flash_fwd_kernel.h 18.6 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/******************************************************************************
 * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
 ******************************************************************************/

#pragma once

#include "cute/tensor.hpp"

#include <cutlass/cutlass.h>
#include <cutlass/arch/reg_reconfig.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include "cutlass/pipeline/pipeline.hpp"

#include "flash.h"
#include "utils.h"
#include "softmax.h"
#include "tile_scheduler.hpp"
#include "mainloop_fwd_sm90_tma_gmma_ws.hpp"
#include "epilogue_fwd_sm90_tma.hpp"

namespace flash {

using namespace cute;

27
template <typename Ktraits, bool Is_causal, typename TileScheduler, typename Seqlen_traits>
Tri Dao's avatar
Tri Dao committed
28
__global__ void __launch_bounds__(Ktraits::kNWarps * cutlass::NumThreadsPerWarp, 1)
29
30
31
32
    compute_attn_ws(CUTE_GRID_CONSTANT typename CollectiveMainloopFwd<Ktraits, Is_causal, Seqlen_traits>::Params const mainloop_params,
                    CUTE_GRID_CONSTANT typename CollectiveEpilogueFwd<Ktraits, Seqlen_traits>::Params const epilogue_params,
                    CUTE_GRID_CONSTANT typename TileScheduler::Params const scheduler_params,
                    Seqlen_traits seqlen_traits_q, Seqlen_traits seqlen_traits_k
Tri Dao's avatar
Tri Dao committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
                    ) {

    using Element = typename Ktraits::Element;
    using ElementAccum = typename Ktraits::ElementAccum;
    using SoftType = ElementAccum;
    using TileShape_MNK = typename Ktraits::TileShape_MNK;
    using ClusterShape = typename Ktraits::ClusterShape_MNK;

    static_assert(Ktraits::Is_WS);
    static constexpr bool Is_WS = Ktraits::Is_WS;

    static constexpr int NumMmaThreads = size(typename Ktraits::TiledMma0{});
    static constexpr int NumCopyThreads = !Is_WS ? 0 : cutlass::NumThreadsPerWarpGroup;
    static constexpr int kBlockM = Ktraits::kBlockM;
    // static constexpr int kBlockN = Ktraits::kBlockN;
    // constexpr int kHeadDim = Ktraits::kHeadDim;

50
51
    using CollectiveMainloop = CollectiveMainloopFwd<Ktraits, Is_causal, Seqlen_traits>;
    using CollectiveEpilogue = CollectiveEpilogueFwd<Ktraits, Seqlen_traits>;
Tri Dao's avatar
Tri Dao committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

    using MainloopPipeline = typename Ktraits::MainloopPipeline;
    using PipelineParams = typename MainloopPipeline::Params;
    using PipelineState = typename MainloopPipeline::PipelineState;

    extern __shared__ char shared_memory[];
    auto &shared_storage = *reinterpret_cast<typename Ktraits::SharedStorage*>(shared_memory);

    int const lane_predicate = cute::elect_one_sync();
    int const warp_idx = cutlass::canonical_warp_idx_sync();

    // Issue Tma Descriptor Prefetch from a single thread
    if (warp_idx == 0 && lane_predicate) {
        CollectiveMainloop::prefetch_tma_descriptors(mainloop_params);
        CollectiveEpilogue::prefetch_tma_descriptors(epilogue_params);
    }

    // Obtain warp index
    int const warp_group_thread_idx = threadIdx.x % cutlass::NumThreadsPerWarpGroup;

    PipelineParams pipeline_params;
    pipeline_params.transaction_bytes = CollectiveMainloop::TmaTransactionBytesK;
    int warp_group_idx = cutlass::canonical_warp_group_idx();
    pipeline_params.role = warp_group_idx == 0
        ? MainloopPipeline::ThreadCategory::Producer
        : MainloopPipeline::ThreadCategory::Consumer;
    pipeline_params.is_leader = warp_group_thread_idx == 0;
    pipeline_params.num_consumers = NumMmaThreads;

    if (warp_idx == 0 && lane_predicate) {
        shared_storage.barrier_Q.init(1 /*numThreads*/);
        shared_storage.barrier_O.init(size(ClusterShape{}) /*numThreads*/);
    }
    // We're counting on pipeline_k to call cutlass::arch::fence_barrier_init();
    MainloopPipeline pipeline_k(shared_storage.pipeline_k, pipeline_params, ClusterShape{});
    MainloopPipeline pipeline_v(shared_storage.pipeline_v, pipeline_params, ClusterShape{});

    CollectiveMainloop collective_mainloop;
    CollectiveEpilogue collective_epilogue;

    // We need this to guarantee that the Pipeline init is visible to all producers and consumer blocks in the Cluster
    if constexpr (size(ClusterShape{}) > 1) {
        cute::cluster_arrive_relaxed();
        cute::cluster_wait();
    } else {
        __syncthreads();
    }

    static_assert(Ktraits::kNWarps == 12 || Ktraits::kNWarps == 16);
    if (warp_group_idx == 0) {  // Producer
        cutlass::arch::warpgroup_reg_dealloc<Ktraits::kNWarps == 12 ? 24 : 32>();
        // cutlass::arch::warpgroup_reg_dealloc<56>();

        int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
        if (warp_idx_in_warpgroup == 0) {  // Load Q, K, V
            PipelineState smem_pipe_write_k = cutlass::make_producer_start_state<MainloopPipeline>();
            PipelineState smem_pipe_write_v = cutlass::make_producer_start_state<MainloopPipeline>();

            int work_idx = 0;

Tri Dao's avatar
Tri Dao committed
112
113
114
115
116
117
118
            TileScheduler scheduler(&shared_storage.tile_count_semaphore);
            for (auto work_tile_info = scheduler.get_initial_work();
                 work_tile_info.is_valid(scheduler_params);
                 work_tile_info = scheduler.template get_next_work</*IsProducer=*/true>(scheduler_params, work_tile_info)) {
                auto block_coord = work_tile_info.get_block_coord(scheduler_params);
                auto [m_block, bidh, bidb] = block_coord;

119
120
121
122
123
124
125
                seqlen_traits_q.init(bidb);
                seqlen_traits_k.init(bidb);
                if (m_block * kBlockM >= seqlen_traits_q.actual_seq_len) {
                    continue;
                }
                int n_block_max = collective_mainloop.get_n_block_max(
                    mainloop_params, m_block, seqlen_traits_q, seqlen_traits_k);
Tri Dao's avatar
Tri Dao committed
126
127
128
129
130
131
                if (Is_causal && n_block_max <= 0) {
                    scheduler.prefetch_next_work(scheduler_params, work_tile_info);
                    scheduler.broadcast_next_work(work_tile_info);
                    continue;
                }
                collective_mainloop.load(mainloop_params, pipeline_k, pipeline_v, smem_pipe_write_k, smem_pipe_write_v,
132
133
                                         shared_storage, scheduler, scheduler_params, work_tile_info, block_coord, work_idx,
                                         seqlen_traits_q, seqlen_traits_k);
Tri Dao's avatar
Tri Dao committed
134
                ++work_idx;
Tri Dao's avatar
Tri Dao committed
135
136
137
138
139
140
141
            }
            collective_mainloop.load_tail(pipeline_k, pipeline_v, smem_pipe_write_k, smem_pipe_write_v);
        }
    } else {  // Consumer
        cutlass::arch::warpgroup_reg_alloc<Ktraits::kNWarps == 12 ? 240 : 160>();
        // cutlass::arch::warpgroup_reg_alloc<Ktraits::kNWarps == 12 ? 224 : 160>();

Tri Dao's avatar
Tri Dao committed
142
        TileScheduler scheduler(&shared_storage.tile_count_semaphore);
Tri Dao's avatar
Tri Dao committed
143
144
145
146
        // Initialize matmul objects.
        typename Ktraits::TiledMma1 tiled_mma1;

        PipelineState smem_pipe_read_k, smem_pipe_read_v;
Tri Dao's avatar
Tri Dao committed
147
        // We don't need separate variables smem_pipe_release_k and smem_pipe_release_v
Tri Dao's avatar
Tri Dao committed
148
149
150
        // (like in Cutlass's gemm) because the read and release pipeline states are always the same.

        collective_mainloop.mma_init();
Tri Dao's avatar
Tri Dao committed
151
        scheduler.init_consumer();
Tri Dao's avatar
Tri Dao committed
152
153
154

        int work_idx = 0;
        CUTLASS_PRAGMA_NO_UNROLL
Tri Dao's avatar
Tri Dao committed
155
156
157
        for (auto work_tile_info = scheduler.get_initial_work();
             work_tile_info.is_valid(scheduler_params);
             work_tile_info = scheduler.template get_next_work</*IsProducer=*/false>(scheduler_params, work_tile_info)) {
Tri Dao's avatar
Tri Dao committed
158
159
160
161
162
163
164
            // Attention output (GEMM-II) accumulator.
            Tensor tOrO = partition_fragment_C(tiled_mma1, select<0, 2>(TileShape_MNK{}));
            flash::Softmax<2 * (2 * kBlockM / NumMmaThreads)> softmax;

            auto block_coord = work_tile_info.get_block_coord(scheduler_params);
            auto [m_block, bidh, bidb] = block_coord;

165
166
167
168
169
170
171
            seqlen_traits_q.init(bidb);
            seqlen_traits_k.init(bidb);
            if (m_block * kBlockM >= seqlen_traits_q.actual_seq_len) {
                continue;
            }
            int n_block_max = collective_mainloop.get_n_block_max(
                mainloop_params, m_block, seqlen_traits_q, seqlen_traits_k);
Tri Dao's avatar
Tri Dao committed
172
            if (Is_causal && n_block_max <= 0) {  // We exit early and write 0 to gO and -inf to gLSE.
173
                collective_epilogue.store_zero(epilogue_params, shared_storage, threadIdx.x - NumCopyThreads, block_coord, seqlen_traits_q);
Tri Dao's avatar
Tri Dao committed
174
175
176
177
                continue;
            }

            collective_mainloop.mma(mainloop_params, pipeline_k, pipeline_v, smem_pipe_read_k, smem_pipe_read_v,
178
179
                                    tOrO, softmax, n_block_max, threadIdx.x - NumCopyThreads, work_idx, m_block, shared_storage,
                                    seqlen_traits_q, seqlen_traits_k);
Tri Dao's avatar
Tri Dao committed
180
181
                                    // tOrO, softmax, n_block_max, threadIdx.x - NumCopyThreads + (work_idx >> 30), work_idx, shared_storage);
            collective_epilogue.store(epilogue_params, tOrO, softmax.row_sum, shared_storage, tiled_mma1,
182
                                      threadIdx.x - NumCopyThreads, block_coord, seqlen_traits_q);
Tri Dao's avatar
Tri Dao committed
183
184
185
186
187

            ++work_idx;
        }
        collective_epilogue.store_tail();
    }
Tri Dao's avatar
Tri Dao committed
188

Tri Dao's avatar
Tri Dao committed
189
190
}

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
template <typename Ktraits, bool Is_causal, typename TileScheduler, typename Seqlen_traits>
__global__ void __launch_bounds__(Ktraits::kNWarps * cutlass::NumThreadsPerWarp, 1)
    compute_attn_ws_fp8(CUTE_GRID_CONSTANT typename CollectiveMainloopFwd<Ktraits, Is_causal, Seqlen_traits>::Params const mainloop_params,
                        CUTE_GRID_CONSTANT typename CollectiveEpilogueFwd<Ktraits, Seqlen_traits>::Params const epilogue_params,
                        CUTE_GRID_CONSTANT typename TileScheduler::Params const scheduler_params,
                        Seqlen_traits seqlen_traits_q, Seqlen_traits seqlen_traits_k
                        ) {

    using Element = typename Ktraits::Element;
    static_assert(cutlass::sizeof_bits_v<Element> == 8);
    using ElementAccum = typename Ktraits::ElementAccum;
    using SoftType = ElementAccum;
    using TileShape_MNK = typename Ktraits::TileShape_MNK;
    using ClusterShape = typename Ktraits::ClusterShape_MNK;

    static_assert(Ktraits::Is_WS);
    static constexpr bool Is_WS = Ktraits::Is_WS;
    static constexpr bool kUseVarSeqLen = Seqlen_traits::kUseVarSeqLen;

    static constexpr int NumMmaThreads = size(typename Ktraits::TiledMma0{});
    static constexpr int NumCopyThreads = !Is_WS ? 0 : cutlass::NumThreadsPerWarpGroup;
    static constexpr int kBlockM = Ktraits::kBlockM;
    // static constexpr int kBlockN = Ktraits::kBlockN;
    // static constexpr int kHeadDim = Ktraits::kHeadDim;
    static constexpr bool Delay_V_release = Is_causal && Ktraits::kHeadDim == 128;  
    // for now, disable for hdim 128 causal to avoid perf regression with register spilling
    static constexpr bool Use_max_offset = !(Is_causal && Ktraits::kHeadDim == 128);    

    using CollectiveMainloop = CollectiveMainloopFwd<Ktraits, Is_causal, Seqlen_traits>;
    using CollectiveEpilogue = CollectiveEpilogueFwd<Ktraits, Seqlen_traits>;

    using MainloopPipeline = typename Ktraits::MainloopPipeline;
    using MainloopPipelineVt = typename Ktraits::MainloopPipelineNoTMA;
    using PipelineParams = typename MainloopPipeline::Params;
    using PipelineParamsVt = typename MainloopPipelineVt::Params;
    using PipelineState = typename MainloopPipeline::PipelineState;

    extern __shared__ char shared_memory[];
    auto &shared_storage = *reinterpret_cast<typename Ktraits::SharedStorage*>(shared_memory);

    int const lane_predicate = cute::elect_one_sync();
    int const warp_idx = cutlass::canonical_warp_idx_sync();

    // Issue Tma Descriptor Prefetch from a single thread
    if (warp_idx == 0 && lane_predicate) {
        CollectiveMainloop::prefetch_tma_descriptors(mainloop_params);
        CollectiveEpilogue::prefetch_tma_descriptors(epilogue_params);
    }

    // Obtain warp index
    int const warp_group_thread_idx = threadIdx.x % cutlass::NumThreadsPerWarpGroup;

    // additional pipeline to synchronize out-of-place smem transpose of V
    PipelineParamsVt pipeline_params_vt;
    pipeline_params_vt.producer_arv_count = NumCopyThreads;
    pipeline_params_vt.consumer_arv_count = NumMmaThreads;
    MainloopPipelineVt pipeline_vt(shared_storage.pipeline_vt, pipeline_params_vt);
    
    PipelineParams pipeline_params;
    pipeline_params.transaction_bytes = CollectiveMainloop::TmaTransactionBytesK;
    int warp_group_idx = cutlass::canonical_warp_group_idx();
    pipeline_params.role = warp_group_idx == 0
        ? MainloopPipeline::ThreadCategory::Producer
        : MainloopPipeline::ThreadCategory::Consumer;
    pipeline_params.is_leader = warp_group_thread_idx == 0;
    pipeline_params.num_consumers = NumMmaThreads;

    if (warp_idx == 0 && lane_predicate) {
        shared_storage.barrier_Q.init(1 /*numThreads*/);
        shared_storage.barrier_O.init(size(ClusterShape{}) /*numThreads*/);
    }
    // We're counting on pipeline_k to call cutlass::arch::fence_barrier_init();
    MainloopPipeline pipeline_k(shared_storage.pipeline_k, pipeline_params, ClusterShape{});
    // pipeline_v has producer warpgroup for its consumer in fp8 kernel
    pipeline_params.num_consumers = NumCopyThreads;
    pipeline_params.role = MainloopPipeline::ThreadCategory::ProducerConsumer;
    MainloopPipeline pipeline_v(shared_storage.pipeline_v, pipeline_params, ClusterShape{});

    CollectiveMainloop collective_mainloop;
    CollectiveEpilogue collective_epilogue;

    // We need this to guarantee that the Pipeline init is visible to all producers and consumer blocks in the Cluster
    if constexpr (size(ClusterShape{}) > 1) {
        cute::cluster_arrive_relaxed();
        cute::cluster_wait();
    } else {
        __syncthreads();
    }

    static_assert(Ktraits::kNWarps == 12 || Ktraits::kNWarps == 16);
    if (warp_group_idx == 0) {  // Producer
        cutlass::arch::warpgroup_reg_dealloc<Ktraits::kNWarps == 12 ? 40 : 32>();
        
        PipelineState smem_pipe_write = cutlass::make_producer_start_state<MainloopPipeline>(); 
        PipelineState smem_pipe_read, smem_pipe_release;

        int work_idx = 0;

        TileScheduler scheduler(&shared_storage.tile_count_semaphore);
        for (auto work_tile_info = scheduler.get_initial_work();
                work_tile_info.is_valid(scheduler_params);
                work_tile_info = scheduler.template get_next_work</*IsProducer=*/true>(scheduler_params, work_tile_info)) {
            auto block_coord = work_tile_info.get_block_coord(scheduler_params);
            auto [m_block, bidh, bidb] = block_coord;

            if constexpr(kUseVarSeqLen) {
                seqlen_traits_q.init(bidb);
                seqlen_traits_k.init(bidb);
                if (m_block * kBlockM >= seqlen_traits_q.actual_seq_len) {
                    continue;
                }
            }
            int n_block_max = collective_mainloop.get_n_block_max(
                mainloop_params, m_block, seqlen_traits_q, seqlen_traits_k);
            if constexpr(Is_causal) {
                if(n_block_max <= 0) {
                    scheduler.prefetch_next_work(scheduler_params, work_tile_info);
                    scheduler.broadcast_next_work(work_tile_info);
                    // need to sync producer warpgroup
                    cutlass::arch::NamedBarrier::sync(NumCopyThreads, static_cast<int>(FwdNamedBarriers::ProducerWG) /*id*/);
                    continue;
                }
            }
            collective_mainloop.load_fp8(
                mainloop_params, pipeline_k, pipeline_v, pipeline_vt,
                smem_pipe_write, smem_pipe_read, shared_storage,
                scheduler, scheduler_params, work_tile_info, block_coord, work_idx,
                seqlen_traits_q, seqlen_traits_k);
            ++work_idx;
            // don't need to sync producer warpgroup here
            // if constexpr (Is_causal) {
            //     cutlass::arch::NamedBarrier::sync(NumCopyThreads, static_cast<int>(FwdNamedBarriers::ProducerWG) /*id*/); }
        }
        collective_mainloop.load_tail_one_write(pipeline_k, pipeline_v, smem_pipe_write);
    } else {  // Consumer
        cutlass::arch::warpgroup_reg_alloc<Ktraits::kNWarps == 12 ? 232 : 160>();        

        TileScheduler scheduler(&shared_storage.tile_count_semaphore);
        // Initialize matmul objects.
        typename Ktraits::TiledMma1 tiled_mma1;
        PipelineState smem_pipe_read;
        PipelineState smem_pipe_release;

        collective_mainloop.mma_init();
        scheduler.init_consumer();

        int work_idx = 0;
        CUTLASS_PRAGMA_NO_UNROLL
        for (auto work_tile_info = scheduler.get_initial_work();
             work_tile_info.is_valid(scheduler_params);
             work_tile_info = scheduler.template get_next_work</*IsProducer=*/false>(scheduler_params, work_tile_info)) {
            // Attention output (GEMM-II) accumulator.
            Tensor tOrO = partition_fragment_C(tiled_mma1, select<0, 2>(TileShape_MNK{}));
            flash::Softmax<2 * (2 * kBlockM / NumMmaThreads), Use_max_offset> softmax;

            auto block_coord = work_tile_info.get_block_coord(scheduler_params);
            auto [m_block, bidh, bidb] = block_coord;

            if constexpr(kUseVarSeqLen) {
                seqlen_traits_q.init(bidb);
                seqlen_traits_k.init(bidb);
                if (m_block * kBlockM >= seqlen_traits_q.actual_seq_len) {
                    continue;
                }
            }
            int n_block_max = collective_mainloop.get_n_block_max(
                mainloop_params, m_block, seqlen_traits_q, seqlen_traits_k);
            if constexpr(Is_causal) {
                if(n_block_max <= 0) {  // We exit early and write 0 to gO and -inf to gLSE.
                    collective_epilogue.store_zero(epilogue_params, shared_storage, threadIdx.x - NumCopyThreads, block_coord, seqlen_traits_q);
                    continue;
                }
            }
            
            collective_mainloop.mma_fp8<Delay_V_release>(
                mainloop_params, pipeline_k, pipeline_vt, smem_pipe_read, smem_pipe_release,
                tOrO, softmax, n_block_max,
                threadIdx.x - NumCopyThreads, work_idx, m_block,
                shared_storage, seqlen_traits_q, seqlen_traits_k); 

        #ifndef NO_FP8_COLUMN_PERMUTE
            collective_epilogue.store_fp8(epilogue_params, tOrO, softmax.row_sum, shared_storage, tiled_mma1,
                                      threadIdx.x - NumCopyThreads, block_coord, seqlen_traits_q);
        #else
            collective_epilogue.store(epilogue_params, tOrO, softmax.row_sum, shared_storage, tiled_mma1,
                                      threadIdx.x - NumCopyThreads, block_coord, seqlen_traits_q);
        #endif
            ++work_idx;
        }
        collective_epilogue.store_tail();
    }

}

Tri Dao's avatar
Tri Dao committed
385
} // namespace flash