flash_api.cpp 67.7 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
/******************************************************************************
 * Copyright (c) 2023, Tri Dao.
 ******************************************************************************/

Tri Dao's avatar
Tri Dao committed
5
6
7
// Include these 2 headers instead of torch/extension.h since we don't need all of the torch headers.
#include <torch/python.h>
#include <torch/nn/functional.h>
Tri Dao's avatar
Tri Dao committed
8
9
10
11
12
13
14
15
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>

#include <cutlass/numeric_types.h>

#include "flash.h"
#include "static_switch.h"

16
#define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA")
Tri Dao's avatar
Tri Dao committed
17
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
18
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
Tri Dao's avatar
Tri Dao committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38


void set_params_fprop(Flash_fwd_params &params,
                      // sizes
                      const size_t b,
                      const size_t seqlen_q,
                      const size_t seqlen_k,
                      const size_t seqlen_q_rounded,
                      const size_t seqlen_k_rounded,
                      const size_t h,
                      const size_t h_k,
                      const size_t d,
                      const size_t d_rounded,
                      // device pointers
                      const at::Tensor q,
                      const at::Tensor k,
                      const at::Tensor v,
                      at::Tensor out,
                      void *cu_seqlens_q_d,
                      void *cu_seqlens_k_d,
39
                      void *seqused_k,
Tri Dao's avatar
Tri Dao committed
40
41
42
43
                      void *p_d,
                      void *softmax_lse_d,
                      float p_dropout,
                      float softmax_scale,
Tri Dao's avatar
Tri Dao committed
44
45
                      int window_size_left,
                      int window_size_right) {
Tri Dao's avatar
Tri Dao committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

    // Reset the parameters
    memset(&params, 0, sizeof(params));

    params.is_bf16 = q.dtype() == torch::kBFloat16;

    // Set the pointers and strides.
    params.q_ptr = q.data_ptr();
    params.k_ptr = k.data_ptr();
    params.v_ptr = v.data_ptr();
    // All stride are in elements, not bytes.
    params.q_row_stride = q.stride(-3);
    params.k_row_stride = k.stride(-3);
    params.v_row_stride = v.stride(-3);
    params.q_head_stride = q.stride(-2);
    params.k_head_stride = k.stride(-2);
    params.v_head_stride = v.stride(-2);
    params.o_ptr = out.data_ptr();
    params.o_row_stride = out.stride(-3);
    params.o_head_stride = out.stride(-2);

    if (cu_seqlens_q_d == nullptr) {
        params.q_batch_stride = q.stride(0);
        params.k_batch_stride = k.stride(0);
        params.v_batch_stride = v.stride(0);
        params.o_batch_stride = out.stride(0);
    }

    params.cu_seqlens_q = static_cast<int *>(cu_seqlens_q_d);
    params.cu_seqlens_k = static_cast<int *>(cu_seqlens_k_d);
76
    params.seqused_k = static_cast<int *>(seqused_k);
Tri Dao's avatar
Tri Dao committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

    // P = softmax(QK^T)
    params.p_ptr = p_d;

    // Softmax sum
    params.softmax_lse_ptr = softmax_lse_d;

    // Set the dimensions.
    params.b = b;
    params.h = h;
    params.h_k = h_k;
    params.h_h_k_ratio = h / h_k;
    params.seqlen_q = seqlen_q;
    params.seqlen_k = seqlen_k;
    params.seqlen_q_rounded = seqlen_q_rounded;
    params.seqlen_k_rounded = seqlen_k_rounded;
    params.d = d;
    params.d_rounded = d_rounded;

    // Set the different scale values.
    params.scale_softmax = softmax_scale;
    params.scale_softmax_log2 = softmax_scale * M_LOG2E;

    // Set this to probability of keeping an element to simplify things.
    params.p_dropout = 1.f - p_dropout;
    // Convert p from float to int so we don't have to convert the random uint to float to compare.
    // [Minor] We want to round down since when we do the comparison we use <= instead of <
    // params.p_dropout_in_uint = uint32_t(std::floor(params.p_dropout * 4294967295.0));
    // params.p_dropout_in_uint16_t = uint16_t(std::floor(params.p_dropout * 65535.0));
    params.p_dropout_in_uint8_t = uint8_t(std::floor(params.p_dropout * 255.0));
    params.rp_dropout = 1.f / params.p_dropout;
    params.scale_softmax_rp_dropout = params.rp_dropout * params.scale_softmax;
    TORCH_CHECK(p_dropout < 1.f);

Tri Dao's avatar
Tri Dao committed
111
112
113
114
115
116
117
118
119
    // Causal is the special case where window_size_right == 0 and window_size_left < 0.
    // Local is the more general case where window_size_right >= 0 or window_size_left >= 0.
    params.is_causal = window_size_left < 0 && window_size_right == 0;

    if (window_size_left < 0 && window_size_right >= 0) { window_size_left = seqlen_k; }
    if (window_size_left >= 0 && window_size_right < 0) { window_size_right = seqlen_k; }
    params.window_size_left = window_size_left;
    params.window_size_right = window_size_right;

Tri Dao's avatar
Tri Dao committed
120
    params.is_seqlens_k_cumulative = true;
Tri Dao's avatar
Tri Dao committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
}

void set_params_dgrad(Flash_bwd_params &params,
                      // sizes
                      const size_t b,
                      const size_t seqlen_q,
                      const size_t seqlen_k,
                      const size_t seqlen_q_rounded,
                      const size_t seqlen_k_rounded,
                      const size_t h,
                      const size_t h_k,
                      const size_t d,
                      const size_t d_rounded,
                      // device pointers
                      const at::Tensor q,
                      const at::Tensor k,
                      const at::Tensor v,
                      const at::Tensor out,
                      const at::Tensor dout,
                      at::Tensor dq,
                      at::Tensor dk,
                      at::Tensor dv,
                      void *cu_seqlens_q_d,
                      void *cu_seqlens_k_d,
                      void *dq_accum_d,
                      void *dk_accum_d,
                      void *dv_accum_d,
                      void *softmax_lse_d,
                      void *dsoftmax_sum_d,
                      float p_dropout,
                      float softmax_scale,
Tri Dao's avatar
Tri Dao committed
152
                      int window_size_left,
153
154
                      int window_size_right,
                      bool deterministic) {
Tri Dao's avatar
Tri Dao committed
155
156
157
158
159
160
161

    set_params_fprop(params,
                     b, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, h, h_k, d, d_rounded,
                     q, k, v, out,
                     cu_seqlens_q_d,
                     cu_seqlens_k_d,
                     nullptr,
162
                     nullptr,
Tri Dao's avatar
Tri Dao committed
163
164
165
                     softmax_lse_d,
                     p_dropout,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
166
167
                     window_size_left,
                     window_size_right);
Tri Dao's avatar
Tri Dao committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

    // Set the pointers and strides.
    params.do_ptr = dout.data_ptr();
    params.do_row_stride = dout.stride(-3);
    params.do_head_stride = dout.stride(-2);
    params.dq_ptr = dq.data_ptr();
    params.dk_ptr = dk.data_ptr();
    params.dv_ptr = dv.data_ptr();
    params.dq_row_stride = dq.stride(-3);
    params.dk_row_stride = dk.stride(-3);
    params.dv_row_stride = dv.stride(-3);
    params.dq_head_stride = dq.stride(-2);
    params.dk_head_stride = dk.stride(-2);
    params.dv_head_stride = dv.stride(-2);

    if (cu_seqlens_q_d == nullptr) {
        params.do_batch_stride = dout.stride(0);
        params.dq_batch_stride = dq.stride(0);
        params.dk_batch_stride = dk.stride(0);
        params.dv_batch_stride = dv.stride(0);
    }

    params.dq_accum_ptr = dq_accum_d;
    params.dk_accum_ptr = dk_accum_d;
    params.dv_accum_ptr = dv_accum_d;

    // Softmax sum
    params.dsoftmax_sum = dsoftmax_sum_d;
196
197

    params.deterministic = deterministic;
Tri Dao's avatar
Tri Dao committed
198
199
}

Tri Dao's avatar
Tri Dao committed
200
void run_mha_fwd(Flash_fwd_params &params, cudaStream_t stream, bool force_split_kernel=false) {
Tri Dao's avatar
Tri Dao committed
201
202
    FP16_SWITCH(!params.is_bf16, [&] {
        FWD_HEADDIM_SWITCH(params.d, [&] {
Tri Dao's avatar
Tri Dao committed
203
            if (params.num_splits <= 1 && !force_split_kernel) {  // If we don't set it num_splits == 0
Tri Dao's avatar
Tri Dao committed
204
205
206
207
                run_mha_fwd_<elem_type, kHeadDim>(params, stream);
            } else {
                run_mha_fwd_splitkv_dispatch<elem_type, kHeadDim>(params, stream);
            }
Tri Dao's avatar
Tri Dao committed
208
209
210
211
        });
    });
}

Tri Dao's avatar
Tri Dao committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// Find the number of splits that maximizes the occupancy. For example, if we have
// batch * n_heads = 48 and we have 108 SMs, having 2 splits (efficiency = 0.89) is
// better than having 3 splits (efficiency = 0.67). However, we also don't want too many
// splits as that would incur more HBM reads/writes.
// So we find the best efficiency, then find the smallest number of splits that gets 85%
// of the best efficiency.
inline int num_splits_heuristic(int batch_nheads_mblocks, int num_SMs, int num_n_blocks, int max_splits) {
    // If we have enough to almost fill the SMs, then just use 1 split
    if (batch_nheads_mblocks >= 0.8f * num_SMs) { return 1; }
    max_splits = std::min({max_splits, num_SMs, num_n_blocks});
    float max_efficiency = 0.f;
    std::vector<float> efficiency;
    efficiency.reserve(max_splits);
    auto ceildiv = [](int a, int b) { return (a + b - 1) / b; };
    // Some splits are not eligible. For example, if we have 64 blocks and choose 11 splits,
    // we'll have 6 * 10 + 4 blocks. If we choose 12 splits, we'll have 6 * 11 + (-2) blocks
    // (i.e. it's 11 splits anyway).
    // So we check if the number of blocks per split is the same as the previous num_splits.
    auto is_split_eligible = [&ceildiv, &num_n_blocks](int num_splits) {
        return num_splits == 1 || ceildiv(num_n_blocks, num_splits) != ceildiv(num_n_blocks, num_splits - 1);
    };
    for (int num_splits = 1; num_splits <= max_splits; num_splits++) {
        if (!is_split_eligible(num_splits)) {
            efficiency.push_back(0.f);
        } else {
            float n_waves = float(batch_nheads_mblocks * num_splits) / num_SMs;
            float eff = n_waves / ceil(n_waves);
            // printf("num_splits = %d, eff = %f\n", num_splits, eff);
            if (eff > max_efficiency) { max_efficiency = eff; }
            efficiency.push_back(eff);
        }
    }
    for (int num_splits = 1; num_splits <= max_splits; num_splits++) {
        if (!is_split_eligible(num_splits)) { continue; }
        if (efficiency[num_splits - 1] >= 0.85 * max_efficiency) {
            // printf("num_splits chosen = %d\n", num_splits);
            return num_splits;
        }
    }
    return 1;
}

Tri Dao's avatar
Tri Dao committed
254
std::vector<at::Tensor>
255
mha_fwd(at::Tensor &q,         // batch_size x seqlen_q x num_heads x head_size
Tri Dao's avatar
Tri Dao committed
256
257
258
        const at::Tensor &k,         // batch_size x seqlen_k x num_heads_k x head_size
        const at::Tensor &v,         // batch_size x seqlen_k x num_heads_k x head_size
        c10::optional<at::Tensor> &out_,             // batch_size x seqlen_q x num_heads x head_size
259
        c10::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
Tri Dao's avatar
Tri Dao committed
260
261
        const float p_dropout,
        const float softmax_scale,
262
        bool is_causal,
263
        int window_size_left,
Tri Dao's avatar
Tri Dao committed
264
        int window_size_right,
Tri Dao's avatar
Tri Dao committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        const bool return_softmax,
        c10::optional<at::Generator> gen_) {

    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");

285
    CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
Tri Dao's avatar
Tri Dao committed
286
287
288
289
290
291
292
293

    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");

    const auto sizes = q.sizes();

    const int batch_size = sizes[0];
294
295
    int seqlen_q = sizes[1];
    int num_heads = sizes[2];
Tri Dao's avatar
Tri Dao committed
296
297
298
299
300
301
302
    const int head_size_og = sizes[3];
    const int seqlen_k = k.size(1);
    const int num_heads_k = k.size(2);
    TORCH_CHECK(batch_size > 0, "batch size must be postive");
    TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

303
304
305
    if (window_size_left >= seqlen_k) { window_size_left = -1; }
    if (window_size_right >= seqlen_k) { window_size_right = -1; }

306
307
    // causal=true is the same as causal=false in this case
    if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; }
Tri Dao's avatar
Tri Dao committed
308
    if (is_causal) { window_size_right = 0; }
309

310
311
    // Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
    // H/t Daniel Haziza
312
    const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size_og % 8 == 0 && !alibi_slopes_.has_value();
313
314
315
316
317
    if (seqlenq_ngroups_swapped) {
        const int ngroups = num_heads / num_heads_k;
        q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
        seqlen_q = ngroups;
        num_heads = num_heads_k;
318
319
    }

Tri Dao's avatar
Tri Dao committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og);
    CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size_og);
    CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size_og);

    at::Tensor q_padded, k_padded, v_padded;
    if (head_size_og % 8 != 0) {
        q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        q_padded = q;
        k_padded = k;
        v_padded = v;
    }

    at::Tensor out;
    if (out_.has_value()) {
        out = out_.value();
        TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
339
        CHECK_DEVICE(out);
Tri Dao's avatar
Tri Dao committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
        TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
        CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size_og);
        if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
    } else {
        out = torch::empty_like(q_padded);
    }

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size = round_multiple(head_size_og, 8);
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(seqlen_k, 128);

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();

    auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
    at::Tensor p;
    // Only return softmax if there's dropout to reduce compilation time
    if (return_softmax) {
        TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0");
        p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts);
    }

    Flash_fwd_params params;
    set_params_fprop(params,
                     batch_size,
                     seqlen_q, seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q_padded, k_padded, v_padded, out,
                     /*cu_seqlens_q_d=*/nullptr,
                     /*cu_seqlens_k_d=*/nullptr,
377
                     /*seqused_k=*/nullptr,
Tri Dao's avatar
Tri Dao committed
378
379
380
381
                     return_softmax ? p.data_ptr() : nullptr,
                     softmax_lse.data_ptr(),
                     p_dropout,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
382
383
                     window_size_left,
                     window_size_right);
Tri Dao's avatar
Tri Dao committed
384

Tri Dao's avatar
Tri Dao committed
385
    // This needs to match with run_mha_fwd_splitkv_dispatch
386
    const int block_n = head_size <= 64 ? 256 : (head_size <= 128 ? 128 : 64);
Tri Dao's avatar
Tri Dao committed
387
388
389
390
391
392
    const int num_n_blocks = (seqlen_k + block_n - 1) / block_n;
    // Technically kBlockM = 64 only for the splitKV kernels, not the standard kernel.
    // In any case we don't expect seqlen_q to be larger than 64 for inference.
    const int num_m_blocks = (seqlen_q + 64 - 1) / 64;
    params.num_splits = 1;
    if (p_dropout == 0.0f) {  // SplitKV is not implemented for dropout
Tri Dao's avatar
Tri Dao committed
393
        params.num_splits = num_splits_heuristic(batch_size * num_heads * num_m_blocks, dprops->multiProcessorCount, num_n_blocks, 128);
Tri Dao's avatar
Tri Dao committed
394
395
396
397
398
399
        if (params.num_splits > 1) {
            at::Tensor softmax_lse_accum = torch::empty({params.num_splits, batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
            at::Tensor out_accum = torch::empty({params.num_splits, batch_size, num_heads, seqlen_q, head_size_rounded}, opts.dtype(at::kFloat));
            params.softmax_lseaccum_ptr = softmax_lse_accum.data_ptr();
            params.oaccum_ptr = out_accum.data_ptr();
        }
400
        TORCH_CHECK(params.num_splits <= 128, "num_splits > 128 not supported");
Tri Dao's avatar
Tri Dao committed
401
402
    }

403
404
405
406
407
408
409
410
411
    // number of times random will be generated per thread, to offset philox counter in thc random
    // state
    // We use a custom RNG that increases the offset by batch_size * nheads * 32.
    int64_t counter_offset = params.b * params.h * 32;
    auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA);
    auto rng_state = torch::empty({2}, options.dtype(torch::kInt64));
    // Forward kernel will populate memory with the seed and offset.
    params.rng_state = reinterpret_cast<uint64_t*>(rng_state.data_ptr());

Tri Dao's avatar
Tri Dao committed
412
413
414
415
416
417
418
419
    if (p_dropout > 0.0)  {
        auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
            gen_, at::cuda::detail::getDefaultCUDAGenerator());
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        params.philox_args = gen->philox_cuda_state(counter_offset);
    }

420
421
422
423
424
    if (alibi_slopes_.has_value()) {
        auto alibi_slopes = alibi_slopes_.value();
        TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
        CHECK_DEVICE(alibi_slopes);
        TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
425
        TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({num_heads}) || alibi_slopes.sizes() == torch::IntArrayRef({batch_size, num_heads}));
426
        params.alibi_slopes_ptr = alibi_slopes.data_ptr();
427
        params.alibi_slopes_batch_stride = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0;
428
    } else {
429
        params.alibi_slopes_ptr = nullptr;
430
431
    }

432
433
434
435
436
437
438
439
    if (seqlen_k > 0) {
        auto stream = at::cuda::getCurrentCUDAStream().stream();
        run_mha_fwd(params, stream);
    } else {
        // If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
        out.zero_();
        softmax_lse.fill_(std::numeric_limits<float>::infinity());
    }
Tri Dao's avatar
Tri Dao committed
440
441
442
443
444
445
446

    at::Tensor out_padded = out;
    if (head_size_og % 8 != 0) {
        out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        if (out_.has_value()) { out_.value().copy_(out); }
    }

447
448
449
450
451
    if (seqlenq_ngroups_swapped) {
        out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
        out_padded = out_padded.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
        q_padded = q_padded.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
        softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1});
452
    }
453
    return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse, p, rng_state};
Tri Dao's avatar
Tri Dao committed
454
455
456
457
458
459
460
461
462
}

std::vector<at::Tensor>
mha_varlen_fwd(const at::Tensor &q,  // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
               const at::Tensor &k,  // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
               const at::Tensor &v,  // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
               c10::optional<at::Tensor> &out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
               const at::Tensor &cu_seqlens_q,  // b+1
               const at::Tensor &cu_seqlens_k,  // b+1
463
               c10::optional<at::Tensor> &seqused_k, // b. If given, only this many elements of each batch element's keys are used.
464
               c10::optional<at::Tensor> &alibi_slopes_, // num_heads or b x num_heads
Tri Dao's avatar
Tri Dao committed
465
466
467
468
469
470
               const int max_seqlen_q,
               const int max_seqlen_k,
               const float p_dropout,
               const float softmax_scale,
               const bool zero_tensors,
               const bool is_causal,
471
               int window_size_left,
Tri Dao's avatar
Tri Dao committed
472
               int window_size_right,
Tri Dao's avatar
Tri Dao committed
473
474
475
               const bool return_softmax,
               c10::optional<at::Generator> gen_) {

Tri Dao's avatar
Tri Dao committed
476
    if (is_causal) { window_size_right = 0; }
Tri Dao's avatar
Tri Dao committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
    TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32");
    TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32");

496
497
498
    CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
    CHECK_DEVICE(cu_seqlens_q);
    CHECK_DEVICE(cu_seqlens_k);
Tri Dao's avatar
Tri Dao committed
499
500
501
502

    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
503
504
    CHECK_CONTIGUOUS(cu_seqlens_q);
    CHECK_CONTIGUOUS(cu_seqlens_k);
Tri Dao's avatar
Tri Dao committed
505
506
507
508
509
510
511
512
513
514
515
516
517

    const auto sizes = q.sizes();

    const int total_q = sizes[0];
    const int batch_size = cu_seqlens_q.numel() - 1;
    const int num_heads = sizes[1];
    const int head_size_og = sizes[2];
    const int total_k = k.size(0);
    const int num_heads_k = k.size(1);
    TORCH_CHECK(batch_size > 0, "batch size must be positive");
    TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

518
519
520
    if (window_size_left >= max_seqlen_k) { window_size_left = -1; }
    if (window_size_right >= max_seqlen_k) { window_size_right = -1; }

Tri Dao's avatar
Tri Dao committed
521
522
523
524
525
    CHECK_SHAPE(q, total_q, num_heads, head_size_og);
    CHECK_SHAPE(k, total_k, num_heads_k, head_size_og);
    CHECK_SHAPE(v, total_k, num_heads_k, head_size_og);
    CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
    CHECK_SHAPE(cu_seqlens_k, batch_size + 1);
526
527
528
529
530
531
532
    if (seqused_k.has_value()){
        auto seqused_k_ = seqused_k.value();
        TORCH_CHECK(seqused_k_.dtype() == torch::kInt32, "seqused_k must have dtype int32");
        TORCH_CHECK(seqused_k_.is_cuda(), "seqused_k must be on CUDA device");
        TORCH_CHECK(seqused_k_.is_contiguous(), "seqused_k must be contiguous");
        CHECK_SHAPE(seqused_k_, batch_size);
    }
Tri Dao's avatar
Tri Dao committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

    at::Tensor q_padded, k_padded, v_padded;
    if (head_size_og % 8 != 0) {
        q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        q_padded = q;
        k_padded = k;
        v_padded = v;
    }

    at::Tensor out;
    if (out_.has_value()) {
        out = out_.value();
        TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
549
        CHECK_DEVICE(out);
Tri Dao's avatar
Tri Dao committed
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
        TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
        CHECK_SHAPE(out, total_q, num_heads, head_size_og);
        if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
    } else {
        out = torch::empty_like(q_padded);
    }

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size = round_multiple(head_size_og, 8);
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128);

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();

    auto softmax_lse = torch::empty({batch_size, num_heads, max_seqlen_q}, opts.dtype(at::kFloat));
    at::Tensor p;
    // Only return softmax if there's dropout to reduce compilation time
    if (return_softmax) {
        TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0");
        p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts);
    }

    if (zero_tensors) {
        out.zero_();
        softmax_lse.fill_(-std::numeric_limits<float>::infinity());
        if (return_softmax) {p.zero_();}
    }

    Flash_fwd_params params;
    set_params_fprop(params,
                     batch_size,
                     max_seqlen_q, max_seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q_padded, k_padded, v_padded, out,
                     cu_seqlens_q.data_ptr(),
                     cu_seqlens_k.data_ptr(),
593
                     seqused_k.has_value() ? seqused_k.value().data_ptr() : nullptr,
Tri Dao's avatar
Tri Dao committed
594
595
596
597
                     return_softmax ? p.data_ptr() : nullptr,
                     softmax_lse.data_ptr(),
                     p_dropout,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
598
599
                     window_size_left,
                     window_size_right);
Tri Dao's avatar
Tri Dao committed
600

601
602
603
604
605
606
607
608
609
    // number of times random will be generated per thread, to offset philox counter in thc random
    // state
    // We use a custom RNG that increases the offset by batch_size * nheads * 32.
    int64_t counter_offset = params.b * params.h * 32;
    auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA);
    auto rng_state = torch::empty({2}, options.dtype(torch::kInt64));
    // Forward kernel will populate memory with the seed and offset.
    params.rng_state = reinterpret_cast<uint64_t*>(rng_state.data_ptr());

Tri Dao's avatar
Tri Dao committed
610
611
612
613
614
615
616
617
    if (p_dropout > 0.0)  {
        auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
            gen_, at::cuda::detail::getDefaultCUDAGenerator());
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        params.philox_args = gen->philox_cuda_state(counter_offset);
    }

618
619
620
621
622
    if (alibi_slopes_.has_value()) {
        auto alibi_slopes = alibi_slopes_.value();
        TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
        CHECK_DEVICE(alibi_slopes);
        TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
623
        TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({num_heads}) || alibi_slopes.sizes() == torch::IntArrayRef({batch_size, num_heads}));
624
        params.alibi_slopes_ptr = alibi_slopes.data_ptr();
625
        params.alibi_slopes_batch_stride = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0;
626
    } else {
627
        params.alibi_slopes_ptr = nullptr;
628
629
    }

630
631
632
633
634
635
636
637
    if (max_seqlen_k > 0) {
        auto stream = at::cuda::getCurrentCUDAStream().stream();
        run_mha_fwd(params, stream);
    } else {
        // If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
        out.zero_();
        softmax_lse.fill_(std::numeric_limits<float>::infinity());
    }
Tri Dao's avatar
Tri Dao committed
638
639
640
641
642
643
644

    at::Tensor out_padded = out;
    if (head_size_og % 8 != 0) {
        out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        if (out_.has_value()) { out_.value().copy_(out); }
    }

645
    return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse, p, rng_state};
Tri Dao's avatar
Tri Dao committed
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
}

void run_mha_bwd(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {
    FP16_SWITCH(!params.is_bf16, [&] {
        if (params.d <= 32) {
            run_mha_bwd_<elem_type, 32>(params, stream, configure);
        } else if (params.d <= 64) {
            run_mha_bwd_<elem_type, 64>(params, stream, configure);
        } else if (params.d <= 96) {
            run_mha_bwd_<elem_type, 96>(params, stream, configure);
        } else if (params.d <= 128) {
            run_mha_bwd_<elem_type, 128>(params, stream, configure);
        } else if (params.d <= 160) {
            run_mha_bwd_<elem_type, 160>(params, stream, configure);
        } else if (params.d <= 192) {
            run_mha_bwd_<elem_type, 192>(params, stream, configure);
        } else if (params.d <= 224) {
          run_mha_bwd_<elem_type, 224>(params, stream, configure);
        } else if (params.d <= 256) {
          run_mha_bwd_<elem_type, 256>(params, stream, configure);
        }
    });
}

std::vector<at::Tensor>
mha_bwd(const at::Tensor &dout,  // batch_size x seqlen_q x num_heads, x head_size_og
        const at::Tensor &q,   // batch_size x seqlen_q x num_heads x head_size
        const at::Tensor &k,   // batch_size x seqlen_k x num_heads_k x head_size
        const at::Tensor &v,   // batch_size x seqlen_k x num_heads_k x head_size
        const at::Tensor &out,   // batch_size x seqlen_q x num_heads x head_size
        const at::Tensor &softmax_lse,     // b x h x seqlen_q
        c10::optional<at::Tensor> &dq_,   // batch_size x seqlen_q x num_heads x head_size
        c10::optional<at::Tensor> &dk_,   // batch_size x seqlen_k x num_heads_k x head_size
        c10::optional<at::Tensor> &dv_,   // batch_size x seqlen_k x num_heads_k x head_size
680
        c10::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
Tri Dao's avatar
Tri Dao committed
681
682
683
        const float p_dropout,         // probability to drop
        const float softmax_scale,
        const bool is_causal,
684
        int window_size_left,
Tri Dao's avatar
Tri Dao committed
685
        int window_size_right,
686
        const bool deterministic,
687
688
        c10::optional<at::Generator> gen_,
        c10::optional<at::Tensor> &rng_state) {
Tri Dao's avatar
Tri Dao committed
689
690

    if (is_causal) { window_size_right = 0; }
Tri Dao's avatar
Tri Dao committed
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm80 = dprops->major == 8 && dprops->minor == 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");

    bool is_dropout = p_dropout > 0.0;
    auto stream = at::cuda::getCurrentCUDAStream().stream();

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
    TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype");
    TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype");

714
715
    CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
    CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse);
Tri Dao's avatar
Tri Dao committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746

    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension");
    TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension");

    const auto sizes = q.sizes();

    const int batch_size = sizes[0];
    const int seqlen_q = sizes[1];
    const int num_heads = sizes[2];
    const int head_size_og = dout.size(3);
    const int head_size = sizes[3];
    const int seqlen_k = k.size(1);
    const int num_heads_k = k.size(2);
    TORCH_CHECK(batch_size > 0, "batch size must be positive");
    TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
    TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256");
    if (head_size > 192) {
        TORCH_CHECK(is_sm80 || is_sm90, "FlashAttention backward for head dim > 192 requires A100/A800 or H100/H800");
    }
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(seqlen_k, 128);

    TORCH_CHECK(head_size == round_multiple(head_size_og, 8), "head_size must be head_size_og rounded to a multiple of 8");

747
748
749
    if (window_size_left >= seqlen_k) { window_size_left = -1; }
    if (window_size_right >= seqlen_k) { window_size_right = -1; }

Tri Dao's avatar
Tri Dao committed
750
751
752
753
754
755
756
757
758
759
    CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size);
    CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size);
    CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size);
    CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size);
    CHECK_SHAPE(dout, batch_size, seqlen_q, num_heads, head_size_og);

    at::Tensor dq, dk, dv;
    if (dq_.has_value()) {
        dq = dq_.value();
        TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q");
760
        CHECK_DEVICE(dq);
Tri Dao's avatar
Tri Dao committed
761
762
763
764
765
766
767
768
        TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension");
        CHECK_SHAPE(dq, batch_size, seqlen_q, num_heads, head_size);
    } else {
        dq = torch::empty_like(q);
    }
    if (dk_.has_value()) {
        dk = dk_.value();
        TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q");
769
        CHECK_DEVICE(dk);
Tri Dao's avatar
Tri Dao committed
770
771
772
773
774
775
776
777
        TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension");
        CHECK_SHAPE(dk, batch_size, seqlen_k, num_heads_k, head_size);
    } else {
        dk = torch::empty_like(k);
    }
    if (dv_.has_value()) {
        dv = dv_.value();
        TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q");
778
        CHECK_DEVICE(dv);
Tri Dao's avatar
Tri Dao committed
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
        TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension");
        CHECK_SHAPE(dv, batch_size, seqlen_k, num_heads_k, head_size);
    } else {
        dv = torch::empty_like(k);
    }

    at::Tensor dout_padded;
    if (head_size_og % 8 != 0) {
        dout_padded = torch::nn::functional::pad(dout, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        dout_padded = dout;
    }

    // bool loop = seqlen_k > blocksize_c;
    // TODO: change later, for now set to true for simplicity
    bool loop = true;

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();
    auto softmax_d = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat));
    at::Tensor dq_accum;
    at::Tensor dk_accum, dv_accum;
    if (loop) {
805
806
807
808
809
810
        if (!deterministic) {
            dq_accum = torch::empty({batch_size, seqlen_q_rounded, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
        } else {
            const int nsplits = (dprops->multiProcessorCount + batch_size * num_heads - 1) / (batch_size * num_heads);
            dq_accum = torch::zeros({nsplits, batch_size, seqlen_q_rounded, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
        }
Tri Dao's avatar
Tri Dao committed
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
        // dk_accum = torch::empty({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat));
        // dv_accum = torch::empty({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat));
    }

    at::Tensor dk_expanded, dv_expanded;
    if (num_heads_k != num_heads) {  // MQA / GQA
        dk_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts);
        dv_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts);
    } else {
        dk_expanded = dk;
        dv_expanded = dv;
    }

    Flash_bwd_params params;

    set_params_dgrad(params,
                     batch_size,
                     seqlen_q, seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q, k, v, out,
                     dout_padded, dq, dk_expanded, dv_expanded,
                     nullptr,
                     nullptr,
                     loop ? dq_accum.data_ptr() : nullptr,
                     // loop ? dk_accum.data_ptr() : nullptr,
                     // loop ? dv_accum.data_ptr() : nullptr,
                     nullptr,
                     nullptr,
                     softmax_lse.data_ptr(),
                     softmax_d.data_ptr(),
                     p_dropout,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
845
                     window_size_left,
846
847
848
                     window_size_right,
                     deterministic);
    params.dq_accum_split_stride = !deterministic ? 0 : dq_accum.stride(0);
Tri Dao's avatar
Tri Dao committed
849
850
851
852
853
854
855
856
857
858

    auto launch = &run_mha_bwd;
    // launch(params, stream, /*configure=*/true);

    auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
        gen_, at::cuda::detail::getDefaultCUDAGenerator());

    // We use a custom RNG that increases the offset by batch_size * nheads * 32.
    int64_t counter_offset = params.b * params.h * 32;

859
860
861
    if ( rng_state.has_value() ) {
        params.rng_state = reinterpret_cast<uint64_t*>(rng_state.value().data_ptr());
    } else if( is_dropout ) {
Tri Dao's avatar
Tri Dao committed
862
863
864
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        params.philox_args = gen->philox_cuda_state(counter_offset);
865
866
867
        auto seeds = at::cuda::philox::unpack(params.philox_args);
        params.rng_state[0] = std::get<0>(seeds);
        params.rng_state[1] = std::get<1>(seeds);
Tri Dao's avatar
Tri Dao committed
868
869
    }

870
871
872
873
874
    if (alibi_slopes_.has_value()) {
        auto alibi_slopes = alibi_slopes_.value();
        TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
        CHECK_DEVICE(alibi_slopes);
        TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
875
        TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({num_heads}) || alibi_slopes.sizes() == torch::IntArrayRef({batch_size, num_heads}));
876
        params.alibi_slopes_ptr = alibi_slopes.data_ptr();
877
        params.alibi_slopes_batch_stride = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0;
878
    } else {
879
        params.alibi_slopes_ptr = nullptr;
880
881
    }

882
883
884
885
    if (seqlen_q > 0) {
        launch(params, stream, /*configure=*/false);
    } else {
        // If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
886
887
        dk_expanded.zero_();
        dv_expanded.zero_();
888
889
        softmax_d.zero_();
    }
Tri Dao's avatar
Tri Dao committed
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916

    // For MQA/GQA we need to sum dK and dV across the groups
    if (num_heads_k != num_heads) {
        at::sum_out(dk, at::reshape(dk_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3});
        at::sum_out(dv, at::reshape(dv_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3});
    }
    if (head_size_og % 8 != 0) {
        dq = dq.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        dk = dk.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        dv = dv.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
    }

    return { dq, dk, dv, softmax_d };
}

std::vector<at::Tensor>
mha_varlen_bwd(const at::Tensor &dout,  // total_q x num_heads, x head_size
               const at::Tensor &q,   // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
               const at::Tensor &k,   // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
               const at::Tensor &v,   // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
               const at::Tensor &out,   // total_q x num_heads x head_size
               const at::Tensor &softmax_lse,     // b x h x s   softmax logsumexp
               c10::optional<at::Tensor> &dq_,   // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
               c10::optional<at::Tensor> &dk_,   // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
               c10::optional<at::Tensor> &dv_,   // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
               const at::Tensor &cu_seqlens_q,  // b+1
               const at::Tensor &cu_seqlens_k,  // b+1
917
               c10::optional<at::Tensor> &alibi_slopes_, // num_heads or b x num_heads
Tri Dao's avatar
Tri Dao committed
918
919
920
921
922
923
               const int max_seqlen_q,
               const int max_seqlen_k,          // max sequence length to choose the kernel
               const float p_dropout,         // probability to drop
               const float softmax_scale,
               const bool zero_tensors,
               const bool is_causal,
924
               int window_size_left,
Tri Dao's avatar
Tri Dao committed
925
               int window_size_right,
926
               const bool deterministic,
927
               c10::optional<at::Generator> gen_,
Tri Dao's avatar
Tri Dao committed
928
929
930
               c10::optional<at::Tensor> &rng_state) {

    if (is_causal) { window_size_right = 0; }
Tri Dao's avatar
Tri Dao committed
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm80 = dprops->major == 8 && dprops->minor == 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");
    bool is_dropout = p_dropout > 0.0;
    auto stream = at::cuda::getCurrentCUDAStream().stream();

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
    TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype");
    TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype");
    TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32");
    TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32");

955
956
957
    CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
    CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse);
    CHECK_DEVICE(cu_seqlens_q); CHECK_DEVICE(cu_seqlens_k);
Tri Dao's avatar
Tri Dao committed
958
959
960
961
962
963

    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension");
    TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension");
964
965
    CHECK_CONTIGUOUS(cu_seqlens_q);
    CHECK_CONTIGUOUS(cu_seqlens_k);
Tri Dao's avatar
Tri Dao committed
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

    const auto sizes = q.sizes();

    const int total_q = sizes[0];
    const int batch_size = cu_seqlens_q.numel() - 1;
    const int num_heads = sizes[1];
    const int head_size_og = dout.size(2);
    const int head_size = sizes[2];
    const int total_k = k.size(0);
    const int num_heads_k = k.size(1);
    TORCH_CHECK(batch_size > 0, "batch size must be positive");
    TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
    TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256");
    if (head_size > 192) {
        TORCH_CHECK(is_sm80 || is_sm90, "FlashAttention backward for head dim > 192 requires A100/A800 or H100/H800");
    }
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128);

    TORCH_CHECK(head_size == round_multiple(head_size_og, 8), "head_size must be head_size_og rounded to a multiple of 8");

991
992
993
    if (window_size_left >= max_seqlen_k) { window_size_left = -1; }
    if (window_size_right >= max_seqlen_k) { window_size_right = -1; }

Tri Dao's avatar
Tri Dao committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
    CHECK_SHAPE(q, total_q, num_heads, head_size);
    CHECK_SHAPE(k, total_k, num_heads_k, head_size);
    CHECK_SHAPE(v, total_k, num_heads_k, head_size);
    CHECK_SHAPE(out, total_q, num_heads, head_size);
    CHECK_SHAPE(dout, total_q, num_heads, head_size_og);
    CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
    CHECK_SHAPE(cu_seqlens_k, batch_size + 1);

    at::Tensor dq, dk, dv;
    if (dq_.has_value()) {
        dq = dq_.value();
        TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q");
1006
        CHECK_DEVICE(dq);
Tri Dao's avatar
Tri Dao committed
1007
1008
1009
1010
1011
1012
1013
1014
        TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension");
        CHECK_SHAPE(dq, total_q, num_heads, head_size);
    } else {
        dq = torch::empty_like(q);
    }
    if (dk_.has_value()) {
        dk = dk_.value();
        TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q");
1015
        CHECK_DEVICE(dk);
Tri Dao's avatar
Tri Dao committed
1016
1017
1018
1019
1020
1021
1022
1023
        TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension");
        CHECK_SHAPE(dk, total_k, num_heads_k, head_size);
    } else {
        dk = torch::empty_like(k);
    }
    if (dv_.has_value()) {
        dv = dv_.value();
        TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q");
1024
        CHECK_DEVICE(dv);
Tri Dao's avatar
Tri Dao committed
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
        TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension");
        CHECK_SHAPE(dv, total_k, num_heads_k, head_size);
    } else {
        dv = torch::empty_like(k);
    }

    at::Tensor dout_padded;
    if (head_size_og % 8 != 0) {
        dout_padded = torch::nn::functional::pad(dout, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        dout_padded = dout;
    }

    // bool loop = max_seqlen_k > blocksize_c;
    // TODO: change later, for now set to true for simplicity
    bool loop = true;

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();
    auto softmax_d = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat));
    at::Tensor dq_accum;
    if (loop) {
1050
1051
1052
1053
1054
1055
1056
1057
        // We don't want to allocate dq_accum of size (batch, seqlen_q_rounded, num_heads, head_size_rounded)
        // because that would be too large if there is a very long sequence and the rest of the sequences are short.
        // Instead, we allocate dq_accum of size (total_q + 128 * batch, num_heads, head_size_rounded).
        // Note that 128 is the max block size on the seqlen_q dimension.
        // For dQ, the i-th sequence is stored in indices from cu_seqlens[i] + 128 * i to
        // cu_seqlens[i + 1] * 128 * i - 1. This ensures that the i-th sequence and (i + 1)-th sequence will
        // be at least 128 apart. It's ok for us to do atomicAdds up to 128 rows beyond what we're normally
        // allowed to do. So we won't have to do any bound checking, and performance should stay the same.
1058
1059
1060
1061
1062
1063
        if (!deterministic) {
            dq_accum = torch::empty({total_q + 128 * batch_size, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
        } else {
            const int nsplits = (dprops->multiProcessorCount + batch_size * num_heads - 1) / (batch_size * num_heads);
            dq_accum = torch::zeros({nsplits, total_q + 128 * batch_size, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
        }
Tri Dao's avatar
Tri Dao committed
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
    }

    at::Tensor dk_expanded, dv_expanded;
    if (num_heads_k != num_heads) {  // MQA / GQA
        dk_expanded = torch::empty({total_k, num_heads, head_size}, opts);
        dv_expanded = torch::empty({total_k, num_heads, head_size}, opts);
    } else {
        dk_expanded = dk;
        dv_expanded = dv;
    }

    if( zero_tensors ) {
        dq.zero_();
        dk_expanded.zero_();
        dv_expanded.zero_();
        softmax_d.zero_();
    }

    Flash_bwd_params params;

    set_params_dgrad(params,
                     batch_size,
                     max_seqlen_q, max_seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q, k, v, out,
                     dout_padded, dq, dk_expanded, dv_expanded,
                     cu_seqlens_q.data_ptr(),
                     cu_seqlens_k.data_ptr(),
                     loop ? dq_accum.data_ptr() : nullptr,
                     nullptr,
                     nullptr,
                     softmax_lse.data_ptr(),
                     softmax_d.data_ptr(),
                     p_dropout,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
1101
                     window_size_left,
1102
1103
1104
                     window_size_right,
                     deterministic);
    params.dq_accum_split_stride = !deterministic ? 0 : dq_accum.stride(0);
Tri Dao's avatar
Tri Dao committed
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114

    auto launch = &run_mha_bwd;
    // launch(params, stream, /*configure=*/true);

    auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
        gen_, at::cuda::detail::getDefaultCUDAGenerator());

    // We use a custom RNG that increases the offset by batch_size * nheads * 32.
    int64_t counter_offset = params.b * params.h * 32;

1115
1116
1117
    if ( rng_state.has_value() ) {
        params.rng_state = reinterpret_cast<uint64_t*>(rng_state.value().data_ptr());
    } else if( is_dropout ) {
Tri Dao's avatar
Tri Dao committed
1118
1119
1120
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        params.philox_args = gen->philox_cuda_state(counter_offset);
1121
1122
1123
        auto seeds = at::cuda::philox::unpack(params.philox_args);
        params.rng_state[0] = std::get<0>(seeds);
        params.rng_state[1] = std::get<1>(seeds);
Tri Dao's avatar
Tri Dao committed
1124
1125
    }

1126
1127
1128
1129
1130
    if (alibi_slopes_.has_value()) {
        auto alibi_slopes = alibi_slopes_.value();
        TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
        CHECK_DEVICE(alibi_slopes);
        TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
1131
        TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({num_heads}) || alibi_slopes.sizes() == torch::IntArrayRef({batch_size, num_heads}));
1132
        params.alibi_slopes_ptr = alibi_slopes.data_ptr();
1133
        params.alibi_slopes_batch_stride = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0;
1134
    } else {
1135
        params.alibi_slopes_ptr = nullptr;
1136
1137
    }

1138
1139
1140
1141
1142
1143
1144
1145
    if (max_seqlen_q > 0) {
        launch(params, stream, /*configure=*/false);
    } else {
        // If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
        dk_expanded.zero_();
        dv_expanded.zero_();
        softmax_d.zero_();
    }
Tri Dao's avatar
Tri Dao committed
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160

    // For MQA/GQA we need to sum dK and dV across the groups
    if (num_heads_k != num_heads) {
        at::sum_out(dk, at::reshape(dk_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2});
        at::sum_out(dv, at::reshape(dv_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2});
    }
    if (head_size_og % 8 != 0) {
        dq = dq.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        dk = dk.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        dv = dv.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
    }

    return { dq, dk, dv, softmax_d };
}

Tri Dao's avatar
Tri Dao committed
1161
std::vector<at::Tensor>
1162
mha_fwd_kvcache(at::Tensor &q,                 // batch_size x seqlen_q x num_heads x head_size
1163
1164
                const at::Tensor &kcache,            // batch_size_c x seqlen_k x num_heads_k x head_size
                const at::Tensor &vcache,            // batch_size_c x seqlen_k x num_heads_k x head_size
1165
1166
                c10::optional<const at::Tensor> &k_, // batch_size x seqlen_knew x num_heads_k x head_size
                c10::optional<const at::Tensor> &v_, // batch_size x seqlen_knew x num_heads_k x head_size
Tri Dao's avatar
Tri Dao committed
1167
                c10::optional<const at::Tensor> &seqlens_k_, // batch_size
1168
1169
                c10::optional<const at::Tensor> &rotary_cos_, // seqlen_ro x (rotary_dim / 2)
                c10::optional<const at::Tensor> &rotary_sin_, // seqlen_ro x (rotary_dim / 2)
1170
                c10::optional<const at::Tensor> &cache_batch_idx_, // indices to index into the KV cache
1171
                c10::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
Tri Dao's avatar
Tri Dao committed
1172
1173
                c10::optional<at::Tensor> &out_,             // batch_size x seqlen_q x num_heads x head_size
                const float softmax_scale,
1174
                bool is_causal,
1175
                int window_size_left,
Tri Dao's avatar
Tri Dao committed
1176
                int window_size_right,
1177
                bool is_rotary_interleaved,   // if true, rotary combines indices 0 & 1, else indices 0 & rotary_dim / 2
1178
                int num_splits
Tri Dao's avatar
Tri Dao committed
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
                ) {

    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(kcache.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(vcache.dtype() == q_dtype, "query and value must have the same dtype");

1198
    CHECK_DEVICE(q); CHECK_DEVICE(kcache); CHECK_DEVICE(vcache);
Tri Dao's avatar
Tri Dao committed
1199
1200
1201
1202
1203
1204
1205
1206

    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(kcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(vcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");

    const auto sizes = q.sizes();

    const int batch_size = sizes[0];
1207
1208
    int seqlen_q = sizes[1];
    int num_heads = sizes[2];
Tri Dao's avatar
Tri Dao committed
1209
1210
1211
    const int head_size_og = sizes[3];
    const int seqlen_k = kcache.size(1);
    const int num_heads_k = kcache.size(2);
1212
    const int batch_size_c = kcache.size(0);
Tri Dao's avatar
Tri Dao committed
1213
1214
1215
1216
    TORCH_CHECK(batch_size > 0, "batch size must be postive");
    TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

1217
1218
    // causal=true is the same as causal=false in this case
    if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; }
Tri Dao's avatar
Tri Dao committed
1219
    if (is_causal) { window_size_right = 0; }
1220

1221
1222
    // Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
    // H/t Daniel Haziza
1223
    const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && head_size_og % 8 == 0 && !alibi_slopes_.has_value();
1224
1225
1226
1227
1228
    if (seqlenq_ngroups_swapped) {
        const int ngroups = num_heads / num_heads_k;
        q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
        seqlen_q = ngroups;
        num_heads = num_heads_k;
1229
1230
    }

1231
1232
1233
    if (window_size_left >= seqlen_k) { window_size_left = -1; }
    if (window_size_right >= seqlen_k) { window_size_right = -1; }

Tri Dao's avatar
Tri Dao committed
1234
    CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og);
1235
1236
    CHECK_SHAPE(kcache, batch_size_c, seqlen_k, num_heads_k, head_size_og);
    CHECK_SHAPE(vcache, batch_size_c, seqlen_k, num_heads_k, head_size_og);
Tri Dao's avatar
Tri Dao committed
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252

    at::Tensor q_padded, kcache_padded, vcache_padded;
    if (head_size_og % 8 != 0) {
        q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        kcache_padded = torch::nn::functional::pad(kcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        vcache_padded = torch::nn::functional::pad(vcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        q_padded = q;
        kcache_padded = kcache;
        vcache_padded = vcache;
    }

    at::Tensor out;
    if (out_.has_value()) {
        out = out_.value();
        TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
1253
        CHECK_DEVICE(out);
Tri Dao's avatar
Tri Dao committed
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
        TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
        CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size_og);
        if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
    } else {
        out = torch::empty_like(q_padded);
    }

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size = round_multiple(head_size_og, 8);
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(seqlen_k, 128);

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();

    auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));

    Flash_fwd_params params;
    set_params_fprop(params,
                     batch_size,
                     seqlen_q, seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q_padded, kcache_padded, vcache_padded, out,
                     /*cu_seqlens_q_d=*/nullptr,
                     /*cu_seqlens_k_d=*/nullptr,
1285
                     /*seqused_k=*/nullptr,
Tri Dao's avatar
Tri Dao committed
1286
1287
1288
1289
                     /*p_ptr=*/nullptr,
                     softmax_lse.data_ptr(),
                     /*p_dropout=*/0.f,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
1290
1291
                     window_size_left,
                     window_size_right);
Tri Dao's avatar
Tri Dao committed
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301

    at::Tensor k, v, k_padded, v_padded;
    if (k_.has_value()) {
        TORCH_CHECK(v_.has_value(), "If key is supplied, value must also be passed in");
        TORCH_CHECK(seqlens_k_.has_value(), "If key is supplied, seqlens_k must also be passed in");
        TORCH_CHECK(seqlen_q <= seqlen_k, "If key is supplied, it must have seqlen <= the seqlen of the KV cache");
        k = k_.value();
        v = v_.value();
        TORCH_CHECK(k.dtype() == q_dtype, "Key must have the same dtype as query");
        TORCH_CHECK(v.dtype() == q_dtype, "Value must have the same dtype as query");
1302
        CHECK_DEVICE(k); CHECK_DEVICE(v);
Tri Dao's avatar
Tri Dao committed
1303
1304
        TORCH_CHECK(k.stride(-1) == 1, "Key tensor must have contiguous last dimension");
        TORCH_CHECK(v.stride(-1) == 1, "Value tensor must have contiguous last dimension");
1305
1306
1307
        int seqlen_knew = k.size(1);
        CHECK_SHAPE(k, batch_size, seqlen_knew, num_heads_k, head_size_og);
        CHECK_SHAPE(v, batch_size, seqlen_knew, num_heads_k, head_size_og);
Tri Dao's avatar
Tri Dao committed
1308
1309
1310
1311
1312
1313
1314
        if (head_size_og % 8 != 0) {
            k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
            v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        } else {
            k_padded = k;
            v_padded = v;
        }
1315
        params.seqlen_knew = seqlen_knew;
Tri Dao's avatar
Tri Dao committed
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
        params.knew_ptr = k_padded.data_ptr();
        params.vnew_ptr = v_padded.data_ptr();
        // All stride are in elements, not bytes.
        params.knew_batch_stride = k_padded.stride(0);
        params.vnew_batch_stride = v_padded.stride(0);
        params.knew_row_stride = k_padded.stride(-3);
        params.vnew_row_stride = v_padded.stride(-3);
        params.knew_head_stride = k_padded.stride(-2);
        params.vnew_head_stride = v_padded.stride(-2);
    }

    if (seqlens_k_.has_value()) {
        auto seqlens_k = seqlens_k_.value();
        TORCH_CHECK(seqlens_k.dtype() == torch::kInt32, "seqlens_k must have dtype int32");
1330
1331
        CHECK_DEVICE(seqlens_k);
        CHECK_CONTIGUOUS(seqlens_k);
Tri Dao's avatar
Tri Dao committed
1332
1333
1334
1335
1336
        CHECK_SHAPE(seqlens_k, batch_size);
        params.cu_seqlens_k = static_cast<int *>(seqlens_k.data_ptr());
    }
    params.is_seqlens_k_cumulative = !(seqlens_k_.has_value());

1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
    if (rotary_cos_.has_value()) {
        TORCH_CHECK(k_.has_value(), "If rotary cos/sin are provided, new key / value to be appended to KV cache must also be provided");
        auto rotary_cos = rotary_cos_.value();
        CHECK_DEVICE(rotary_cos);
        params.rotary_dim = rotary_cos.size(1) * 2;
        TORCH_CHECK(params.rotary_dim <= head_size, "rotary_dim must be <= headdim");
        TORCH_CHECK(params.rotary_dim % 16 == 0, "Only rotary dimensions divisible by 16 are currently supported");
        const int seqlen_ro = rotary_cos.size(0);
        TORCH_CHECK(seqlen_ro >= seqlen_k, "cos/sin seqlen must be at least the seqlen of KV cache");
        CHECK_SHAPE(rotary_cos, seqlen_ro, params.rotary_dim / 2);
        CHECK_CONTIGUOUS(rotary_cos);
        TORCH_CHECK(rotary_cos.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query");

        TORCH_CHECK(rotary_sin_.has_value(), "If rotary cos is provided, rotary sin must also be provided");
        auto rotary_sin = rotary_sin_.value();
        CHECK_DEVICE(rotary_sin);
        CHECK_SHAPE(rotary_sin, seqlen_ro, params.rotary_dim / 2);
        CHECK_CONTIGUOUS(rotary_sin);
        TORCH_CHECK(rotary_sin.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query");
        params.rotary_cos_ptr = rotary_cos.data_ptr();
        params.rotary_sin_ptr = rotary_sin.data_ptr();
        params.is_rotary_interleaved = is_rotary_interleaved;
    } else {
        params.rotary_dim = 0;
    }

1363
1364
1365
1366
1367
1368
1369
    if (cache_batch_idx_.has_value()) {
        auto cache_batch_idx = cache_batch_idx_.value();
        CHECK_DEVICE(cache_batch_idx);
        CHECK_CONTIGUOUS(cache_batch_idx);
        TORCH_CHECK(cache_batch_idx.scalar_type() == torch::kInt32, "cache_batch_idx must have dtype int32");
        params.cache_batch_idx = reinterpret_cast<int *>(cache_batch_idx.data_ptr());
    }
Tri Dao's avatar
Tri Dao committed
1370
    // This needs to match with run_mha_fwd_splitkv_dispatch
1371
1372
    const int block_n = head_size <= 64 ? 256 : (head_size <= 128 ? 128 : 64);
    const int num_n_blocks = (seqlen_k + block_n - 1) / block_n;
Tri Dao's avatar
Tri Dao committed
1373
1374
1375
1376
1377
1378
1379
    // Technically kBlockM = 64 only for the splitKV kernels, not the standard kernel.
    // In any case we don't expect seqlen_q to be larger than 64 for inference.
    const int num_m_blocks = (seqlen_q + 64 - 1) / 64;
    params.num_splits = num_splits;
    if (num_splits < 1) {
        params.num_splits = num_splits_heuristic(batch_size * num_heads * num_m_blocks, dprops->multiProcessorCount, num_n_blocks, 128);
    }
1380
    TORCH_CHECK(params.num_splits <= 128, "num_splits > 128 not supported");
Tri Dao's avatar
Tri Dao committed
1381
1382
1383
1384
1385
1386
1387
    if (params.num_splits > 1) {
        at::Tensor softmax_lse_accum = torch::empty({params.num_splits, batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
        at::Tensor out_accum = torch::empty({params.num_splits, batch_size, num_heads, seqlen_q, head_size_rounded}, opts.dtype(at::kFloat));
        params.softmax_lseaccum_ptr = softmax_lse_accum.data_ptr();
        params.oaccum_ptr = out_accum.data_ptr();
    }

1388
1389
1390
1391
1392
    if (alibi_slopes_.has_value()) {
        auto alibi_slopes = alibi_slopes_.value();
        TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
        CHECK_DEVICE(alibi_slopes);
        TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
1393
        TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({num_heads}) || alibi_slopes.sizes() == torch::IntArrayRef({batch_size, num_heads}));
1394
        params.alibi_slopes_ptr = alibi_slopes.data_ptr();
1395
        params.alibi_slopes_batch_stride = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0;
1396
    } else {
1397
        params.alibi_slopes_ptr = nullptr;
1398
1399
    }

Tri Dao's avatar
Tri Dao committed
1400
    auto stream = at::cuda::getCurrentCUDAStream().stream();
1401
1402
    // Only split kernel supports appending to KV cache, or indexing to the cache with cache_batch_idx
    run_mha_fwd(params, stream, /*force_split_kernel=*/k_.has_value() || cache_batch_idx_.has_value());
Tri Dao's avatar
Tri Dao committed
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414

    if (head_size_og % 8 != 0) {
        out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        if (out_.has_value()) { out_.value().copy_(out); }
        if (k_.has_value()) {
            // It's expensive to copy the KV cache here for the case where head size not divisible by 8,
            // but we don't expect to get this case in practice. This is just so that the code works for that case.
            kcache.copy_(kcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}));
            vcache.copy_(vcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}));
        }
    }

1415
1416
1417
    if (seqlenq_ngroups_swapped) {
        out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
        softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1});
1418
    }
Tri Dao's avatar
Tri Dao committed
1419
1420
1421
    return {out, softmax_lse};
}

Tri Dao's avatar
Tri Dao committed
1422
1423
1424
1425
1426
1427
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.doc() = "FlashAttention";
    m.def("fwd", &mha_fwd, "Forward pass");
    m.def("varlen_fwd", &mha_varlen_fwd, "Forward pass (variable length)");
    m.def("bwd", &mha_bwd, "Backward pass");
    m.def("varlen_bwd", &mha_varlen_bwd, "Backward pass (variable length)");
Tri Dao's avatar
Tri Dao committed
1428
    m.def("fwd_kvcache", &mha_fwd_kvcache, "Forward pass, with KV-cache");
Tri Dao's avatar
Tri Dao committed
1429
}