flash_api.cpp 71.4 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
/******************************************************************************
2
 * Copyright (c) 2024, Tri Dao.
Tri Dao's avatar
Tri Dao committed
3
4
 ******************************************************************************/

Tri Dao's avatar
Tri Dao committed
5
6
7
// Include these 2 headers instead of torch/extension.h since we don't need all of the torch headers.
#include <torch/python.h>
#include <torch/nn/functional.h>
Tri Dao's avatar
Tri Dao committed
8
9
10
11
12
13
14
15
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>

#include <cutlass/numeric_types.h>

#include "flash.h"
#include "static_switch.h"

16
#define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA")
Tri Dao's avatar
Tri Dao committed
17
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
18
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
Tri Dao's avatar
Tri Dao committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38


void set_params_fprop(Flash_fwd_params &params,
                      // sizes
                      const size_t b,
                      const size_t seqlen_q,
                      const size_t seqlen_k,
                      const size_t seqlen_q_rounded,
                      const size_t seqlen_k_rounded,
                      const size_t h,
                      const size_t h_k,
                      const size_t d,
                      const size_t d_rounded,
                      // device pointers
                      const at::Tensor q,
                      const at::Tensor k,
                      const at::Tensor v,
                      at::Tensor out,
                      void *cu_seqlens_q_d,
                      void *cu_seqlens_k_d,
39
                      void *seqused_k,
Tri Dao's avatar
Tri Dao committed
40
41
42
43
                      void *p_d,
                      void *softmax_lse_d,
                      float p_dropout,
                      float softmax_scale,
Tri Dao's avatar
Tri Dao committed
44
                      int window_size_left,
45
                      int window_size_right,
46
47
                      bool seqlenq_ngroups_swapped=false,
                      const bool unpadded_lse=false) {
Tri Dao's avatar
Tri Dao committed
48
49

    // Reset the parameters
50
    params = {};
Tri Dao's avatar
Tri Dao committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

    params.is_bf16 = q.dtype() == torch::kBFloat16;

    // Set the pointers and strides.
    params.q_ptr = q.data_ptr();
    params.k_ptr = k.data_ptr();
    params.v_ptr = v.data_ptr();
    // All stride are in elements, not bytes.
    params.q_row_stride = q.stride(-3);
    params.k_row_stride = k.stride(-3);
    params.v_row_stride = v.stride(-3);
    params.q_head_stride = q.stride(-2);
    params.k_head_stride = k.stride(-2);
    params.v_head_stride = v.stride(-2);
    params.o_ptr = out.data_ptr();
    params.o_row_stride = out.stride(-3);
    params.o_head_stride = out.stride(-2);

    if (cu_seqlens_q_d == nullptr) {
        params.q_batch_stride = q.stride(0);
        params.k_batch_stride = k.stride(0);
        params.v_batch_stride = v.stride(0);
        params.o_batch_stride = out.stride(0);
74
75
76
77
        if (seqlenq_ngroups_swapped) {
             params.q_batch_stride *= seqlen_q;
             params.o_batch_stride *= seqlen_q;
        }
Tri Dao's avatar
Tri Dao committed
78
79
80
81
    }

    params.cu_seqlens_q = static_cast<int *>(cu_seqlens_q_d);
    params.cu_seqlens_k = static_cast<int *>(cu_seqlens_k_d);
82
    params.seqused_k = static_cast<int *>(seqused_k);
Tri Dao's avatar
Tri Dao committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

    // P = softmax(QK^T)
    params.p_ptr = p_d;

    // Softmax sum
    params.softmax_lse_ptr = softmax_lse_d;

    // Set the dimensions.
    params.b = b;
    params.h = h;
    params.h_k = h_k;
    params.h_h_k_ratio = h / h_k;
    params.seqlen_q = seqlen_q;
    params.seqlen_k = seqlen_k;
    params.seqlen_q_rounded = seqlen_q_rounded;
    params.seqlen_k_rounded = seqlen_k_rounded;
    params.d = d;
    params.d_rounded = d_rounded;

    // Set the different scale values.
    params.scale_softmax = softmax_scale;
    params.scale_softmax_log2 = softmax_scale * M_LOG2E;

    // Set this to probability of keeping an element to simplify things.
    params.p_dropout = 1.f - p_dropout;
    // Convert p from float to int so we don't have to convert the random uint to float to compare.
    // [Minor] We want to round down since when we do the comparison we use <= instead of <
    // params.p_dropout_in_uint = uint32_t(std::floor(params.p_dropout * 4294967295.0));
    // params.p_dropout_in_uint16_t = uint16_t(std::floor(params.p_dropout * 65535.0));
    params.p_dropout_in_uint8_t = uint8_t(std::floor(params.p_dropout * 255.0));
    params.rp_dropout = 1.f / params.p_dropout;
    params.scale_softmax_rp_dropout = params.rp_dropout * params.scale_softmax;
    TORCH_CHECK(p_dropout < 1.f);
116
117
118
    #ifdef FLASHATTENTION_DISABLE_DROPOUT
        TORCH_CHECK(p_dropout == 0.0f, "This flash attention build does not support dropout.");
    #endif
Tri Dao's avatar
Tri Dao committed
119

Tri Dao's avatar
Tri Dao committed
120
121
122
123
124
125
126
127
128
    // Causal is the special case where window_size_right == 0 and window_size_left < 0.
    // Local is the more general case where window_size_right >= 0 or window_size_left >= 0.
    params.is_causal = window_size_left < 0 && window_size_right == 0;

    if (window_size_left < 0 && window_size_right >= 0) { window_size_left = seqlen_k; }
    if (window_size_left >= 0 && window_size_right < 0) { window_size_right = seqlen_k; }
    params.window_size_left = window_size_left;
    params.window_size_right = window_size_right;

129
130
131
132
133
    #ifdef FLASHATTENTION_DISABLE_LOCAL
        TORCH_CHECK(params.is_causal || (window_size_left < 0 && window_size_right < 0),
            "This flash attention build does not support local attention.");
    #endif

Tri Dao's avatar
Tri Dao committed
134
    params.is_seqlens_k_cumulative = true;
135
136
137
138

    #ifdef FLASHATTENTION_DISABLE_UNEVEN_K
        TORCH_CHECK(d == d_rounded, "This flash attention build does not support headdim not being a multiple of 32.");
    #endif
139
140
141

    params.unpadded_lse = unpadded_lse;
    params.seqlenq_ngroups_swapped = seqlenq_ngroups_swapped;
Tri Dao's avatar
Tri Dao committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
}

void set_params_dgrad(Flash_bwd_params &params,
                      // sizes
                      const size_t b,
                      const size_t seqlen_q,
                      const size_t seqlen_k,
                      const size_t seqlen_q_rounded,
                      const size_t seqlen_k_rounded,
                      const size_t h,
                      const size_t h_k,
                      const size_t d,
                      const size_t d_rounded,
                      // device pointers
                      const at::Tensor q,
                      const at::Tensor k,
                      const at::Tensor v,
                      const at::Tensor out,
                      const at::Tensor dout,
                      at::Tensor dq,
                      at::Tensor dk,
                      at::Tensor dv,
                      void *cu_seqlens_q_d,
                      void *cu_seqlens_k_d,
                      void *dq_accum_d,
                      void *dk_accum_d,
                      void *dv_accum_d,
                      void *softmax_lse_d,
                      void *dsoftmax_sum_d,
                      float p_dropout,
                      float softmax_scale,
Tri Dao's avatar
Tri Dao committed
173
                      int window_size_left,
174
                      int window_size_right,
175
176
                      bool deterministic,
                      const bool unpadded_lse) {
Tri Dao's avatar
Tri Dao committed
177
178
179
180
181
182
183

    set_params_fprop(params,
                     b, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, h, h_k, d, d_rounded,
                     q, k, v, out,
                     cu_seqlens_q_d,
                     cu_seqlens_k_d,
                     nullptr,
184
                     nullptr,
Tri Dao's avatar
Tri Dao committed
185
186
187
                     softmax_lse_d,
                     p_dropout,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
188
                     window_size_left,
189
190
191
                     window_size_right,
                     false, // seqlenq_ngroups_swapped
                     unpadded_lse);
Tri Dao's avatar
Tri Dao committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

    // Set the pointers and strides.
    params.do_ptr = dout.data_ptr();
    params.do_row_stride = dout.stride(-3);
    params.do_head_stride = dout.stride(-2);
    params.dq_ptr = dq.data_ptr();
    params.dk_ptr = dk.data_ptr();
    params.dv_ptr = dv.data_ptr();
    params.dq_row_stride = dq.stride(-3);
    params.dk_row_stride = dk.stride(-3);
    params.dv_row_stride = dv.stride(-3);
    params.dq_head_stride = dq.stride(-2);
    params.dk_head_stride = dk.stride(-2);
    params.dv_head_stride = dv.stride(-2);

    if (cu_seqlens_q_d == nullptr) {
        params.do_batch_stride = dout.stride(0);
        params.dq_batch_stride = dq.stride(0);
        params.dk_batch_stride = dk.stride(0);
        params.dv_batch_stride = dv.stride(0);
    }

    params.dq_accum_ptr = dq_accum_d;
    params.dk_accum_ptr = dk_accum_d;
    params.dv_accum_ptr = dv_accum_d;

    // Softmax sum
    params.dsoftmax_sum = dsoftmax_sum_d;
220
221

    params.deterministic = deterministic;
Tri Dao's avatar
Tri Dao committed
222
223
}

Tri Dao's avatar
Tri Dao committed
224
void run_mha_fwd(Flash_fwd_params &params, cudaStream_t stream, bool force_split_kernel=false) {
Tri Dao's avatar
Tri Dao committed
225
    FP16_SWITCH(!params.is_bf16, [&] {
226
        HEADDIM_SWITCH(params.d, [&] {
Tri Dao's avatar
Tri Dao committed
227
            if (params.num_splits <= 1 && !force_split_kernel) {  // If we don't set it num_splits == 0
Tri Dao's avatar
Tri Dao committed
228
229
230
231
                run_mha_fwd_<elem_type, kHeadDim>(params, stream);
            } else {
                run_mha_fwd_splitkv_dispatch<elem_type, kHeadDim>(params, stream);
            }
Tri Dao's avatar
Tri Dao committed
232
233
234
235
        });
    });
}

Tri Dao's avatar
Tri Dao committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
// Find the number of splits that maximizes the occupancy. For example, if we have
// batch * n_heads = 48 and we have 108 SMs, having 2 splits (efficiency = 0.89) is
// better than having 3 splits (efficiency = 0.67). However, we also don't want too many
// splits as that would incur more HBM reads/writes.
// So we find the best efficiency, then find the smallest number of splits that gets 85%
// of the best efficiency.
inline int num_splits_heuristic(int batch_nheads_mblocks, int num_SMs, int num_n_blocks, int max_splits) {
    // If we have enough to almost fill the SMs, then just use 1 split
    if (batch_nheads_mblocks >= 0.8f * num_SMs) { return 1; }
    max_splits = std::min({max_splits, num_SMs, num_n_blocks});
    float max_efficiency = 0.f;
    std::vector<float> efficiency;
    efficiency.reserve(max_splits);
    auto ceildiv = [](int a, int b) { return (a + b - 1) / b; };
    // Some splits are not eligible. For example, if we have 64 blocks and choose 11 splits,
    // we'll have 6 * 10 + 4 blocks. If we choose 12 splits, we'll have 6 * 11 + (-2) blocks
    // (i.e. it's 11 splits anyway).
    // So we check if the number of blocks per split is the same as the previous num_splits.
    auto is_split_eligible = [&ceildiv, &num_n_blocks](int num_splits) {
        return num_splits == 1 || ceildiv(num_n_blocks, num_splits) != ceildiv(num_n_blocks, num_splits - 1);
    };
    for (int num_splits = 1; num_splits <= max_splits; num_splits++) {
        if (!is_split_eligible(num_splits)) {
            efficiency.push_back(0.f);
        } else {
            float n_waves = float(batch_nheads_mblocks * num_splits) / num_SMs;
            float eff = n_waves / ceil(n_waves);
            // printf("num_splits = %d, eff = %f\n", num_splits, eff);
            if (eff > max_efficiency) { max_efficiency = eff; }
            efficiency.push_back(eff);
        }
    }
    for (int num_splits = 1; num_splits <= max_splits; num_splits++) {
        if (!is_split_eligible(num_splits)) { continue; }
        if (efficiency[num_splits - 1] >= 0.85 * max_efficiency) {
            // printf("num_splits chosen = %d\n", num_splits);
            return num_splits;
        }
    }
    return 1;
}

278
void set_params_splitkv(Flash_fwd_params &params, const int batch_size,
Tri Dao's avatar
Tri Dao committed
279
280
281
    const int num_heads, const int head_size, const int max_seqlen_k, const int max_seqlen_q,
    const int head_size_rounded, const float p_dropout,
    const int num_splits, cudaDeviceProp *dprops, struct c10::TensorOptions opts) {
282
283
284
285
286
287
288
289
290
291

    // This needs to match with run_mha_fwd_splitkv_dispatch
    const int block_n = head_size <= 64 ? 256 : (head_size <= 128 ? 128 : 64);
    const int num_n_blocks = (max_seqlen_k + block_n - 1) / block_n;
    // Technically kBlockM = 64 only for the splitKV kernels, not the standard kernel.
    // In any case we don't expect seqlen_q to be larger than 64 for inference.
    const int num_m_blocks = (max_seqlen_q + 64 - 1) / 64;
    params.num_splits = num_splits;
    if (p_dropout == 0.0f) {  // SplitKV is not implemented for dropout
        if (num_splits < 1) {
292
293
            // We multiply number of SMs by 2 to hard-code the fact that we're using 128 threads per block.
            params.num_splits = num_splits_heuristic(batch_size * num_heads * num_m_blocks, dprops->multiProcessorCount * 2, num_n_blocks, 128);
294
295
296
297
298
299
300
301
302
303
304
        }
        if (params.num_splits > 1) {
            at::Tensor softmax_lse_accum = torch::empty({params.num_splits, batch_size, num_heads, max_seqlen_q}, opts.dtype(at::kFloat));
            at::Tensor out_accum = torch::empty({params.num_splits, batch_size, num_heads, max_seqlen_q, head_size_rounded}, opts.dtype(at::kFloat));
            params.softmax_lseaccum_ptr = softmax_lse_accum.data_ptr();
            params.oaccum_ptr = out_accum.data_ptr();
        }
        TORCH_CHECK(params.num_splits <= 128, "num_splits > 128 not supported");
    }
}

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
void set_params_alibi(Flash_fwd_params &params, c10::optional<at::Tensor> &alibi_slopes_, int batch_size, int num_heads){
#ifdef FLASHATTENTION_DISABLE_ALIBI
    TORCH_CHECK(!alibi_slopes_.has_value(), "This flash attention build does not support alibi.");
    params.alibi_slopes_ptr = nullptr;
#else
    if (alibi_slopes_.has_value()) {
        auto alibi_slopes = alibi_slopes_.value();
        TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
        CHECK_DEVICE(alibi_slopes);
        TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
        TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({num_heads}) || alibi_slopes.sizes() == torch::IntArrayRef({batch_size, num_heads}));
        params.alibi_slopes_ptr = alibi_slopes.data_ptr();
        params.alibi_slopes_batch_stride = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0;
    } else {
        params.alibi_slopes_ptr = nullptr;
    }
#endif
}

Tri Dao's avatar
Tri Dao committed
324
std::vector<at::Tensor>
325
mha_fwd(at::Tensor &q,         // batch_size x seqlen_q x num_heads x head_size
Tri Dao's avatar
Tri Dao committed
326
327
328
        const at::Tensor &k,         // batch_size x seqlen_k x num_heads_k x head_size
        const at::Tensor &v,         // batch_size x seqlen_k x num_heads_k x head_size
        c10::optional<at::Tensor> &out_,             // batch_size x seqlen_q x num_heads x head_size
329
        c10::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
Tri Dao's avatar
Tri Dao committed
330
331
        const float p_dropout,
        const float softmax_scale,
332
        bool is_causal,
333
        int window_size_left,
Tri Dao's avatar
Tri Dao committed
334
        int window_size_right,
Tri Dao's avatar
Tri Dao committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
        const bool return_softmax,
        c10::optional<at::Generator> gen_) {

    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");

355
    CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
Tri Dao's avatar
Tri Dao committed
356
357
358
359
360
361
362
363

    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");

    const auto sizes = q.sizes();

    const int batch_size = sizes[0];
364
365
    int seqlen_q = sizes[1];
    int num_heads = sizes[2];
Tri Dao's avatar
Tri Dao committed
366
367
368
369
370
371
372
    const int head_size_og = sizes[3];
    const int seqlen_k = k.size(1);
    const int num_heads_k = k.size(2);
    TORCH_CHECK(batch_size > 0, "batch size must be postive");
    TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

373
374
375
    if (window_size_left >= seqlen_k) { window_size_left = -1; }
    if (window_size_right >= seqlen_k) { window_size_right = -1; }

376
377
    // causal=true is the same as causal=false in this case
    if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; }
Tri Dao's avatar
Tri Dao committed
378
    if (is_causal) { window_size_right = 0; }
379

380
381
    // Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
    // H/t Daniel Haziza
382
    const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size_og % 8 == 0 && !alibi_slopes_.has_value();
383
    const int ngroups = num_heads / num_heads_k;
384
385
386
387
    if (seqlenq_ngroups_swapped) {
        q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
        seqlen_q = ngroups;
        num_heads = num_heads_k;
388
389
    }

Tri Dao's avatar
Tri Dao committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og);
    CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size_og);
    CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size_og);

    at::Tensor q_padded, k_padded, v_padded;
    if (head_size_og % 8 != 0) {
        q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        q_padded = q;
        k_padded = k;
        v_padded = v;
    }

    at::Tensor out;
    if (out_.has_value()) {
        out = out_.value();
        TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
409
        CHECK_DEVICE(out);
Tri Dao's avatar
Tri Dao committed
410
        TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
411
412
413
414
        CHECK_SHAPE(out, batch_size, sizes[1], sizes[2], head_size_og);
        if (seqlenq_ngroups_swapped) {
            out = out.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
        }
Tri Dao's avatar
Tri Dao committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
        if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
    } else {
        out = torch::empty_like(q_padded);
    }

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size = round_multiple(head_size_og, 8);
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(seqlen_k, 128);

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();

    auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
    at::Tensor p;
    // Only return softmax if there's dropout to reduce compilation time
    if (return_softmax) {
        TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0");
        p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts);
    }

    Flash_fwd_params params;
    set_params_fprop(params,
                     batch_size,
                     seqlen_q, seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q_padded, k_padded, v_padded, out,
                     /*cu_seqlens_q_d=*/nullptr,
                     /*cu_seqlens_k_d=*/nullptr,
450
                     /*seqused_k=*/nullptr,
Tri Dao's avatar
Tri Dao committed
451
452
453
454
                     return_softmax ? p.data_ptr() : nullptr,
                     softmax_lse.data_ptr(),
                     p_dropout,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
455
456
                     window_size_left,
                     window_size_right);
Tri Dao's avatar
Tri Dao committed
457

458
459
460
461

    set_params_splitkv(params, batch_size, num_heads,
                       head_size, seqlen_k, seqlen_q,
                       head_size_rounded, p_dropout, /*num_splits*/0, dprops, opts);
Tri Dao's avatar
Tri Dao committed
462

463
464
465
466
467
468
469
470
471
    // number of times random will be generated per thread, to offset philox counter in thc random
    // state
    // We use a custom RNG that increases the offset by batch_size * nheads * 32.
    int64_t counter_offset = params.b * params.h * 32;
    auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA);
    auto rng_state = torch::empty({2}, options.dtype(torch::kInt64));
    // Forward kernel will populate memory with the seed and offset.
    params.rng_state = reinterpret_cast<uint64_t*>(rng_state.data_ptr());

Tri Dao's avatar
Tri Dao committed
472
473
474
475
476
477
478
479
    if (p_dropout > 0.0)  {
        auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
            gen_, at::cuda::detail::getDefaultCUDAGenerator());
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        params.philox_args = gen->philox_cuda_state(counter_offset);
    }

480
    set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
481

482
483
484
485
486
487
488
489
    if (seqlen_k > 0) {
        auto stream = at::cuda::getCurrentCUDAStream().stream();
        run_mha_fwd(params, stream);
    } else {
        // If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
        out.zero_();
        softmax_lse.fill_(std::numeric_limits<float>::infinity());
    }
Tri Dao's avatar
Tri Dao committed
490
491
492
493
494
495
496

    at::Tensor out_padded = out;
    if (head_size_og % 8 != 0) {
        out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        if (out_.has_value()) { out_.value().copy_(out); }
    }

497
498
499
500
501
    if (seqlenq_ngroups_swapped) {
        out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
        out_padded = out_padded.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
        q_padded = q_padded.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
        softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1});
502
    }
503
    return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse, p, rng_state};
Tri Dao's avatar
Tri Dao committed
504
505
506
}

std::vector<at::Tensor>
507
mha_varlen_fwd(at::Tensor &q,  // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
508
509
               const at::Tensor &k,  // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
               const at::Tensor &v,  // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
Tri Dao's avatar
Tri Dao committed
510
511
512
               c10::optional<at::Tensor> &out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
               const at::Tensor &cu_seqlens_q,  // b+1
               const at::Tensor &cu_seqlens_k,  // b+1
513
               c10::optional<at::Tensor> &seqused_k, // b. If given, only this many elements of each batch element's keys are used.
514
               c10::optional<at::Tensor> &block_table_, // batch_size x max_num_blocks_per_seq
515
               c10::optional<at::Tensor> &alibi_slopes_, // num_heads or b x num_heads
516
               int max_seqlen_q,
Tri Dao's avatar
Tri Dao committed
517
518
519
520
               const int max_seqlen_k,
               const float p_dropout,
               const float softmax_scale,
               const bool zero_tensors,
521
               bool is_causal,
522
               int window_size_left,
Tri Dao's avatar
Tri Dao committed
523
               int window_size_right,
Tri Dao's avatar
Tri Dao committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
               const bool return_softmax,
               c10::optional<at::Generator> gen_) {

    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
    TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32");
    TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32");

546
547
548
    CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
    CHECK_DEVICE(cu_seqlens_q);
    CHECK_DEVICE(cu_seqlens_k);
Tri Dao's avatar
Tri Dao committed
549

550
551
552
553
554
555
556
557
558
    at::Tensor block_table;
    const bool paged_KV = block_table_.has_value();
    if (paged_KV) {
        block_table = block_table_.value();
        CHECK_DEVICE(block_table);
        TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32");
        TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension");
    }

Tri Dao's avatar
Tri Dao committed
559
560
561
    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
562
563
    CHECK_CONTIGUOUS(cu_seqlens_q);
    CHECK_CONTIGUOUS(cu_seqlens_k);
Tri Dao's avatar
Tri Dao committed
564
565
566
567

    const auto sizes = q.sizes();

    const int batch_size = cu_seqlens_q.numel() - 1;
568
    int num_heads = sizes[1];
Tri Dao's avatar
Tri Dao committed
569
    const int head_size_og = sizes[2];
570
571
572
573
574
575
    const int num_heads_k = paged_KV ? k.size(2) : k.size(1);

    const int max_num_blocks_per_seq = !paged_KV ? 0 : block_table.size(1);
    const int num_blocks = !paged_KV ? 0 : k.size(0);
    const int page_block_size = !paged_KV ? 1 : k.size(1);
    TORCH_CHECK(!paged_KV || page_block_size % 256 == 0, "Paged KV cache block size must be divisible by 256");
576
577
578
579
580
581
582
583
584

    if (max_seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; }  // causal=true is the same as causal=false in this case
    if (is_causal) { window_size_right = 0; }

    void *cu_seqlens_q_d = cu_seqlens_q.data_ptr();

    // Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
    // H/t Daniel Haziza
    const int seqlenq_ngroups_swapped = max_seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size_og % 8 == 0 && !alibi_slopes_.has_value();
585
    const int ngroups = num_heads / num_heads_k;
586
587
588
589
590
591
592
593
594
    if (seqlenq_ngroups_swapped) {
        q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2).reshape({batch_size * ngroups, num_heads_k, head_size_og});
        max_seqlen_q = ngroups;
        num_heads = num_heads_k;
        cu_seqlens_q_d = nullptr;
    }

    const int total_q = q.sizes()[0];

Tri Dao's avatar
Tri Dao committed
595
596
597
598
    TORCH_CHECK(batch_size > 0, "batch size must be positive");
    TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

599
600
601
    if (window_size_left >= max_seqlen_k) { window_size_left = -1; }
    if (window_size_right >= max_seqlen_k) { window_size_right = -1; }

Tri Dao's avatar
Tri Dao committed
602
    CHECK_SHAPE(q, total_q, num_heads, head_size_og);
603
604
605
606
607
608
609
610
611
612
    if (!paged_KV) {
        const int total_k = k.size(0);
        CHECK_SHAPE(k, total_k, num_heads_k, head_size_og);
        CHECK_SHAPE(v, total_k, num_heads_k, head_size_og);
    } else {
        CHECK_SHAPE(k, num_blocks, page_block_size, num_heads_k, head_size_og);
        CHECK_SHAPE(v, num_blocks, page_block_size, num_heads_k, head_size_og);
        CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq);
    }

Tri Dao's avatar
Tri Dao committed
613
614
    CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
    CHECK_SHAPE(cu_seqlens_k, batch_size + 1);
615
616
617
618
619
620
621
    if (seqused_k.has_value()){
        auto seqused_k_ = seqused_k.value();
        TORCH_CHECK(seqused_k_.dtype() == torch::kInt32, "seqused_k must have dtype int32");
        TORCH_CHECK(seqused_k_.is_cuda(), "seqused_k must be on CUDA device");
        TORCH_CHECK(seqused_k_.is_contiguous(), "seqused_k must be contiguous");
        CHECK_SHAPE(seqused_k_, batch_size);
    }
Tri Dao's avatar
Tri Dao committed
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

    at::Tensor q_padded, k_padded, v_padded;
    if (head_size_og % 8 != 0) {
        q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        q_padded = q;
        k_padded = k;
        v_padded = v;
    }

    at::Tensor out;
    if (out_.has_value()) {
        out = out_.value();
        TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
638
        CHECK_DEVICE(out);
Tri Dao's avatar
Tri Dao committed
639
        TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
640
641
642
643
        CHECK_SHAPE(out, sizes[0], sizes[1], head_size_og);
        if (seqlenq_ngroups_swapped) {
            out = out.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2).reshape({batch_size * ngroups, num_heads_k, head_size_og});
        }
Tri Dao's avatar
Tri Dao committed
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
        if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
    } else {
        out = torch::empty_like(q_padded);
    }

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size = round_multiple(head_size_og, 8);
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128);

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();
660
    auto softmax_lse = torch::empty({num_heads, total_q}, opts.dtype(at::kFloat));
Tri Dao's avatar
Tri Dao committed
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
    at::Tensor p;
    // Only return softmax if there's dropout to reduce compilation time
    if (return_softmax) {
        TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0");
        p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts);
    }

    if (zero_tensors) {
        out.zero_();
        softmax_lse.fill_(-std::numeric_limits<float>::infinity());
        if (return_softmax) {p.zero_();}
    }

    Flash_fwd_params params;
    set_params_fprop(params,
                     batch_size,
                     max_seqlen_q, max_seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q_padded, k_padded, v_padded, out,
682
                     cu_seqlens_q_d,
Tri Dao's avatar
Tri Dao committed
683
                     cu_seqlens_k.data_ptr(),
684
                     seqused_k.has_value() ? seqused_k.value().data_ptr() : nullptr,
Tri Dao's avatar
Tri Dao committed
685
686
687
688
                     return_softmax ? p.data_ptr() : nullptr,
                     softmax_lse.data_ptr(),
                     p_dropout,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
689
                     window_size_left,
690
                     window_size_right,
691
692
693
                     seqlenq_ngroups_swapped,
                     /*unpadded_lse*/true);
    params.total_q = total_q;
694
695
696
697
698
699
700
701

    if (paged_KV) {
        params.block_table = block_table.data_ptr<int>();
        params.block_table_batch_stride = block_table.stride(0);
        params.k_batch_stride = k_padded.stride(0);
        params.v_batch_stride = v_padded.stride(0);
    }
    params.page_block_size = page_block_size;
702
703
704
    if (seqlenq_ngroups_swapped) {
        // Only apply split-k for decoding
        set_params_splitkv(params, batch_size, num_heads,
Tri Dao's avatar
Tri Dao committed
705
706
                           head_size, max_seqlen_k, max_seqlen_q,
                           head_size_rounded, p_dropout, /*num_splits*/0, dprops, opts);
707
    }
Tri Dao's avatar
Tri Dao committed
708

709
710
711
712
713
714
715
716
717
    // number of times random will be generated per thread, to offset philox counter in thc random
    // state
    // We use a custom RNG that increases the offset by batch_size * nheads * 32.
    int64_t counter_offset = params.b * params.h * 32;
    auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA);
    auto rng_state = torch::empty({2}, options.dtype(torch::kInt64));
    // Forward kernel will populate memory with the seed and offset.
    params.rng_state = reinterpret_cast<uint64_t*>(rng_state.data_ptr());

Tri Dao's avatar
Tri Dao committed
718
719
720
721
722
723
724
725
    if (p_dropout > 0.0)  {
        auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
            gen_, at::cuda::detail::getDefaultCUDAGenerator());
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        params.philox_args = gen->philox_cuda_state(counter_offset);
    }

726
    set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
727

728
729
    if (max_seqlen_k > 0) {
        auto stream = at::cuda::getCurrentCUDAStream().stream();
730
        run_mha_fwd(params, stream, paged_KV);
731
732
733
734
735
    } else {
        // If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
        out.zero_();
        softmax_lse.fill_(std::numeric_limits<float>::infinity());
    }
Tri Dao's avatar
Tri Dao committed
736
737
738
739
740
741
742

    at::Tensor out_padded = out;
    if (head_size_og % 8 != 0) {
        out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        if (out_.has_value()) { out_.value().copy_(out); }
    }

743
    if (seqlenq_ngroups_swapped) {
Grigory Sizov's avatar
Grigory Sizov committed
744
745
        int64_t size_before[] = {batch_size, max_seqlen_q, num_heads_k, head_size_og};
        int64_t size_after[] = {batch_size, num_heads_k * max_seqlen_q, head_size_og};
746
747
748
        out = out.reshape(size_before).transpose(1, 2).reshape(size_after);
        out_padded = out_padded.reshape(size_before).transpose(1, 2).reshape(size_after);
        q_padded = q_padded.reshape(size_before).transpose(1, 2).reshape(size_after);
749
        softmax_lse = softmax_lse.reshape({num_heads * max_seqlen_q, batch_size});
750
751
    }

752
    return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse, p, rng_state};
Tri Dao's avatar
Tri Dao committed
753
754
}

755
void run_mha_bwd(Flash_bwd_params &params, cudaStream_t stream) {
Tri Dao's avatar
Tri Dao committed
756
    FP16_SWITCH(!params.is_bf16, [&] {
757
758
759
        HEADDIM_SWITCH(params.d, [&] {
            run_mha_bwd_<elem_type, kHeadDim>(params, stream);
        });
Tri Dao's avatar
Tri Dao committed
760
761
762
763
764
765
766
767
768
769
770
771
772
    });
}

std::vector<at::Tensor>
mha_bwd(const at::Tensor &dout,  // batch_size x seqlen_q x num_heads, x head_size_og
        const at::Tensor &q,   // batch_size x seqlen_q x num_heads x head_size
        const at::Tensor &k,   // batch_size x seqlen_k x num_heads_k x head_size
        const at::Tensor &v,   // batch_size x seqlen_k x num_heads_k x head_size
        const at::Tensor &out,   // batch_size x seqlen_q x num_heads x head_size
        const at::Tensor &softmax_lse,     // b x h x seqlen_q
        c10::optional<at::Tensor> &dq_,   // batch_size x seqlen_q x num_heads x head_size
        c10::optional<at::Tensor> &dk_,   // batch_size x seqlen_k x num_heads_k x head_size
        c10::optional<at::Tensor> &dv_,   // batch_size x seqlen_k x num_heads_k x head_size
773
        c10::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
Tri Dao's avatar
Tri Dao committed
774
775
776
        const float p_dropout,         // probability to drop
        const float softmax_scale,
        const bool is_causal,
777
        int window_size_left,
Tri Dao's avatar
Tri Dao committed
778
        int window_size_right,
779
        const bool deterministic,
780
781
        c10::optional<at::Generator> gen_,
        c10::optional<at::Tensor> &rng_state) {
Tri Dao's avatar
Tri Dao committed
782

783
784
785
    #ifdef FLASHATTENTION_DISABLE_BACKWARD
        TORCH_CHECK(false, "This flash attention build does not support backward.");
    #endif
Tri Dao's avatar
Tri Dao committed
786
    if (is_causal) { window_size_right = 0; }
Tri Dao's avatar
Tri Dao committed
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm80 = dprops->major == 8 && dprops->minor == 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");

    bool is_dropout = p_dropout > 0.0;
    auto stream = at::cuda::getCurrentCUDAStream().stream();

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
    TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype");
    TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype");

810
811
    CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
    CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse);
Tri Dao's avatar
Tri Dao committed
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830

    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension");
    TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension");

    const auto sizes = q.sizes();

    const int batch_size = sizes[0];
    const int seqlen_q = sizes[1];
    const int num_heads = sizes[2];
    const int head_size_og = dout.size(3);
    const int head_size = sizes[3];
    const int seqlen_k = k.size(1);
    const int num_heads_k = k.size(2);
    TORCH_CHECK(batch_size > 0, "batch size must be positive");
    TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
    TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256");
831
832
    if (head_size > 192 && (head_size <= 224 || is_dropout)) {
        TORCH_CHECK(is_sm80 || is_sm90, "FlashAttention backward for head dim 256 with dropout, or head dim 224 with/without dropout requires A100/A800 or H100/H800");
Tri Dao's avatar
Tri Dao committed
833
834
835
836
837
838
839
840
841
842
    }
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(seqlen_k, 128);

    TORCH_CHECK(head_size == round_multiple(head_size_og, 8), "head_size must be head_size_og rounded to a multiple of 8");

843
844
845
    if (window_size_left >= seqlen_k) { window_size_left = -1; }
    if (window_size_right >= seqlen_k) { window_size_right = -1; }

Tri Dao's avatar
Tri Dao committed
846
847
848
849
850
851
852
853
854
855
    CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size);
    CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size);
    CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size);
    CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size);
    CHECK_SHAPE(dout, batch_size, seqlen_q, num_heads, head_size_og);

    at::Tensor dq, dk, dv;
    if (dq_.has_value()) {
        dq = dq_.value();
        TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q");
856
        CHECK_DEVICE(dq);
Tri Dao's avatar
Tri Dao committed
857
858
859
860
861
862
863
864
        TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension");
        CHECK_SHAPE(dq, batch_size, seqlen_q, num_heads, head_size);
    } else {
        dq = torch::empty_like(q);
    }
    if (dk_.has_value()) {
        dk = dk_.value();
        TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q");
865
        CHECK_DEVICE(dk);
Tri Dao's avatar
Tri Dao committed
866
867
868
869
870
871
872
873
        TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension");
        CHECK_SHAPE(dk, batch_size, seqlen_k, num_heads_k, head_size);
    } else {
        dk = torch::empty_like(k);
    }
    if (dv_.has_value()) {
        dv = dv_.value();
        TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q");
874
        CHECK_DEVICE(dv);
Tri Dao's avatar
Tri Dao committed
875
876
877
        TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension");
        CHECK_SHAPE(dv, batch_size, seqlen_k, num_heads_k, head_size);
    } else {
878
        dv = torch::empty_like(v);
Tri Dao's avatar
Tri Dao committed
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
    }

    at::Tensor dout_padded;
    if (head_size_og % 8 != 0) {
        dout_padded = torch::nn::functional::pad(dout, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        dout_padded = dout;
    }

    // bool loop = seqlen_k > blocksize_c;
    // TODO: change later, for now set to true for simplicity
    bool loop = true;

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();
    auto softmax_d = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat));
    at::Tensor dq_accum;
    at::Tensor dk_accum, dv_accum;
    if (loop) {
901
902
903
904
905
906
        if (!deterministic) {
            dq_accum = torch::empty({batch_size, seqlen_q_rounded, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
        } else {
            const int nsplits = (dprops->multiProcessorCount + batch_size * num_heads - 1) / (batch_size * num_heads);
            dq_accum = torch::zeros({nsplits, batch_size, seqlen_q_rounded, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
        }
Tri Dao's avatar
Tri Dao committed
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
        // dk_accum = torch::empty({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat));
        // dv_accum = torch::empty({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat));
    }

    at::Tensor dk_expanded, dv_expanded;
    if (num_heads_k != num_heads) {  // MQA / GQA
        dk_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts);
        dv_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts);
    } else {
        dk_expanded = dk;
        dv_expanded = dv;
    }

    Flash_bwd_params params;

    set_params_dgrad(params,
                     batch_size,
                     seqlen_q, seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q, k, v, out,
                     dout_padded, dq, dk_expanded, dv_expanded,
                     nullptr,
                     nullptr,
                     loop ? dq_accum.data_ptr() : nullptr,
                     // loop ? dk_accum.data_ptr() : nullptr,
                     // loop ? dv_accum.data_ptr() : nullptr,
                     nullptr,
                     nullptr,
                     softmax_lse.data_ptr(),
                     softmax_d.data_ptr(),
                     p_dropout,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
941
                     window_size_left,
942
                     window_size_right,
943
944
                     deterministic,
                     /*unpadded_lse*/false);
945
    params.dq_accum_split_stride = !deterministic ? 0 : dq_accum.stride(0);
Tri Dao's avatar
Tri Dao committed
946
947
948
949
950
951
952
953
954

    auto launch = &run_mha_bwd;

    auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
        gen_, at::cuda::detail::getDefaultCUDAGenerator());

    // We use a custom RNG that increases the offset by batch_size * nheads * 32.
    int64_t counter_offset = params.b * params.h * 32;

955
956
957
    if ( rng_state.has_value() ) {
        params.rng_state = reinterpret_cast<uint64_t*>(rng_state.value().data_ptr());
    } else if( is_dropout ) {
Tri Dao's avatar
Tri Dao committed
958
959
960
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        params.philox_args = gen->philox_cuda_state(counter_offset);
961
962
963
        auto seeds = at::cuda::philox::unpack(params.philox_args);
        params.rng_state[0] = std::get<0>(seeds);
        params.rng_state[1] = std::get<1>(seeds);
Tri Dao's avatar
Tri Dao committed
964
965
    }

966
    set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
967

968
    if (seqlen_q > 0) {
969
        launch(params, stream);
970
971
    } else {
        // If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
972
973
        dk_expanded.zero_();
        dv_expanded.zero_();
974
975
        softmax_d.zero_();
    }
Tri Dao's avatar
Tri Dao committed
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996

    // For MQA/GQA we need to sum dK and dV across the groups
    if (num_heads_k != num_heads) {
        at::sum_out(dk, at::reshape(dk_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3});
        at::sum_out(dv, at::reshape(dv_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3});
    }
    if (head_size_og % 8 != 0) {
        dq = dq.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        dk = dk.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        dv = dv.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
    }

    return { dq, dk, dv, softmax_d };
}

std::vector<at::Tensor>
mha_varlen_bwd(const at::Tensor &dout,  // total_q x num_heads, x head_size
               const at::Tensor &q,   // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
               const at::Tensor &k,   // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
               const at::Tensor &v,   // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
               const at::Tensor &out,   // total_q x num_heads x head_size
997
               const at::Tensor &softmax_lse,    // h x total_q, softmax logsumexp
Tri Dao's avatar
Tri Dao committed
998
999
1000
1001
1002
               c10::optional<at::Tensor> &dq_,   // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
               c10::optional<at::Tensor> &dk_,   // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
               c10::optional<at::Tensor> &dv_,   // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
               const at::Tensor &cu_seqlens_q,  // b+1
               const at::Tensor &cu_seqlens_k,  // b+1
1003
               c10::optional<at::Tensor> &alibi_slopes_, // num_heads or b x num_heads
Tri Dao's avatar
Tri Dao committed
1004
1005
1006
1007
1008
1009
               const int max_seqlen_q,
               const int max_seqlen_k,          // max sequence length to choose the kernel
               const float p_dropout,         // probability to drop
               const float softmax_scale,
               const bool zero_tensors,
               const bool is_causal,
1010
               int window_size_left,
Tri Dao's avatar
Tri Dao committed
1011
               int window_size_right,
1012
               const bool deterministic,
1013
               c10::optional<at::Generator> gen_,
Tri Dao's avatar
Tri Dao committed
1014
1015
               c10::optional<at::Tensor> &rng_state) {

1016
1017
1018
1019
    #ifdef FLASHATTENTION_DISABLE_BACKWARD
        TORCH_CHECK(false, "This flash attention build does not support backward.");
    #endif

Tri Dao's avatar
Tri Dao committed
1020
    if (is_causal) { window_size_right = 0; }
Tri Dao's avatar
Tri Dao committed
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm80 = dprops->major == 8 && dprops->minor == 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");
    bool is_dropout = p_dropout > 0.0;
    auto stream = at::cuda::getCurrentCUDAStream().stream();

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
    TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype");
    TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype");
    TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32");
    TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32");

1045
1046
1047
    CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
    CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse);
    CHECK_DEVICE(cu_seqlens_q); CHECK_DEVICE(cu_seqlens_k);
Tri Dao's avatar
Tri Dao committed
1048
1049
1050
1051
1052
1053

    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension");
    TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension");
1054
1055
    CHECK_CONTIGUOUS(cu_seqlens_q);
    CHECK_CONTIGUOUS(cu_seqlens_k);
Tri Dao's avatar
Tri Dao committed
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068

    const auto sizes = q.sizes();

    const int total_q = sizes[0];
    const int batch_size = cu_seqlens_q.numel() - 1;
    const int num_heads = sizes[1];
    const int head_size_og = dout.size(2);
    const int head_size = sizes[2];
    const int total_k = k.size(0);
    const int num_heads_k = k.size(1);
    TORCH_CHECK(batch_size > 0, "batch size must be positive");
    TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
    TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256");
1069
1070
    if (head_size > 192 && (head_size <= 224 || is_dropout)) {
        TORCH_CHECK(is_sm80 || is_sm90, "FlashAttention backward for head dim 256 with dropout, or head dim 224 with/without dropout requires A100/A800 or H100/H800");
Tri Dao's avatar
Tri Dao committed
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
    }
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128);

    TORCH_CHECK(head_size == round_multiple(head_size_og, 8), "head_size must be head_size_og rounded to a multiple of 8");

1081
1082
1083
    if (window_size_left >= max_seqlen_k) { window_size_left = -1; }
    if (window_size_right >= max_seqlen_k) { window_size_right = -1; }

Tri Dao's avatar
Tri Dao committed
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
    CHECK_SHAPE(q, total_q, num_heads, head_size);
    CHECK_SHAPE(k, total_k, num_heads_k, head_size);
    CHECK_SHAPE(v, total_k, num_heads_k, head_size);
    CHECK_SHAPE(out, total_q, num_heads, head_size);
    CHECK_SHAPE(dout, total_q, num_heads, head_size_og);
    CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
    CHECK_SHAPE(cu_seqlens_k, batch_size + 1);

    at::Tensor dq, dk, dv;
    if (dq_.has_value()) {
        dq = dq_.value();
        TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q");
1096
        CHECK_DEVICE(dq);
Tri Dao's avatar
Tri Dao committed
1097
1098
1099
1100
1101
1102
1103
1104
        TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension");
        CHECK_SHAPE(dq, total_q, num_heads, head_size);
    } else {
        dq = torch::empty_like(q);
    }
    if (dk_.has_value()) {
        dk = dk_.value();
        TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q");
1105
        CHECK_DEVICE(dk);
Tri Dao's avatar
Tri Dao committed
1106
1107
1108
1109
1110
1111
1112
1113
        TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension");
        CHECK_SHAPE(dk, total_k, num_heads_k, head_size);
    } else {
        dk = torch::empty_like(k);
    }
    if (dv_.has_value()) {
        dv = dv_.value();
        TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q");
1114
        CHECK_DEVICE(dv);
Tri Dao's avatar
Tri Dao committed
1115
1116
1117
        TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension");
        CHECK_SHAPE(dv, total_k, num_heads_k, head_size);
    } else {
1118
        dv = torch::empty_like(v);
Tri Dao's avatar
Tri Dao committed
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
    }

    at::Tensor dout_padded;
    if (head_size_og % 8 != 0) {
        dout_padded = torch::nn::functional::pad(dout, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        dout_padded = dout;
    }

    // bool loop = max_seqlen_k > blocksize_c;
    // TODO: change later, for now set to true for simplicity
    bool loop = true;

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();
1137
    auto softmax_d = torch::empty({num_heads, total_q + 128 * batch_size}, opts.dtype(at::kFloat));
Tri Dao's avatar
Tri Dao committed
1138
1139
    at::Tensor dq_accum;
    if (loop) {
1140
1141
1142
1143
1144
1145
1146
1147
        // We don't want to allocate dq_accum of size (batch, seqlen_q_rounded, num_heads, head_size_rounded)
        // because that would be too large if there is a very long sequence and the rest of the sequences are short.
        // Instead, we allocate dq_accum of size (total_q + 128 * batch, num_heads, head_size_rounded).
        // Note that 128 is the max block size on the seqlen_q dimension.
        // For dQ, the i-th sequence is stored in indices from cu_seqlens[i] + 128 * i to
        // cu_seqlens[i + 1] * 128 * i - 1. This ensures that the i-th sequence and (i + 1)-th sequence will
        // be at least 128 apart. It's ok for us to do atomicAdds up to 128 rows beyond what we're normally
        // allowed to do. So we won't have to do any bound checking, and performance should stay the same.
1148
        // Same holds for softmax_d, since LSE is stored in unpadded format.
1149
1150
1151
1152
1153
1154
        if (!deterministic) {
            dq_accum = torch::empty({total_q + 128 * batch_size, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
        } else {
            const int nsplits = (dprops->multiProcessorCount + batch_size * num_heads - 1) / (batch_size * num_heads);
            dq_accum = torch::zeros({nsplits, total_q + 128 * batch_size, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
        }
Tri Dao's avatar
Tri Dao committed
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
    }

    at::Tensor dk_expanded, dv_expanded;
    if (num_heads_k != num_heads) {  // MQA / GQA
        dk_expanded = torch::empty({total_k, num_heads, head_size}, opts);
        dv_expanded = torch::empty({total_k, num_heads, head_size}, opts);
    } else {
        dk_expanded = dk;
        dv_expanded = dv;
    }

    if( zero_tensors ) {
        dq.zero_();
        dk_expanded.zero_();
        dv_expanded.zero_();
        softmax_d.zero_();
    }

    Flash_bwd_params params;

    set_params_dgrad(params,
                     batch_size,
                     max_seqlen_q, max_seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q, k, v, out,
                     dout_padded, dq, dk_expanded, dv_expanded,
                     cu_seqlens_q.data_ptr(),
                     cu_seqlens_k.data_ptr(),
                     loop ? dq_accum.data_ptr() : nullptr,
                     nullptr,
                     nullptr,
                     softmax_lse.data_ptr(),
                     softmax_d.data_ptr(),
                     p_dropout,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
1192
                     window_size_left,
1193
                     window_size_right,
1194
1195
                     deterministic,
                     /*unpadded_lse*/true);
1196
    params.dq_accum_split_stride = !deterministic ? 0 : dq_accum.stride(0);
1197
    params.total_q = total_q;
Tri Dao's avatar
Tri Dao committed
1198
1199
1200
1201
1202
1203
1204
1205
1206

    auto launch = &run_mha_bwd;

    auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
        gen_, at::cuda::detail::getDefaultCUDAGenerator());

    // We use a custom RNG that increases the offset by batch_size * nheads * 32.
    int64_t counter_offset = params.b * params.h * 32;

1207
1208
1209
    if ( rng_state.has_value() ) {
        params.rng_state = reinterpret_cast<uint64_t*>(rng_state.value().data_ptr());
    } else if( is_dropout ) {
Tri Dao's avatar
Tri Dao committed
1210
1211
1212
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        params.philox_args = gen->philox_cuda_state(counter_offset);
1213
1214
1215
        auto seeds = at::cuda::philox::unpack(params.philox_args);
        params.rng_state[0] = std::get<0>(seeds);
        params.rng_state[1] = std::get<1>(seeds);
Tri Dao's avatar
Tri Dao committed
1216
1217
    }

1218
    set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
1219

1220
    if (max_seqlen_q > 0) {
1221
        launch(params, stream);
1222
1223
1224
1225
1226
1227
    } else {
        // If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
        dk_expanded.zero_();
        dv_expanded.zero_();
        softmax_d.zero_();
    }
Tri Dao's avatar
Tri Dao committed
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242

    // For MQA/GQA we need to sum dK and dV across the groups
    if (num_heads_k != num_heads) {
        at::sum_out(dk, at::reshape(dk_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2});
        at::sum_out(dv, at::reshape(dv_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2});
    }
    if (head_size_og % 8 != 0) {
        dq = dq.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        dk = dk.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        dv = dv.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
    }

    return { dq, dk, dv, softmax_d };
}

Tri Dao's avatar
Tri Dao committed
1243
std::vector<at::Tensor>
1244
mha_fwd_kvcache(at::Tensor &q,                 // batch_size x seqlen_q x num_heads x head_size
Tri Dao's avatar
Tri Dao committed
1245
1246
                const at::Tensor &kcache,            // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
                const at::Tensor &vcache,            // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
1247
1248
                c10::optional<const at::Tensor> &k_, // batch_size x seqlen_knew x num_heads_k x head_size
                c10::optional<const at::Tensor> &v_, // batch_size x seqlen_knew x num_heads_k x head_size
Tri Dao's avatar
Tri Dao committed
1249
                c10::optional<const at::Tensor> &seqlens_k_, // batch_size
1250
1251
                c10::optional<const at::Tensor> &rotary_cos_, // seqlen_ro x (rotary_dim / 2)
                c10::optional<const at::Tensor> &rotary_sin_, // seqlen_ro x (rotary_dim / 2)
1252
                c10::optional<const at::Tensor> &cache_batch_idx_, // indices to index into the KV cache
Tri Dao's avatar
Tri Dao committed
1253
                c10::optional<at::Tensor> &block_table_, // batch_size x max_num_blocks_per_seq
1254
                c10::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
Tri Dao's avatar
Tri Dao committed
1255
1256
                c10::optional<at::Tensor> &out_,             // batch_size x seqlen_q x num_heads x head_size
                const float softmax_scale,
1257
                bool is_causal,
1258
                int window_size_left,
Tri Dao's avatar
Tri Dao committed
1259
                int window_size_right,
1260
                bool is_rotary_interleaved,   // if true, rotary combines indices 0 & 1, else indices 0 & rotary_dim / 2
1261
                int num_splits
Tri Dao's avatar
Tri Dao committed
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
                ) {

    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(kcache.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(vcache.dtype() == q_dtype, "query and value must have the same dtype");

1281
    CHECK_DEVICE(q); CHECK_DEVICE(kcache); CHECK_DEVICE(vcache);
Tri Dao's avatar
Tri Dao committed
1282
1283
1284
1285
1286

    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(kcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(vcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");

Tri Dao's avatar
Tri Dao committed
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
    at::Tensor block_table;
    const bool paged_KV = block_table_.has_value();
    if (paged_KV) {
        TORCH_CHECK(!cache_batch_idx_.has_value(), "Paged KVcache does not support cache_batch_idx");
        block_table = block_table_.value();
        CHECK_DEVICE(block_table);
        TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32");
        TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension");
    }

Tri Dao's avatar
Tri Dao committed
1297
1298
1299
    const auto sizes = q.sizes();

    const int batch_size = sizes[0];
1300
1301
    int seqlen_q = sizes[1];
    int num_heads = sizes[2];
Tri Dao's avatar
Tri Dao committed
1302
    const int head_size_og = sizes[3];
Tri Dao's avatar
Tri Dao committed
1303
1304
1305
1306
1307
1308

    const int max_num_blocks_per_seq = !paged_KV ? 0 : block_table.size(1);
    const int num_blocks = !paged_KV ? 0 : kcache.size(0);
    const int page_block_size = !paged_KV ? 1 : kcache.size(1);
    TORCH_CHECK(!paged_KV || page_block_size % 256 == 0, "Paged KV cache block size must be divisible by 256");
    const int seqlen_k = !paged_KV ? kcache.size(1) : max_num_blocks_per_seq * page_block_size;
Tri Dao's avatar
Tri Dao committed
1309
    const int num_heads_k = kcache.size(2);
Tri Dao's avatar
Tri Dao committed
1310
    const int batch_size_c = !paged_KV ? kcache.size(0) : batch_size;
Tri Dao's avatar
Tri Dao committed
1311
1312
1313
1314
    TORCH_CHECK(batch_size > 0, "batch size must be postive");
    TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

1315
1316
    // causal=true is the same as causal=false in this case
    if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; }
Tri Dao's avatar
Tri Dao committed
1317
    if (is_causal) { window_size_right = 0; }
1318

1319
1320
    // Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
    // H/t Daniel Haziza
1321
    const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && head_size_og % 8 == 0 && !alibi_slopes_.has_value();
1322
1323
1324
1325
1326
    if (seqlenq_ngroups_swapped) {
        const int ngroups = num_heads / num_heads_k;
        q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
        seqlen_q = ngroups;
        num_heads = num_heads_k;
1327
1328
    }

1329
1330
1331
    if (window_size_left >= seqlen_k) { window_size_left = -1; }
    if (window_size_right >= seqlen_k) { window_size_right = -1; }

Tri Dao's avatar
Tri Dao committed
1332
    CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og);
Tri Dao's avatar
Tri Dao committed
1333
1334
1335
1336
1337
1338
1339
1340
    if (!paged_KV) {
        CHECK_SHAPE(kcache, batch_size_c, seqlen_k, num_heads_k, head_size_og);
        CHECK_SHAPE(vcache, batch_size_c, seqlen_k, num_heads_k, head_size_og);
    } else {
        CHECK_SHAPE(kcache, num_blocks, page_block_size, num_heads_k, head_size_og);
        CHECK_SHAPE(vcache, num_blocks, page_block_size, num_heads_k, head_size_og);
        CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq);
    }
Tri Dao's avatar
Tri Dao committed
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356

    at::Tensor q_padded, kcache_padded, vcache_padded;
    if (head_size_og % 8 != 0) {
        q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        kcache_padded = torch::nn::functional::pad(kcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        vcache_padded = torch::nn::functional::pad(vcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        q_padded = q;
        kcache_padded = kcache;
        vcache_padded = vcache;
    }

    at::Tensor out;
    if (out_.has_value()) {
        out = out_.value();
        TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
1357
        CHECK_DEVICE(out);
Tri Dao's avatar
Tri Dao committed
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
        TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
        CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size_og);
        if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
    } else {
        out = torch::empty_like(q_padded);
    }

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size = round_multiple(head_size_og, 8);
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(seqlen_k, 128);

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();

    auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));

    Flash_fwd_params params;
    set_params_fprop(params,
                     batch_size,
                     seqlen_q, seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q_padded, kcache_padded, vcache_padded, out,
                     /*cu_seqlens_q_d=*/nullptr,
                     /*cu_seqlens_k_d=*/nullptr,
1389
                     /*seqused_k=*/nullptr,
Tri Dao's avatar
Tri Dao committed
1390
1391
1392
1393
                     /*p_ptr=*/nullptr,
                     softmax_lse.data_ptr(),
                     /*p_dropout=*/0.f,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
1394
1395
                     window_size_left,
                     window_size_right);
Tri Dao's avatar
Tri Dao committed
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405

    at::Tensor k, v, k_padded, v_padded;
    if (k_.has_value()) {
        TORCH_CHECK(v_.has_value(), "If key is supplied, value must also be passed in");
        TORCH_CHECK(seqlens_k_.has_value(), "If key is supplied, seqlens_k must also be passed in");
        TORCH_CHECK(seqlen_q <= seqlen_k, "If key is supplied, it must have seqlen <= the seqlen of the KV cache");
        k = k_.value();
        v = v_.value();
        TORCH_CHECK(k.dtype() == q_dtype, "Key must have the same dtype as query");
        TORCH_CHECK(v.dtype() == q_dtype, "Value must have the same dtype as query");
1406
        CHECK_DEVICE(k); CHECK_DEVICE(v);
Tri Dao's avatar
Tri Dao committed
1407
1408
        TORCH_CHECK(k.stride(-1) == 1, "Key tensor must have contiguous last dimension");
        TORCH_CHECK(v.stride(-1) == 1, "Value tensor must have contiguous last dimension");
1409
1410
1411
        int seqlen_knew = k.size(1);
        CHECK_SHAPE(k, batch_size, seqlen_knew, num_heads_k, head_size_og);
        CHECK_SHAPE(v, batch_size, seqlen_knew, num_heads_k, head_size_og);
Tri Dao's avatar
Tri Dao committed
1412
1413
1414
1415
1416
1417
1418
        if (head_size_og % 8 != 0) {
            k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
            v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        } else {
            k_padded = k;
            v_padded = v;
        }
1419
        params.seqlen_knew = seqlen_knew;
Tri Dao's avatar
Tri Dao committed
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
        params.knew_ptr = k_padded.data_ptr();
        params.vnew_ptr = v_padded.data_ptr();
        // All stride are in elements, not bytes.
        params.knew_batch_stride = k_padded.stride(0);
        params.vnew_batch_stride = v_padded.stride(0);
        params.knew_row_stride = k_padded.stride(-3);
        params.vnew_row_stride = v_padded.stride(-3);
        params.knew_head_stride = k_padded.stride(-2);
        params.vnew_head_stride = v_padded.stride(-2);
    }

    if (seqlens_k_.has_value()) {
        auto seqlens_k = seqlens_k_.value();
        TORCH_CHECK(seqlens_k.dtype() == torch::kInt32, "seqlens_k must have dtype int32");
1434
1435
        CHECK_DEVICE(seqlens_k);
        CHECK_CONTIGUOUS(seqlens_k);
Tri Dao's avatar
Tri Dao committed
1436
1437
1438
1439
1440
        CHECK_SHAPE(seqlens_k, batch_size);
        params.cu_seqlens_k = static_cast<int *>(seqlens_k.data_ptr());
    }
    params.is_seqlens_k_cumulative = !(seqlens_k_.has_value());

1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
    if (rotary_cos_.has_value()) {
        TORCH_CHECK(k_.has_value(), "If rotary cos/sin are provided, new key / value to be appended to KV cache must also be provided");
        auto rotary_cos = rotary_cos_.value();
        CHECK_DEVICE(rotary_cos);
        params.rotary_dim = rotary_cos.size(1) * 2;
        TORCH_CHECK(params.rotary_dim <= head_size, "rotary_dim must be <= headdim");
        TORCH_CHECK(params.rotary_dim % 16 == 0, "Only rotary dimensions divisible by 16 are currently supported");
        const int seqlen_ro = rotary_cos.size(0);
        TORCH_CHECK(seqlen_ro >= seqlen_k, "cos/sin seqlen must be at least the seqlen of KV cache");
        CHECK_SHAPE(rotary_cos, seqlen_ro, params.rotary_dim / 2);
        CHECK_CONTIGUOUS(rotary_cos);
        TORCH_CHECK(rotary_cos.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query");

        TORCH_CHECK(rotary_sin_.has_value(), "If rotary cos is provided, rotary sin must also be provided");
        auto rotary_sin = rotary_sin_.value();
        CHECK_DEVICE(rotary_sin);
        CHECK_SHAPE(rotary_sin, seqlen_ro, params.rotary_dim / 2);
        CHECK_CONTIGUOUS(rotary_sin);
        TORCH_CHECK(rotary_sin.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query");
        params.rotary_cos_ptr = rotary_cos.data_ptr();
        params.rotary_sin_ptr = rotary_sin.data_ptr();
        params.is_rotary_interleaved = is_rotary_interleaved;
    } else {
        params.rotary_dim = 0;
    }

1467
1468
1469
1470
1471
1472
1473
    if (cache_batch_idx_.has_value()) {
        auto cache_batch_idx = cache_batch_idx_.value();
        CHECK_DEVICE(cache_batch_idx);
        CHECK_CONTIGUOUS(cache_batch_idx);
        TORCH_CHECK(cache_batch_idx.scalar_type() == torch::kInt32, "cache_batch_idx must have dtype int32");
        params.cache_batch_idx = reinterpret_cast<int *>(cache_batch_idx.data_ptr());
    }
1474
1475
1476
1477

    set_params_splitkv(params, batch_size, num_heads,
                       head_size, seqlen_k, seqlen_q,
                       head_size_rounded, /*dropout*/0.f, num_splits, dprops, opts);
Tri Dao's avatar
Tri Dao committed
1478

Tri Dao's avatar
Tri Dao committed
1479
1480
1481
1482
1483
1484
    if (paged_KV) {
        params.block_table = block_table.data_ptr<int>();
        params.block_table_batch_stride = block_table.stride(0);
    }
    params.page_block_size = page_block_size;

1485
1486

    set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
1487

Tri Dao's avatar
Tri Dao committed
1488
    auto stream = at::cuda::getCurrentCUDAStream().stream();
Tri Dao's avatar
Tri Dao committed
1489
1490
1491
    // Only split kernel supports appending to KV cache, or indexing to the cache with cache_batch_idx,
    // or paged KV cache
    run_mha_fwd(params, stream, /*force_split_kernel=*/k_.has_value() || cache_batch_idx_.has_value() || paged_KV);
Tri Dao's avatar
Tri Dao committed
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

    if (head_size_og % 8 != 0) {
        out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        if (out_.has_value()) { out_.value().copy_(out); }
        if (k_.has_value()) {
            // It's expensive to copy the KV cache here for the case where head size not divisible by 8,
            // but we don't expect to get this case in practice. This is just so that the code works for that case.
            kcache.copy_(kcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}));
            vcache.copy_(vcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}));
        }
    }

1504
1505
1506
    if (seqlenq_ngroups_swapped) {
        out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
        softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1});
1507
    }
Tri Dao's avatar
Tri Dao committed
1508
1509
1510
    return {out, softmax_lse};
}

Tri Dao's avatar
Tri Dao committed
1511
1512
1513
1514
1515
1516
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.doc() = "FlashAttention";
    m.def("fwd", &mha_fwd, "Forward pass");
    m.def("varlen_fwd", &mha_varlen_fwd, "Forward pass (variable length)");
    m.def("bwd", &mha_bwd, "Backward pass");
    m.def("varlen_bwd", &mha_varlen_bwd, "Backward pass (variable length)");
Tri Dao's avatar
Tri Dao committed
1517
    m.def("fwd_kvcache", &mha_fwd_kvcache, "Forward pass, with KV-cache");
Tri Dao's avatar
Tri Dao committed
1518
}