      int window_size_left,
45
46
                      int window_size_right,
                      bool seqlenq_ngroups_swapped=false) {
Tri Dao's avatar
Tri Dao committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

    // Reset the parameters
    memset(&params, 0, sizeof(params));

    params.is_bf16 = q.dtype() == torch::kBFloat16;

    // Set the pointers and strides.
    params.q_ptr = q.data_ptr();
    params.k_ptr = k.data_ptr();
    params.v_ptr = v.data_ptr();
    // All stride are in elements, not bytes.
    params.q_row_stride = q.stride(-3);
    params.k_row_stride = k.stride(-3);
    params.v_row_stride = v.stride(-3);
    params.q_head_stride = q.stride(-2);
    params.k_head_stride = k.stride(-2);
    params.v_head_stride = v.stride(-2);
    params.o_ptr = out.data_ptr();
    params.o_row_stride = out.stride(-3);
    params.o_head_stride = out.stride(-2);

    if (cu_seqlens_q_d == nullptr) {
        params.q_batch_stride = q.stride(0);
        params.k_batch_stride = k.stride(0);
        params.v_batch_stride = v.stride(0);
        params.o_batch_stride = out.stride(0);
73
74
75
76
        if (seqlenq_ngroups_swapped) {
             params.q_batch_stride *= seqlen_q;
             params.o_batch_stride *= seqlen_q;
        }
Tri Dao's avatar
Tri Dao committed
77
78
79
80
    }

    params.cu_seqlens_q = static_cast<int *>(cu_seqlens_q_d);
    params.cu_seqlens_k = static_cast<int *>(cu_seqlens_k_d);
81
    params.seqused_k = static_cast<int *>(seqused_k);
Tri Dao's avatar
Tri Dao committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

    // P = softmax(QK^T)
    params.p_ptr = p_d;

    // Softmax sum
    params.softmax_lse_ptr = softmax_lse_d;

    // Set the dimensions.
    params.b = b;
    params.h = h;
    params.h_k = h_k;
    params.h_h_k_ratio = h / h_k;
    params.seqlen_q = seqlen_q;
    params.seqlen_k = seqlen_k;
    params.seqlen_q_rounded = seqlen_q_rounded;
    params.seqlen_k_rounded = seqlen_k_rounded;
    params.d = d;
    params.d_rounded = d_rounded;

    // Set the different scale values.
    params.scale_softmax = softmax_scale;
    params.scale_softmax_log2 = softmax_scale * M_LOG2E;

    // Set this to probability of keeping an element to simplify things.
    params.p_dropout = 1.f - p_dropout;
    // Convert p from float to int so we don't have to convert the random uint to float to compare.
    // [Minor] We want to round down since when we do the comparison we use <= instead of <
    // params.p_dropout_in_uint = uint32_t(std::floor(params.p_dropout * 4294967295.0));
    // params.p_dropout_in_uint16_t = uint16_t(std::floor(params.p_dropout * 65535.0));
    params.p_dropout_in_uint8_t = uint8_t(std::floor(params.p_dropout * 255.0));
    params.rp_dropout = 1.f / params.p_dropout;
    params.scale_softmax_rp_dropout = params.rp_dropout * params.scale_softmax;
    TORCH_CHECK(p_dropout < 1.f);

Tri Dao's avatar
Tri Dao committed
116
117
118
119
120
121
122
123
124
    // Causal is the special case where window_size_right == 0 and window_size_left < 0.
    // Local is the more general case where window_size_right >= 0 or window_size_left >= 0.
    params.is_causal = window_size_left < 0 && window_size_right == 0;

    if (window_size_left < 0 && window_size_right >= 0) { window_size_left = seqlen_k; }
    if (window_size_left >= 0 && window_size_right < 0) { window_size_right = seqlen_k; }
    params.window_size_left = window_size_left;
    params.window_size_right = window_size_right;

Tri Dao's avatar
Tri Dao committed
125
    params.is_seqlens_k_cumulative = true;
Tri Dao's avatar
Tri Dao committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
}

void set_params_dgrad(Flash_bwd_params &params,
                      // sizes
                      const size_t b,
                      const size_t seqlen_q,
                      const size_t seqlen_k,
                      const size_t seqlen_q_rounded,
                      const size_t seqlen_k_rounded,
                      const size_t h,
                      const size_t h_k,
                      const size_t d,
                      const size_t d_rounded,
                      // device pointers
                      const at::Tensor q,
                      const at::Tensor k,
                      const at::Tensor v,
                      const at::Tensor out,
                      const at::Tensor dout,
                      at::Tensor dq,
                      at::Tensor dk,
                      at::Tensor dv,
                      void *cu_seqlens_q_d,
                      void *cu_seqlens_k_d,
                      void *dq_accum_d,
                      void *dk_accum_d,
                      void *dv_accum_d,
                      void *softmax_lse_d,
                      void *dsoftmax_sum_d,
                      float p_dropout,
                      float softmax_scale,
Tri Dao's avatar
Tri Dao committed
157
                      int window_size_left,
158
159
                      int window_size_right,
                      bool deterministic) {
Tri Dao's avatar
Tri Dao committed
160
161
162
163
164
165
166

    set_params_fprop(params,
                     b, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, h, h_k, d, d_rounded,
                     q, k, v, out,
                     cu_seqlens_q_d,
                     cu_seqlens_k_d,
                     nullptr,
167
                     nullptr,
Tri Dao's avatar
Tri Dao committed
168
169
170
                     softmax_lse_d,
                     p_dropout,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
171
172
                     window_size_left,
                     window_size_right);
Tri Dao's avatar
Tri Dao committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

    // Set the pointers and strides.
    params.do_ptr = dout.data_ptr();
    params.do_row_stride = dout.stride(-3);
    params.do_head_stride = dout.stride(-2);
    params.dq_ptr = dq.data_ptr();
    params.dk_ptr = dk.data_ptr();
    params.dv_ptr = dv.data_ptr();
    params.dq_row_stride = dq.stride(-3);
    params.dk_row_stride = dk.stride(-3);
    params.dv_row_stride = dv.stride(-3);
    params.dq_head_stride = dq.stride(-2);
    params.dk_head_stride = dk.stride(-2);
    params.dv_head_stride = dv.stride(-2);

    if (cu_seqlens_q_d == nullptr) {
        params.do_batch_stride = dout.stride(0);
        params.dq_batch_stride = dq.stride(0);
        params.dk_batch_stride = dk.stride(0);
        params.dv_batch_stride = dv.stride(0);
    }

    params.dq_accum_ptr = dq_accum_d;
    params.dk_accum_ptr = dk_accum_d;
    params.dv_accum_ptr = dv_accum_d;

    // Softmax sum
    params.dsoftmax_sum = dsoftmax_sum_d;
201
202

    params.deterministic = deterministic;
Tri Dao's avatar
Tri Dao committed
203
204
}

Tri Dao's avatar
Tri Dao committed
205
void run_mha_fwd(Flash_fwd_params &params, cudaStream_t stream, bool force_split_kernel=false) {
Tri Dao's avatar
Tri Dao committed
206
    FP16_SWITCH(!params.is_bf16, [&] {
207
        HEADDIM_SWITCH(params.d, [&] {
Tri Dao's avatar
Tri Dao committed
208
            if (params.num_splits <= 1 && !force_split_kernel) {  // If we don't set it num_splits == 0
Tri Dao's avatar
Tri Dao committed
209
210
211
212
                run_mha_fwd_<elem_type, kHeadDim>(params, stream);
            } else {
                run_mha_fwd_splitkv_dispatch<elem_type, kHeadDim>(params, stream);
            }
Tri Dao's avatar
Tri Dao committed
213
214
215
216
        });
    });
}

Tri Dao's avatar
Tri Dao committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// Find the number of splits that maximizes the occupancy. For example, if we have
// batch * n_heads = 48 and we have 108 SMs, having 2 splits (efficiency = 0.89) is
// better than having 3 splits (efficiency = 0.67). However, we also don't want too many
// splits as that would incur more HBM reads/writes.
// So we find the best efficiency, then find the smallest number of splits that gets 85%
// of the best efficiency.
inline int num_splits_heuristic(int batch_nheads_mblocks, int num_SMs, int num_n_blocks, int max_splits) {
    // If we have enough to almost fill the SMs, then just use 1 split
    if (batch_nheads_mblocks >= 0.8f * num_SMs) { return 1; }
    max_splits = std::min({max_splits, num_SMs, num_n_blocks});
    float max_efficiency = 0.f;
    std::vector<float> efficiency;
    efficiency.reserve(max_splits);
    auto ceildiv = [](int a, int b) { return (a + b - 1) / b; };
    // Some splits are not eligible. For example, if we have 64 blocks and choose 11 splits,
    // we'll have 6 * 10 + 4 blocks. If we choose 12 splits, we'll have 6 * 11 + (-2) blocks
    // (i.e. it's 11 splits anyway).
    // So we check if the number of blocks per split is the same as the previous num_splits.
    auto is_split_eligible = [&ceildiv, &num_n_blocks](int num_splits) {
        return num_splits == 1 || ceildiv(num_n_blocks, num_splits) != ceildiv(num_n_blocks, num_splits - 1);
    };
    for (int num_splits = 1; num_splits <= max_splits; num_splits++) {
        if (!is_split_eligible(num_splits)) {
            efficiency.push_back(0.f);
        } else {
            float n_waves = float(batch_nheads_mblocks * num_splits) / num_SMs;
            float eff = n_waves / ceil(n_waves);
            // printf("num_splits = %d, eff = %f\n", num_splits, eff);
            if (eff > max_efficiency) { max_efficiency = eff; }
            efficiency.push_back(eff);
        }
    }
    for (int num_splits = 1; num_splits <= max_splits; num_splits++) {
        if (!is_split_eligible(num_splits)) { continue; }
        if (efficiency[num_splits - 1] >= 0.85 * max_efficiency) {
            // printf("num_splits chosen = %d\n", num_splits);
            return num_splits;
        }
    }
    return 1;
}

259
void set_params_splitkv(Flash_fwd_params &params, const int batch_size,
Tri Dao's avatar
Tri Dao committed
260
261
262
    const int num_heads, const int head_size, const int max_seqlen_k, const int max_seqlen_q,
    const int head_size_rounded, const float p_dropout,
    const int num_splits, cudaDeviceProp *dprops, struct c10::TensorOptions opts) {
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

    // This needs to match with run_mha_fwd_splitkv_dispatch
    const int block_n = head_size <= 64 ? 256 : (head_size <= 128 ? 128 : 64);
    const int num_n_blocks = (max_seqlen_k + block_n - 1) / block_n;
    // Technically kBlockM = 64 only for the splitKV kernels, not the standard kernel.
    // In any case we don't expect seqlen_q to be larger than 64 for inference.
    const int num_m_blocks = (max_seqlen_q + 64 - 1) / 64;
    params.num_splits = num_splits;
    if (p_dropout == 0.0f) {  // SplitKV is not implemented for dropout
        if (num_splits < 1) {
            params.num_splits = num_splits_heuristic(batch_size * num_heads * num_m_blocks, dprops->multiProcessorCount, num_n_blocks, 128);
        }
        if (params.num_splits > 1) {
            at::Tensor softmax_lse_accum = torch::empty({params.num_splits, batch_size, num_heads, max_seqlen_q}, opts.dtype(at::kFloat));
            at::Tensor out_accum = torch::empty({params.num_splits, batch_size, num_heads, max_seqlen_q, head_size_rounded}, opts.dtype(at::kFloat));
            params.softmax_lseaccum_ptr = softmax_lse_accum.data_ptr();
            params.oaccum_ptr = out_accum.data_ptr();
        }
        TORCH_CHECK(params.num_splits <= 128, "num_splits > 128 not supported");
    }
}

Tri Dao's avatar
Tri Dao committed
285
std::vector<at::Tensor>
286
mha_fwd(at::Tensor &q,         // batch_size x seqlen_q x num_heads x head_size
Tri Dao's avatar
Tri Dao committed
287
288
289
        const at::Tensor &k,         // batch_size x seqlen_k x num_heads_k x head_size
        const at::Tensor &v,         // batch_size x seqlen_k x num_heads_k x head_size
        c10::optional<at::Tensor> &out_,             // batch_size x seqlen_q x num_heads x head_size
290
        c10::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
Tri Dao's avatar
Tri Dao committed
291
292
        const float p_dropout,
        const float softmax_scale,
293
        bool is_causal,
294
        int window_size_left,
Tri Dao's avatar
Tri Dao committed
295
        int window_size_right,
Tri Dao's avatar
Tri Dao committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
        const bool return_softmax,
        c10::optional<at::Generator> gen_) {

    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");

316
    CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
Tri Dao's avatar
Tri Dao committed
317
318
319
320
321
322
323
324

    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");

    const auto sizes = q.sizes();

    const int batch_size = sizes[0];
325
326
    int seqlen_q = sizes[1];
    int num_heads = sizes[2];
Tri Dao's avatar
Tri Dao committed
327
328
329
330
331
332
333
    const int head_size_og = sizes[3];
    const int seqlen_k = k.size(1);
    const int num_heads_k = k.size(2);
    TORCH_CHECK(batch_size > 0, "batch size must be postive");
    TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

334
335
336
    if (window_size_left >= seqlen_k) { window_size_left = -1; }
    if (window_size_right >= seqlen_k) { window_size_right = -1; }

337
338
    // causal=true is the same as causal=false in this case
    if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; }
Tri Dao's avatar
Tri Dao committed
339
    if (is_causal) { window_size_right = 0; }
340

341
342
    // Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
    // H/t Daniel Haziza
343
    const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size_og % 8 == 0 && !alibi_slopes_.has_value();
344
345
346
347
348
    if (seqlenq_ngroups_swapped) {
        const int ngroups = num_heads / num_heads_k;
        q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
        seqlen_q = ngroups;
        num_heads = num_heads_k;
349
350
    }

Tri Dao's avatar
Tri Dao committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
    CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og);
    CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size_og);
    CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size_og);

    at::Tensor q_padded, k_padded, v_padded;
    if (head_size_og % 8 != 0) {
        q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        q_padded = q;
        k_padded = k;
        v_padded = v;
    }

    at::Tensor out;
    if (out_.has_value()) {
        out = out_.value();
        TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
370
        CHECK_DEVICE(out);
Tri Dao's avatar
Tri Dao committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
        TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
        CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size_og);
        if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
    } else {
        out = torch::empty_like(q_padded);
    }

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size = round_multiple(head_size_og, 8);
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(seqlen_k, 128);

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();

    auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
    at::Tensor p;
    // Only return softmax if there's dropout to reduce compilation time
    if (return_softmax) {
        TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0");
        p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts);
    }

    Flash_fwd_params params;
    set_params_fprop(params,
                     batch_size,
                     seqlen_q, seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q_padded, k_padded, v_padded, out,
                     /*cu_seqlens_q_d=*/nullptr,
                     /*cu_seqlens_k_d=*/nullptr,
408
                     /*seqused_k=*/nullptr,
Tri Dao's avatar
Tri Dao committed
409
410
411
412
                     return_softmax ? p.data_ptr() : nullptr,
                     softmax_lse.data_ptr(),
                     p_dropout,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
413
414
                     window_size_left,
                     window_size_right);
Tri Dao's avatar
Tri Dao committed
415

416
417
418
419

    set_params_splitkv(params, batch_size, num_heads,
                       head_size, seqlen_k, seqlen_q,
                       head_size_rounded, p_dropout, /*num_splits*/0, dprops, opts);
Tri Dao's avatar
Tri Dao committed
420

421
422
423
424
425
426
427
428
429
    // number of times random will be generated per thread, to offset philox counter in thc random
    // state
    // We use a custom RNG that increases the offset by batch_size * nheads * 32.
    int64_t counter_offset = params.b * params.h * 32;
    auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA);
    auto rng_state = torch::empty({2}, options.dtype(torch::kInt64));
    // Forward kernel will populate memory with the seed and offset.
    params.rng_state = reinterpret_cast<uint64_t*>(rng_state.data_ptr());

Tri Dao's avatar
Tri Dao committed
430
431
432
433
434
435
436
437
    if (p_dropout > 0.0)  {
        auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
            gen_, at::cuda::detail::getDefaultCUDAGenerator());
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        params.philox_args = gen->philox_cuda_state(counter_offset);
    }

438
439
440
441
442
    if (alibi_slopes_.has_value()) {
        auto alibi_slopes = alibi_slopes_.value();
        TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
        CHECK_DEVICE(alibi_slopes);
        TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
443
        TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({num_heads}) || alibi_slopes.sizes() == torch::IntArrayRef({batch_size, num_heads}));
444
        params.alibi_slopes_ptr = alibi_slopes.data_ptr();
445
        params.alibi_slopes_batch_stride = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0;
446
    } else {
447
        params.alibi_slopes_ptr = nullptr;
448
449
    }

450
451
452
453
454
455
456
457
    if (seqlen_k > 0) {
        auto stream = at::cuda::getCurrentCUDAStream().stream();
        run_mha_fwd(params, stream);
    } else {
        // If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
        out.zero_();
        softmax_lse.fill_(std::numeric_limits<float>::infinity());
    }
Tri Dao's avatar
Tri Dao committed
458
459
460
461
462
463
464

    at::Tensor out_padded = out;
    if (head_size_og % 8 != 0) {
        out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        if (out_.has_value()) { out_.value().copy_(out); }
    }

465
466
467
468
469
    if (seqlenq_ngroups_swapped) {
        out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
        out_padded = out_padded.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
        q_padded = q_padded.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
        softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1});
470
    }
471
    return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse, p, rng_state};
Tri Dao's avatar
Tri Dao committed
472
473
474
}

std::vector<at::Tensor>
475
mha_varlen_fwd(at::Tensor &q,  // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
Tri Dao's avatar
Tri Dao committed
476
477
478
479
480
               const at::Tensor &k,  // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
               const at::Tensor &v,  // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
               c10::optional<at::Tensor> &out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
               const at::Tensor &cu_seqlens_q,  // b+1
               const at::Tensor &cu_seqlens_k,  // b+1
481
               c10::optional<at::Tensor> &seqused_k, // b. If given, only this many elements of each batch element's keys are used.
482
               c10::optional<at::Tensor> &alibi_slopes_, // num_heads or b x num_heads
483
               int max_seqlen_q,
Tri Dao's avatar
Tri Dao committed
484
485
486
487
               const int max_seqlen_k,
               const float p_dropout,
               const float softmax_scale,
               const bool zero_tensors,
488
               bool is_causal,
489
               int window_size_left,
Tri Dao's avatar
Tri Dao committed
490
               int window_size_right,
Tri Dao's avatar
Tri Dao committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
               const bool return_softmax,
               c10::optional<at::Generator> gen_) {

    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
    TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32");
    TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32");

513
514
515
    CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
    CHECK_DEVICE(cu_seqlens_q);
    CHECK_DEVICE(cu_seqlens_k);
Tri Dao's avatar
Tri Dao committed
516
517
518
519

    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
520
521
    CHECK_CONTIGUOUS(cu_seqlens_q);
    CHECK_CONTIGUOUS(cu_seqlens_k);
Tri Dao's avatar
Tri Dao committed
522
523
524
525

    const auto sizes = q.sizes();

    const int batch_size = cu_seqlens_q.numel() - 1;
526
    int num_heads = sizes[1];
Tri Dao's avatar
Tri Dao committed
527
528
529
    const int head_size_og = sizes[2];
    const int total_k = k.size(0);
    const int num_heads_k = k.size(1);
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

    if (max_seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; }  // causal=true is the same as causal=false in this case
    if (is_causal) { window_size_right = 0; }

    void *cu_seqlens_q_d = cu_seqlens_q.data_ptr();

    // Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
    // H/t Daniel Haziza
    const int seqlenq_ngroups_swapped = max_seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size_og % 8 == 0 && !alibi_slopes_.has_value();
    if (seqlenq_ngroups_swapped) {
        const int ngroups = num_heads / num_heads_k;
        q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2).reshape({batch_size * ngroups, num_heads_k, head_size_og});
        max_seqlen_q = ngroups;
        num_heads = num_heads_k;
        cu_seqlens_q_d = nullptr;
    }

    const int total_q = q.sizes()[0];

Tri Dao's avatar
Tri Dao committed
549
550
551
552
    TORCH_CHECK(batch_size > 0, "batch size must be positive");
    TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

553
554
555
    if (window_size_left >= max_seqlen_k) { window_size_left = -1; }
    if (window_size_right >= max_seqlen_k) { window_size_right = -1; }

Tri Dao's avatar
Tri Dao committed
556
557
558
559
560
    CHECK_SHAPE(q, total_q, num_heads, head_size_og);
    CHECK_SHAPE(k, total_k, num_heads_k, head_size_og);
    CHECK_SHAPE(v, total_k, num_heads_k, head_size_og);
    CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
    CHECK_SHAPE(cu_seqlens_k, batch_size + 1);
561
562
563
564
565
566
567
    if (seqused_k.has_value()){
        auto seqused_k_ = seqused_k.value();
        TORCH_CHECK(seqused_k_.dtype() == torch::kInt32, "seqused_k must have dtype int32");
        TORCH_CHECK(seqused_k_.is_cuda(), "seqused_k must be on CUDA device");
        TORCH_CHECK(seqused_k_.is_contiguous(), "seqused_k must be contiguous");
        CHECK_SHAPE(seqused_k_, batch_size);
    }
Tri Dao's avatar
Tri Dao committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

    at::Tensor q_padded, k_padded, v_padded;
    if (head_size_og % 8 != 0) {
        q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        q_padded = q;
        k_padded = k;
        v_padded = v;
    }

    at::Tensor out;
    if (out_.has_value()) {
        out = out_.value();
        TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
584
        CHECK_DEVICE(out);
Tri Dao's avatar
Tri Dao committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
        TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
        CHECK_SHAPE(out, total_q, num_heads, head_size_og);
        if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
    } else {
        out = torch::empty_like(q_padded);
    }

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size = round_multiple(head_size_og, 8);
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128);

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();

    auto softmax_lse = torch::empty({batch_size, num_heads, max_seqlen_q}, opts.dtype(at::kFloat));
    at::Tensor p;
    // Only return softmax if there's dropout to reduce compilation time
    if (return_softmax) {
        TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0");
        p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts);
    }

    if (zero_tensors) {
        out.zero_();
        softmax_lse.fill_(-std::numeric_limits<float>::infinity());
        if (return_softmax) {p.zero_();}
    }

    Flash_fwd_params params;
    set_params_fprop(params,
                     batch_size,
                     max_seqlen_q, max_seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q_padded, k_padded, v_padded, out,
626
                     cu_seqlens_q_d,
Tri Dao's avatar
Tri Dao committed
627
                     cu_seqlens_k.data_ptr(),
628
                     seqused_k.has_value() ? seqused_k.value().data_ptr() : nullptr,
Tri Dao's avatar
Tri Dao committed
629
630
631
632
                     return_softmax ? p.data_ptr() : nullptr,
                     softmax_lse.data_ptr(),
                     p_dropout,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
633
                     window_size_left,
634
635
636
637
638
                     window_size_right,
                     seqlenq_ngroups_swapped);
    if (seqlenq_ngroups_swapped) {
        // Only apply split-k for decoding
        set_params_splitkv(params, batch_size, num_heads,
Tri Dao's avatar
Tri Dao committed
639
640
                           head_size, max_seqlen_k, max_seqlen_q,
                           head_size_rounded, p_dropout, /*num_splits*/0, dprops, opts);
641
    }
Tri Dao's avatar
Tri Dao committed
642

643
644
645
646
647
648
649
650
651
    // number of times random will be generated per thread, to offset philox counter in thc random
    // state
    // We use a custom RNG that increases the offset by batch_size * nheads * 32.
    int64_t counter_offset = params.b * params.h * 32;
    auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA);
    auto rng_state = torch::empty({2}, options.dtype(torch::kInt64));
    // Forward kernel will populate memory with the seed and offset.
    params.rng_state = reinterpret_cast<uint64_t*>(rng_state.data_ptr());

Tri Dao's avatar
Tri Dao committed
652
653
654
655
656
657
658
659
    if (p_dropout > 0.0)  {
        auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
            gen_, at::cuda::detail::getDefaultCUDAGenerator());
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        params.philox_args = gen->philox_cuda_state(counter_offset);
    }

660
661
662
663
664
    if (alibi_slopes_.has_value()) {
        auto alibi_slopes = alibi_slopes_.value();
        TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
        CHECK_DEVICE(alibi_slopes);
        TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
665
        TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({num_heads}) || alibi_slopes.sizes() == torch::IntArrayRef({batch_size, num_heads}));
666
        params.alibi_slopes_ptr = alibi_slopes.data_ptr();
667
        params.alibi_slopes_batch_stride = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0;
668
    } else {
669
        params.alibi_slopes_ptr = nullptr;
670
671
    }

672
673
674
675
676
677
678
679
    if (max_seqlen_k > 0) {
        auto stream = at::cuda::getCurrentCUDAStream().stream();
        run_mha_fwd(params, stream);
    } else {
        // If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
        out.zero_();
        softmax_lse.fill_(std::numeric_limits<float>::infinity());
    }
Tri Dao's avatar
Tri Dao committed
680
681
682
683
684
685
686

    at::Tensor out_padded = out;
    if (head_size_og % 8 != 0) {
        out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        if (out_.has_value()) { out_.value().copy_(out); }
    }

687
688
689
690
691
692
693
694
695
    if (seqlenq_ngroups_swapped) {
        long size_before[] = {batch_size, max_seqlen_q, num_heads_k, head_size_og};
        long size_after[] = {batch_size, num_heads_k * max_seqlen_q, head_size_og};
        out = out.reshape(size_before).transpose(1, 2).reshape(size_after);
        out_padded = out_padded.reshape(size_before).transpose(1, 2).reshape(size_after);
        q_padded = q_padded.reshape(size_before).transpose(1, 2).reshape(size_after);
        softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * max_seqlen_q, 1});
    }

696
    return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse, p, rng_state};
Tri Dao's avatar
Tri Dao committed
697
698
}

699
void run_mha_bwd(Flash_bwd_params &params, cudaStream_t stream) {
Tri Dao's avatar
Tri Dao committed
700
    FP16_SWITCH(!params.is_bf16, [&] {
701
702
703
        HEADDIM_SWITCH(params.d, [&] {
            run_mha_bwd_<elem_type, kHeadDim>(params, stream);
        });
Tri Dao's avatar
Tri Dao committed
704
705
706
707
708
709
710
711
712
713
714
715
716
    });
}

std::vector<at::Tensor>
mha_bwd(const at::Tensor &dout,  // batch_size x seqlen_q x num_heads, x head_size_og
        const at::Tensor &q,   // batch_size x seqlen_q x num_heads x head_size
        const at::Tensor &k,   // batch_size x seqlen_k x num_heads_k x head_size
        const at::Tensor &v,   // batch_size x seqlen_k x num_heads_k x head_size
        const at::Tensor &out,   // batch_size x seqlen_q x num_heads x head_size
        const at::Tensor &softmax_lse,     // b x h x seqlen_q
        c10::optional<at::Tensor> &dq_,   // batch_size x seqlen_q x num_heads x head_size
        c10::optional<at::Tensor> &dk_,   // batch_size x seqlen_k x num_heads_k x head_size
        c10::optional<at::Tensor> &dv_,   // batch_size x seqlen_k x num_heads_k x head_size
717
        c10::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
Tri Dao's avatar
Tri Dao committed
718
719
720
        const float p_dropout,         // probability to drop
        const float softmax_scale,
        const bool is_causal,
721
        int window_size_left,
Tri Dao's avatar
Tri Dao committed
722
        int window_size_right,
723
        const bool deterministic,
724
725
        c10::optional<at::Generator> gen_,
        c10::optional<at::Tensor> &rng_state) {
Tri Dao's avatar
Tri Dao committed
726
727

    if (is_causal) { window_size_right = 0; }
Tri Dao's avatar
Tri Dao committed
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm80 = dprops->major == 8 && dprops->minor == 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");

    bool is_dropout = p_dropout > 0.0;
    auto stream = at::cuda::getCurrentCUDAStream().stream();

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
    TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype");
    TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype");

751
752
    CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
    CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse);
Tri Dao's avatar
Tri Dao committed
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783

    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension");
    TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension");

    const auto sizes = q.sizes();

    const int batch_size = sizes[0];
    const int seqlen_q = sizes[1];
    const int num_heads = sizes[2];
    const int head_size_og = dout.size(3);
    const int head_size = sizes[3];
    const int seqlen_k = k.size(1);
    const int num_heads_k = k.size(2);
    TORCH_CHECK(batch_size > 0, "batch size must be positive");
    TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
    TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256");
    if (head_size > 192) {
        TORCH_CHECK(is_sm80 || is_sm90, "FlashAttention backward for head dim > 192 requires A100/A800 or H100/H800");
    }
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(seqlen_k, 128);

    TORCH_CHECK(head_size == round_multiple(head_size_og, 8), "head_size must be head_size_og rounded to a multiple of 8");

784
785
786
    if (window_size_left >= seqlen_k) { window_size_left = -1; }
    if (window_size_right >= seqlen_k) { window_size_right = -1; }

Tri Dao's avatar
Tri Dao committed
787
788
789
790
791
792
793
794
795
796
    CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size);
    CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size);
    CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size);
    CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size);
    CHECK_SHAPE(dout, batch_size, seqlen_q, num_heads, head_size_og);

    at::Tensor dq, dk, dv;
    if (dq_.has_value()) {
        dq = dq_.value();
        TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q");
797
        CHECK_DEVICE(dq);
Tri Dao's avatar
Tri Dao committed
798
799
800
801
802
803
804
805
        TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension");
        CHECK_SHAPE(dq, batch_size, seqlen_q, num_heads, head_size);
    } else {
        dq = torch::empty_like(q);
    }
    if (dk_.has_value()) {
        dk = dk_.value();
        TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q");
806
        CHECK_DEVICE(dk);
Tri Dao's avatar
Tri Dao committed
807
808
809
810
811
812
813
814
        TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension");
        CHECK_SHAPE(dk, batch_size, seqlen_k, num_heads_k, head_size);
    } else {
        dk = torch::empty_like(k);
    }
    if (dv_.has_value()) {
        dv = dv_.value();
        TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q");
815
        CHECK_DEVICE(dv);
Tri Dao's avatar
Tri Dao committed
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
        TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension");
        CHECK_SHAPE(dv, batch_size, seqlen_k, num_heads_k, head_size);
    } else {
        dv = torch::empty_like(k);
    }

    at::Tensor dout_padded;
    if (head_size_og % 8 != 0) {
        dout_padded = torch::nn::functional::pad(dout, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        dout_padded = dout;
    }

    // bool loop = seqlen_k > blocksize_c;
    // TODO: change later, for now set to true for simplicity
    bool loop = true;

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();
    auto softmax_d = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat));
    at::Tensor dq_accum;
    at::Tensor dk_accum, dv_accum;
    if (loop) {
842
843
844
845
846
847
        if (!deterministic) {
            dq_accum = torch::empty({batch_size, seqlen_q_rounded, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
        } else {
            const int nsplits = (dprops->multiProcessorCount + batch_size * num_heads - 1) / (batch_size * num_heads);
            dq_accum = torch::zeros({nsplits, batch_size, seqlen_q_rounded, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
        }
Tri Dao's avatar
Tri Dao committed
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
        // dk_accum = torch::empty({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat));
        // dv_accum = torch::empty({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat));
    }

    at::Tensor dk_expanded, dv_expanded;
    if (num_heads_k != num_heads) {  // MQA / GQA
        dk_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts);
        dv_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts);
    } else {
        dk_expanded = dk;
        dv_expanded = dv;
    }

    Flash_bwd_params params;

    set_params_dgrad(params,
                     batch_size,
                     seqlen_q, seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q, k, v, out,
                     dout_padded, dq, dk_expanded, dv_expanded,
                     nullptr,
                     nullptr,
                     loop ? dq_accum.data_ptr() : nullptr,
                     // loop ? dk_accum.data_ptr() : nullptr,
                     // loop ? dv_accum.data_ptr() : nullptr,
                     nullptr,
                     nullptr,
                     softmax_lse.data_ptr(),
                     softmax_d.data_ptr(),
                     p_dropout,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
882
                     window_size_left,
883
884
885
                     window_size_right,
                     deterministic);
    params.dq_accum_split_stride = !deterministic ? 0 : dq_accum.stride(0);
Tri Dao's avatar
Tri Dao committed
886
887
888
889
890
891
892
893
894

    auto launch = &run_mha_bwd;

    auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
        gen_, at::cuda::detail::getDefaultCUDAGenerator());

    // We use a custom RNG that increases the offset by batch_size * nheads * 32.
    int64_t counter_offset = params.b * params.h * 32;

895
896
897
    if ( rng_state.has_value() ) {
        params.rng_state = reinterpret_cast<uint64_t*>(rng_state.value().data_ptr());
    } else if( is_dropout ) {
Tri Dao's avatar
Tri Dao committed
898
899
900
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        params.philox_args = gen->philox_cuda_state(counter_offset);
901
902
903
        auto seeds = at::cuda::philox::unpack(params.philox_args);
        params.rng_state[0] = std::get<0>(seeds);
        params.rng_state[1] = std::get<1>(seeds);
Tri Dao's avatar
Tri Dao committed
904
905
    }

906
907
908
909
910
    if (alibi_slopes_.has_value()) {
        auto alibi_slopes = alibi_slopes_.value();
        TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
        CHECK_DEVICE(alibi_slopes);
        TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
911
        TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({num_heads}) || alibi_slopes.sizes() == torch::IntArrayRef({batch_size, num_heads}));
912
        params.alibi_slopes_ptr = alibi_slopes.data_ptr();
913
        params.alibi_slopes_batch_stride = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0;
914
    } else {
915
        params.alibi_slopes_ptr = nullptr;
916
917
    }

918
    if (seqlen_q > 0) {
919
        launch(params, stream);
920
921
    } else {
        // If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
922
923
        dk_expanded.zero_();
        dv_expanded.zero_();
924
925
        softmax_d.zero_();
    }
Tri Dao's avatar
Tri Dao committed
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952

    // For MQA/GQA we need to sum dK and dV across the groups
    if (num_heads_k != num_heads) {
        at::sum_out(dk, at::reshape(dk_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3});
        at::sum_out(dv, at::reshape(dv_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3});
    }
    if (head_size_og % 8 != 0) {
        dq = dq.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        dk = dk.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        dv = dv.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
    }

    return { dq, dk, dv, softmax_d };
}

std::vector<at::Tensor>
mha_varlen_bwd(const at::Tensor &dout,  // total_q x num_heads, x head_size
               const at::Tensor &q,   // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
               const at::Tensor &k,   // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
               const at::Tensor &v,   // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
               const at::Tensor &out,   // total_q x num_heads x head_size
               const at::Tensor &softmax_lse,     // b x h x s   softmax logsumexp
               c10::optional<at::Tensor> &dq_,   // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
               c10::optional<at::Tensor> &dk_,   // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
               c10::optional<at::Tensor> &dv_,   // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
               const at::Tensor &cu_seqlens_q,  // b+1
               const at::Tensor &cu_seqlens_k,  // b+1
953
               c10::optional<at::Tensor> &alibi_slopes_, // num_heads or b x num_heads
Tri Dao's avatar
Tri Dao committed
954
955
956
957
958
959
               const int max_seqlen_q,
               const int max_seqlen_k,          // max sequence length to choose the kernel
               const float p_dropout,         // probability to drop
               const float softmax_scale,
               const bool zero_tensors,
               const bool is_causal,
960
               int window_size_left,
Tri Dao's avatar
Tri Dao committed
961
               int window_size_right,
962
               const bool deterministic,
963
               c10::optional<at::Generator> gen_,
Tri Dao's avatar
Tri Dao committed
964
965
966
               c10::optional<at::Tensor> &rng_state) {

    if (is_causal) { window_size_right = 0; }
Tri Dao's avatar
Tri Dao committed
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm80 = dprops->major == 8 && dprops->minor == 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");
    bool is_dropout = p_dropout > 0.0;
    auto stream = at::cuda::getCurrentCUDAStream().stream();

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
    TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype");
    TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype");
    TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32");
    TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32");

991
992
993
    CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
    CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse);
    CHECK_DEVICE(cu_seqlens_q); CHECK_DEVICE(cu_seqlens_k);
Tri Dao's avatar
Tri Dao committed
994
995
996
997
998
999

    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension");
    TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension");
1000
1001
    CHECK_CONTIGUOUS(cu_seqlens_q);
    CHECK_CONTIGUOUS(cu_seqlens_k);
Tri Dao's avatar
Tri Dao committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

    const auto sizes = q.sizes();

    const int total_q = sizes[0];
    const int batch_size = cu_seqlens_q.numel() - 1;
    const int num_heads = sizes[1];
    const int head_size_og = dout.size(2);
    const int head_size = sizes[2];
    const int total_k = k.size(0);
    const int num_heads_k = k.size(1);
    TORCH_CHECK(batch_size > 0, "batch size must be positive");
    TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
    TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256");
    if (head_size > 192) {
        TORCH_CHECK(is_sm80 || is_sm90, "FlashAttention backward for head dim > 192 requires A100/A800 or H100/H800");
    }
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128);

    TORCH_CHECK(head_size == round_multiple(head_size_og, 8), "head_size must be head_size_og rounded to a multiple of 8");

1027
1028
1029
    if (window_size_left >= max_seqlen_k) { window_size_left = -1; }
    if (window_size_right >= max_seqlen_k) { window_size_right = -1; }

Tri Dao's avatar
Tri Dao committed
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
    CHECK_SHAPE(q, total_q, num_heads, head_size);
    CHECK_SHAPE(k, total_k, num_heads_k, head_size);
    CHECK_SHAPE(v, total_k, num_heads_k, head_size);
    CHECK_SHAPE(out, total_q, num_heads, head_size);
    CHECK_SHAPE(dout, total_q, num_heads, head_size_og);
    CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
    CHECK_SHAPE(cu_seqlens_k, batch_size + 1);

    at::Tensor dq, dk, dv;
    if (dq_.has_value()) {
        dq = dq_.value();
        TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q");
1042
        CHECK_DEVICE(dq);
Tri Dao's avatar
Tri Dao committed
1043
1044
1045
1046
1047
1048
1049
1050
        TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension");
        CHECK_SHAPE(dq, total_q, num_heads, head_size);
    } else {
        dq = torch::empty_like(q);
    }
    if (dk_.has_value()) {
        dk = dk_.value();
        TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q");
1051
        CHECK_DEVICE(dk);
Tri Dao's avatar
Tri Dao committed
1052
1053
1054
1055
1056
1057
1058
1059
        TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension");
        CHECK_SHAPE(dk, total_k, num_heads_k, head_size);
    } else {
        dk = torch::empty_like(k);
    }
    if (dv_.has_value()) {
        dv = dv_.value();
        TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q");
1060
        CHECK_DEVICE(dv);
Tri Dao's avatar
Tri Dao committed
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
        TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension");
        CHECK_SHAPE(dv, total_k, num_heads_k, head_size);
    } else {
        dv = torch::empty_like(k);
    }

    at::Tensor dout_padded;
    if (head_size_og % 8 != 0) {
        dout_padded = torch::nn::functional::pad(dout, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        dout_padded = dout;
    }

    // bool loop = max_seqlen_k > blocksize_c;
    // TODO: change later, for now set to true for simplicity
    bool loop = true;

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();
    auto softmax_d = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat));
    at::Tensor dq_accum;
    if (loop) {
1086
1087
1088
1089
1090
1091
1092
1093
        // We don't want to allocate dq_accum of size (batch, seqlen_q_rounded, num_heads, head_size_rounded)
        // because that would be too large if there is a very long sequence and the rest of the sequences are short.
        // Instead, we allocate dq_accum of size (total_q + 128 * batch, num_heads, head_size_rounded).
        // Note that 128 is the max block size on the seqlen_q dimension.
        // For dQ, the i-th sequence is stored in indices from cu_seqlens[i] + 128 * i to
        // cu_seqlens[i + 1] * 128 * i - 1. This ensures that the i-th sequence and (i + 1)-th sequence will
        // be at least 128 apart. It's ok for us to do atomicAdds up to 128 rows beyond what we're normally
        // allowed to do. So we won't have to do any bound checking, and performance should stay the same.
1094
1095
1096
1097
1098
1099
        if (!deterministic) {
            dq_accum = torch::empty({total_q + 128 * batch_size, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
        } else {
            const int nsplits = (dprops->multiProcessorCount + batch_size * num_heads - 1) / (batch_size * num_heads);
            dq_accum = torch::zeros({nsplits, total_q + 128 * batch_size, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
        }
Tri Dao's avatar
Tri Dao committed
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
    }

    at::Tensor dk_expanded, dv_expanded;
    if (num_heads_k != num_heads) {  // MQA / GQA
        dk_expanded = torch::empty({total_k, num_heads, head_size}, opts);
        dv_expanded = torch::empty({total_k, num_heads, head_size}, opts);
    } else {
        dk_expanded = dk;
        dv_expanded = dv;
    }

    if( zero_tensors ) {
        dq.zero_();
        dk_expanded.zero_();
        dv_expanded.zero_();
        softmax_d.zero_();
    }

    Flash_bwd_params params;

    set_params_dgrad(params,
                     batch_size,
                     max_seqlen_q, max_seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q, k, v, out,
                     dout_padded, dq, dk_expanded, dv_expanded,
                     cu_seqlens_q.data_ptr(),
                     cu_seqlens_k.data_ptr(),
                     loop ? dq_accum.data_ptr() : nullptr,
                     nullptr,
                     nullptr,
                     softmax_lse.data_ptr(),
                     softmax_d.data_ptr(),
                     p_dropout,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
1137
                     window_size_left,
1138
1139
1140
                     window_size_right,
                     deterministic);
    params.dq_accum_split_stride = !deterministic ? 0 : dq_accum.stride(0);
Tri Dao's avatar
Tri Dao committed
1141
1142
1143
1144
1145
1146
1147
1148
1149

    auto launch = &run_mha_bwd;

    auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
        gen_, at::cuda::detail::getDefaultCUDAGenerator());

    // We use a custom RNG that increases the offset by batch_size * nheads * 32.
    int64_t counter_offset = params.b * params.h * 32;

1150
1151
1152
    if ( rng_state.has_value() ) {
        params.rng_state = reinterpret_cast<uint64_t*>(rng_state.value().data_ptr());
    } else if( is_dropout ) {
Tri Dao's avatar
Tri Dao committed
1153
1154
1155
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        params.philox_args = gen->philox_cuda_state(counter_offset);
1156
1157
1158
        auto seeds = at::cuda::philox::unpack(params.philox_args);
        params.rng_state[0] = std::get<0>(seeds);
        params.rng_state[1] = std::get<1>(seeds);
Tri Dao's avatar
Tri Dao committed
1159
1160
    }

1161
1162
1163
1164
1165
    if (alibi_slopes_.has_value()) {
        auto alibi_slopes = alibi_slopes_.value();
        TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
        CHECK_DEVICE(alibi_slopes);
        TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
1166
        TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({num_heads}) || alibi_slopes.sizes() == torch::IntArrayRef({batch_size, num_heads}));
1167
        params.alibi_slopes_ptr = alibi_slopes.data_ptr();
1168
        params.alibi_slopes_batch_stride = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0;
1169
    } else {
1170
        params.alibi_slopes_ptr = nullptr;
1171
1172
    }

1173
    if (max_seqlen_q > 0) {
1174
        launch(params, stream);
1175
1176
1177
1178
1179
1180
    } else {
        // If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
        dk_expanded.zero_();
        dv_expanded.zero_();
        softmax_d.zero_();
    }
Tri Dao's avatar
Tri Dao committed
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

    // For MQA/GQA we need to sum dK and dV across the groups
    if (num_heads_k != num_heads) {
        at::sum_out(dk, at::reshape(dk_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2});
        at::sum_out(dv, at::reshape(dv_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2});
    }
    if (head_size_og % 8 != 0) {
        dq = dq.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        dk = dk.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        dv = dv.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
    }

    return { dq, dk, dv, softmax_d };
}

Tri Dao's avatar
Tri Dao committed
1196
std::vector<at::Tensor>
1197
mha_fwd_kvcache(at::Tensor &q,                 // batch_size x seqlen_q x num_heads x head_size
Tri Dao's avatar
Tri Dao committed
1198
1199
                const at::Tensor &kcache,            // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
                const at::Tensor &vcache,            // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
1200
1201
                c10::optional<const at::Tensor> &k_, // batch_size x seqlen_knew x num_heads_k x head_size
                c10::optional<const at::Tensor> &v_, // batch_size x seqlen_knew x num_heads_k x head_size
Tri Dao's avatar
Tri Dao committed
1202
                c10::optional<const at::Tensor> &seqlens_k_, // batch_size
1203
1204
                c10::optional<const at::Tensor> &rotary_cos_, // seqlen_ro x (rotary_dim / 2)
                c10::optional<const at::Tensor> &rotary_sin_, // seqlen_ro x (rotary_dim / 2)
1205
                c10::optional<const at::Tensor> &cache_batch_idx_, // indices to index into the KV cache
Tri Dao's avatar
Tri Dao committed
1206
                c10::optional<at::Tensor> &block_table_, // batch_size x max_num_blocks_per_seq
1207
                c10::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
Tri Dao's avatar
Tri Dao committed
1208
1209
                c10::optional<at::Tensor> &out_,             // batch_size x seqlen_q x num_heads x head_size
                const float softmax_scale,
1210
                bool is_causal,
1211
                int window_size_left,
Tri Dao's avatar
Tri Dao committed
1212
                int window_size_right,
1213
                bool is_rotary_interleaved,   // if true, rotary combines indices 0 & 1, else indices 0 & rotary_dim / 2
1214
                int num_splits
Tri Dao's avatar
Tri Dao committed
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
                ) {

    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(kcache.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(vcache.dtype() == q_dtype, "query and value must have the same dtype");

1234
    CHECK_DEVICE(q); CHECK_DEVICE(kcache); CHECK_DEVICE(vcache);
Tri Dao's avatar
Tri Dao committed
1235
1236
1237
1238
1239

    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(kcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(vcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");

Tri Dao's avatar
Tri Dao committed
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
    at::Tensor block_table;
    const bool paged_KV = block_table_.has_value();
    if (paged_KV) {
        TORCH_CHECK(!cache_batch_idx_.has_value(), "Paged KVcache does not support cache_batch_idx");
        block_table = block_table_.value();
        CHECK_DEVICE(block_table);
        TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32");
        TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension");
    }

Tri Dao's avatar
Tri Dao committed
1250
1251
1252
    const auto sizes = q.sizes();

    const int batch_size = sizes[0];
1253
1254
    int seqlen_q = sizes[1];
    int num_heads = sizes[2];
Tri Dao's avatar
Tri Dao committed
1255
    const int head_size_og = sizes[3];
Tri Dao's avatar
Tri Dao committed
1256
1257
1258
1259
1260
1261

    const int max_num_blocks_per_seq = !paged_KV ? 0 : block_table.size(1);
    const int num_blocks = !paged_KV ? 0 : kcache.size(0);
    const int page_block_size = !paged_KV ? 1 : kcache.size(1);
    TORCH_CHECK(!paged_KV || page_block_size % 256 == 0, "Paged KV cache block size must be divisible by 256");
    const int seqlen_k = !paged_KV ? kcache.size(1) : max_num_blocks_per_seq * page_block_size;
Tri Dao's avatar
Tri Dao committed
1262
    const int num_heads_k = kcache.size(2);
Tri Dao's avatar
Tri Dao committed
1263
    const int batch_size_c = !paged_KV ? kcache.size(0) : batch_size;
Tri Dao's avatar
Tri Dao committed
1264
1265
1266
1267
    TORCH_CHECK(batch_size > 0, "batch size must be postive");
    TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

1268
1269
    // causal=true is the same as causal=false in this case
    if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; }
Tri Dao's avatar
Tri Dao committed
1270
    if (is_causal) { window_size_right = 0; }
1271

1272
1273
    // Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
    // H/t Daniel Haziza
1274
    const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && head_size_og % 8 == 0 && !alibi_slopes_.has_value();
1275
1276
1277
1278
1279
    if (seqlenq_ngroups_swapped) {
        const int ngroups = num_heads / num_heads_k;
        q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
        seqlen_q = ngroups;
        num_heads = num_heads_k;
1280
1281
    }

1282
1283
1284
    if (window_size_left >= seqlen_k) { window_size_left = -1; }
    if (window_size_right >= seqlen_k) { window_size_right = -1; }

Tri Dao's avatar
Tri Dao committed
1285
    CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og);
Tri Dao's avatar
Tri Dao committed
1286
1287
1288
1289
1290
1291
1292
1293
    if (!paged_KV) {
        CHECK_SHAPE(kcache, batch_size_c, seqlen_k, num_heads_k, head_size_og);
        CHECK_SHAPE(vcache, batch_size_c, seqlen_k, num_heads_k, head_size_og);
    } else {
        CHECK_SHAPE(kcache, num_blocks, page_block_size, num_heads_k, head_size_og);
        CHECK_SHAPE(vcache, num_blocks, page_block_size, num_heads_k, head_size_og);
        CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq);
    }
Tri Dao's avatar
Tri Dao committed
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309

    at::Tensor q_padded, kcache_padded, vcache_padded;
    if (head_size_og % 8 != 0) {
        q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        kcache_padded = torch::nn::functional::pad(kcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        vcache_padded = torch::nn::functional::pad(vcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        q_padded = q;
        kcache_padded = kcache;
        vcache_padded = vcache;
    }

    at::Tensor out;
    if (out_.has_value()) {
        out = out_.value();
        TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
1310
        CHECK_DEVICE(out);
Tri Dao's avatar
Tri Dao committed
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
        TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
        CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size_og);
        if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
    } else {
        out = torch::empty_like(q_padded);
    }

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size = round_multiple(head_size_og, 8);
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(seqlen_k, 128);

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();

    auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));

    Flash_fwd_params params;
    set_params_fprop(params,
                     batch_size,
                     seqlen_q, seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q_padded, kcache_padded, vcache_padded, out,
                     /*cu_seqlens_q_d=*/nullptr,
                     /*cu_seqlens_k_d=*/nullptr,
1342
                     /*seqused_k=*/nullptr,
Tri Dao's avatar
Tri Dao committed
1343
1344
1345
1346
                     /*p_ptr=*/nullptr,
                     softmax_lse.data_ptr(),
                     /*p_dropout=*/0.f,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
1347
1348
                     window_size_left,
                     window_size_right);
Tri Dao's avatar
Tri Dao committed
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358

    at::Tensor k, v, k_padded, v_padded;
    if (k_.has_value()) {
        TORCH_CHECK(v_.has_value(), "If key is supplied, value must also be passed in");
        TORCH_CHECK(seqlens_k_.has_value(), "If key is supplied, seqlens_k must also be passed in");
        TORCH_CHECK(seqlen_q <= seqlen_k, "If key is supplied, it must have seqlen <= the seqlen of the KV cache");
        k = k_.value();
        v = v_.value();
        TORCH_CHECK(k.dtype() == q_dtype, "Key must have the same dtype as query");
        TORCH_CHECK(v.dtype() == q_dtype, "Value must have the same dtype as query");
1359
        CHECK_DEVICE(k); CHECK_DEVICE(v);
Tri Dao's avatar
Tri Dao committed
1360
1361
        TORCH_CHECK(k.stride(-1) == 1, "Key tensor must have contiguous last dimension");
        TORCH_CHECK(v.stride(-1) == 1, "Value tensor must have contiguous last dimension");
1362
1363
1364
        int seqlen_knew = k.size(1);
        CHECK_SHAPE(k, batch_size, seqlen_knew, num_heads_k, head_size_og);
        CHECK_SHAPE(v, batch_size, seqlen_knew, num_heads_k, head_size_og);
Tri Dao's avatar
Tri Dao committed
1365
1366
1367
1368
1369
1370
1371
        if (head_size_og % 8 != 0) {
            k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
            v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        } else {
            k_padded = k;
            v_padded = v;
        }
1372
        params.seqlen_knew = seqlen_knew;
Tri Dao's avatar
Tri Dao committed
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
        params.knew_ptr = k_padded.data_ptr();
        params.vnew_ptr = v_padded.data_ptr();
        // All stride are in elements, not bytes.
        params.knew_batch_stride = k_padded.stride(0);
        params.vnew_batch_stride = v_padded.stride(0);
        params.knew_row_stride = k_padded.stride(-3);
        params.vnew_row_stride = v_padded.stride(-3);
        params.knew_head_stride = k_padded.stride(-2);
        params.vnew_head_stride = v_padded.stride(-2);
    }

    if (seqlens_k_.has_value()) {
        auto seqlens_k = seqlens_k_.value();
        TORCH_CHECK(seqlens_k.dtype() == torch::kInt32, "seqlens_k must have dtype int32");
1387
1388
        CHECK_DEVICE(seqlens_k);
        CHECK_CONTIGUOUS(seqlens_k);
Tri Dao's avatar
Tri Dao committed
1389
1390
1391
1392
1393
        CHECK_SHAPE(seqlens_k, batch_size);
        params.cu_seqlens_k = static_cast<int *>(seqlens_k.data_ptr());
    }
    params.is_seqlens_k_cumulative = !(seqlens_k_.has_value());

1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
    if (rotary_cos_.has_value()) {
        TORCH_CHECK(k_.has_value(), "If rotary cos/sin are provided, new key / value to be appended to KV cache must also be provided");
        auto rotary_cos = rotary_cos_.value();
        CHECK_DEVICE(rotary_cos);
        params.rotary_dim = rotary_cos.size(1) * 2;
        TORCH_CHECK(params.rotary_dim <= head_size, "rotary_dim must be <= headdim");
        TORCH_CHECK(params.rotary_dim % 16 == 0, "Only rotary dimensions divisible by 16 are currently supported");
        const int seqlen_ro = rotary_cos.size(0);
        TORCH_CHECK(seqlen_ro >= seqlen_k, "cos/sin seqlen must be at least the seqlen of KV cache");
        CHECK_SHAPE(rotary_cos, seqlen_ro, params.rotary_dim / 2);
        CHECK_CONTIGUOUS(rotary_cos);
        TORCH_CHECK(rotary_cos.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query");

        TORCH_CHECK(rotary_sin_.has_value(), "If rotary cos is provided, rotary sin must also be provided");
        auto rotary_sin = rotary_sin_.value();
        CHECK_DEVICE(rotary_sin);
        CHECK_SHAPE(rotary_sin, seqlen_ro, params.rotary_dim / 2);
        CHECK_CONTIGUOUS(rotary_sin);
        TORCH_CHECK(rotary_sin.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query");
        params.rotary_cos_ptr = rotary_cos.data_ptr();
        params.rotary_sin_ptr = rotary_sin.data_ptr();
        params.is_rotary_interleaved = is_rotary_interleaved;
    } else {
        params.rotary_dim = 0;
    }

1420
1421
1422
1423
1424
1425
1426
    if (cache_batch_idx_.has_value()) {
        auto cache_batch_idx = cache_batch_idx_.value();
        CHECK_DEVICE(cache_batch_idx);
        CHECK_CONTIGUOUS(cache_batch_idx);
        TORCH_CHECK(cache_batch_idx.scalar_type() == torch::kInt32, "cache_batch_idx must have dtype int32");
        params.cache_batch_idx = reinterpret_cast<int *>(cache_batch_idx.data_ptr());
    }
1427
1428
1429
1430

    set_params_splitkv(params, batch_size, num_heads,
                       head_size, seqlen_k, seqlen_q,
                       head_size_rounded, /*dropout*/0.f, num_splits, dprops, opts);
Tri Dao's avatar
Tri Dao committed
1431

Tri Dao's avatar
Tri Dao committed
1432
1433
1434
1435
1436
1437
    if (paged_KV) {
        params.block_table = block_table.data_ptr<int>();
        params.block_table_batch_stride = block_table.stride(0);
    }
    params.page_block_size = page_block_size;

1438
1439
1440
1441
1442
    if (alibi_slopes_.has_value()) {
        auto alibi_slopes = alibi_slopes_.value();
        TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
        CHECK_DEVICE(alibi_slopes);
        TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
1443
        TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({num_heads}) || alibi_slopes.sizes() == torch::IntArrayRef({batch_size, num_heads}));
1444
        params.alibi_slopes_ptr = alibi_slopes.data_ptr();
1445
        params.alibi_slopes_batch_stride = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0;
1446
    } else {
1447
        params.alibi_slopes_ptr = nullptr;
1448
1449
    }

Tri Dao's avatar
Tri Dao committed
1450
    auto stream = at::cuda::getCurrentCUDAStream().stream();
Tri Dao's avatar
Tri Dao committed
1451
1452
1453
    // Only split kernel supports appending to KV cache, or indexing to the cache with cache_batch_idx,
    // or paged KV cache
    run_mha_fwd(params, stream, /*force_split_kernel=*/k_.has_value() || cache_batch_idx_.has_value() || paged_KV);
Tri Dao's avatar
Tri Dao committed
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465

    if (head_size_og % 8 != 0) {
        out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        if (out_.has_value()) { out_.value().copy_(out); }
        if (k_.has_value()) {
            // It's expensive to copy the KV cache here for the case where head size not divisible by 8,
            // but we don't expect to get this case in practice. This is just so that the code works for that case.
            kcache.copy_(kcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}));
            vcache.copy_(vcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}));
        }
    }

1466
1467
1468
    if (seqlenq_ngroups_swapped) {
        out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
        softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1});
1469
    }
Tri Dao's avatar
Tri Dao committed
1470
1471
1472
    return {out, softmax_lse};
}

Tri Dao's avatar
Tri Dao committed
1473
1474
1475
1476
1477
1478
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.doc() = "FlashAttention";
    m.def("fwd", &mha_fwd, "Forward pass");
    m.def("varlen_fwd", &mha_varlen_fwd, "Forward pass (variable length)");
    m.def("bwd", &mha_bwd, "Backward pass");
    m.def("varlen_bwd", &mha_varlen_bwd, "Backward pass (variable length)");
Tri Dao's avatar
Tri Dao committed
1479
    m.def("fwd_kvcache", &mha_fwd_kvcache, "Forward pass, with KV-cache");
Tri Dao's avatar
Tri Dao committed
1480
}