gpt.py 33.3 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
# Copyright (c) 2023, Tri Dao.
Tri Dao's avatar
Tri Dao committed
2

3
import logging
Tri Dao's avatar
Tri Dao committed
4
import math
5
import re
Tri Dao's avatar
Tri Dao committed
6
7
from functools import partial

8
from collections import namedtuple, OrderedDict
Tri Dao's avatar
Tri Dao committed
9
10
11
12
13
14
from collections.abc import Sequence

import torch
import torch.nn as nn
import torch.nn.functional as F

Tri Dao's avatar
Tri Dao committed
15
from transformers import GPT2Config
Tri Dao's avatar
Tri Dao committed
16

17
18
from einops import rearrange

19
from flash_attn.modules.mha import MHA, ParallelMHA
20
from flash_attn.modules.mlp import Mlp, FusedMLP, ParallelFusedMLP
Tri Dao's avatar
Tri Dao committed
21
from flash_attn.modules.block import Block, ParallelBlock
22
from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings
23
from flash_attn.utils.distributed import sync_shared_params, all_gather_raw
24
from flash_attn.utils.pretrained import state_dict_from_pretrained
Tri Dao's avatar
Tri Dao committed
25
from flash_attn.utils.generation import GenerationMixin
Tri Dao's avatar
Tri Dao committed
26
27
from flash_attn.models.opt import remap_state_dict_hf_opt
from flash_attn.models.gptj import remap_state_dict_hf_gptj
28
29
30
31
32

try:
    from flash_attn.ops.fused_dense import ColumnParallelLinear
except ImportError:
    ColumnParallelLinear = None
Tri Dao's avatar
Tri Dao committed
33
34
35
36
37
38
39

try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm
except ImportError:
    dropout_add_layer_norm = None

try:
Tri Dao's avatar
Tri Dao committed
40
    from flash_attn.ops.triton.mlp import FusedDenseSqreluDense, sqrelu_fwd
Tri Dao's avatar
Tri Dao committed
41
42
except ImportError:
    FusedDenseSqreluDense = None
Tri Dao's avatar
Tri Dao committed
43
    sqrelu_fwd = None
Tri Dao's avatar
Tri Dao committed
44
45


46
47
48
logger = logging.getLogger(__name__)


49
50
def create_mixer_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
Tri Dao's avatar
Tri Dao committed
51
52
53
54
55
56
    head_dim = getattr(config, 'head_dim', config.hidden_size // config.num_attention_heads)
    softmax_scale = 1.0 if not config.scale_attn_weights else head_dim ** (-0.5)
    if config.scale_attn_by_inverse_layer_idx:
        assert layer_idx is not None
        softmax_scale /= float(layer_idx + 1)
    dwconv = getattr(config, 'attn_dwconv', False)
57
58
    if dwconv:
        assert process_group is None, 'TensorParallel MHA does not support dwconv yet'
Tri Dao's avatar
Tri Dao committed
59
60
    qkv_proj_bias = getattr(config, 'qkv_proj_bias', True)
    out_proj_bias = getattr(config, 'out_proj_bias', True)
Tri Dao's avatar
Tri Dao committed
61
    rotary_emb_dim = int(getattr(config, 'rotary_emb_fraction', 0.0) * head_dim)
Tri Dao's avatar
Tri Dao committed
62
63
    rotary_emb_scale_base = getattr(config, 'rotary_emb_scale_base', None)
    rotary_emb_interleaved = getattr(config, 'rotary_emb_interleaved', False)
Tri Dao's avatar
Tri Dao committed
64
65
    use_flash_attn = getattr(config, 'use_flash_attn', False)
    fused_bias_fc = getattr(config, 'fused_bias_fc', False)
66
67
68
69
70
    if not fused_bias_fc:
        assert process_group is None, 'TensorParallel MHA requires fused_bias_fc'
    mha_cls = MHA if process_group is None else ParallelMHA
    serial_kwargs = ({'fused_bias_fc': fused_bias_fc, 'dwconv': dwconv}
                     if process_group is None else {})
71
72
73
    parallel_kwargs = ({'process_group': process_group,
                        'sequence_parallel': getattr(config, 'sequence_parallel', True)}
                       if process_group is not None else {})
Tri Dao's avatar
Tri Dao committed
74
75
76
    mixer_cls = partial(mha_cls, num_heads=config.num_attention_heads,
                        qkv_proj_bias=qkv_proj_bias, out_proj_bias=out_proj_bias,
                        dropout=config.attn_pdrop,
Tri Dao's avatar
Tri Dao committed
77
                        softmax_scale=softmax_scale, causal=True, layer_idx=layer_idx,
Tri Dao's avatar
Tri Dao committed
78
                        rotary_emb_dim=rotary_emb_dim, rotary_emb_scale_base=rotary_emb_scale_base,
Tri Dao's avatar
Tri Dao committed
79
                        rotary_emb_interleaved=rotary_emb_interleaved,
80
81
                        use_flash_attn=use_flash_attn,
                        **serial_kwargs, **parallel_kwargs, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
82
83
84
    return mixer_cls


85
86
def create_mlp_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
Tri Dao's avatar
Tri Dao committed
87
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
88
89
90
    fused_mlp = getattr(config, 'fused_mlp', False)
    if fused_mlp:
        assert config.activation_function in ['gelu_new', 'gelu_fast', 'gelu_approx', 'relu']
Tri Dao's avatar
Tri Dao committed
91
    fused_dense_sqrelu_dense = getattr(config, 'fused_dense_sqrelu_dense', False)
92
93
94
    if fused_dense_sqrelu_dense:
        assert config.activation_function == 'sqrelu', ('fused_dense_sqrelu_dense only '
                                               'supports approximate activation_function sqrelu')
95
    assert not (fused_dense_sqrelu_dense and fused_mlp)
96
    if process_group is not None:
97
98
        assert fused_mlp, 'Tensor Parallel is only implemented for FusedMLP'
    if not fused_mlp and not fused_dense_sqrelu_dense:
Tri Dao's avatar
Tri Dao committed
99
        assert config.activation_function in ['gelu_new', 'gelu_fast', 'gelu_approx', 'relu', 'sqrelu']
Tri Dao's avatar
Tri Dao committed
100
101
        if config.activation_function == 'relu':
            activation = partial(F.relu, inplace=True)
Tri Dao's avatar
Tri Dao committed
102
103
104
        elif config.activation_function == 'sqrelu':
            assert sqrelu_fwd is not None, 'sqrelu_fwd is not implemented'
            activation = sqrelu_fwd
Tri Dao's avatar
Tri Dao committed
105
        else:
106
107
            approximate = ('tanh' if config.activation_function
                           in ['gelu_new', 'gelu_fast', 'gelu_approx'] else 'none')
Tri Dao's avatar
Tri Dao committed
108
109
            activation=partial(F.gelu, approximate=approximate)
        mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=activation, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
110
111
112
113
114
115
    else:
        mlp_checkpoint_lvl = getattr(config, 'mlp_checkpoint_lvl', 0)
        # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
        if isinstance(mlp_checkpoint_lvl, Sequence):
            assert layer_idx is not None
            mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
116
117
        if fused_mlp:
            if FusedMLP is None:
Tri Dao's avatar
Tri Dao committed
118
                raise ImportError('fused_dense is not installed')
119
120
121
            activation = ('gelu_approx' if config.activation_function
                          in ['gelu_new', 'gelu_fast', 'gelu_approx'] else 'relu')
            mlp_cls = FusedMLP if process_group is None else ParallelFusedMLP
122
123
124
            parallel_kwargs = ({'process_group': process_group,
                                'sequence_parallel': getattr(config, 'sequence_parallel', True)}
                               if process_group is not None else {})
125
126
            mlp_cls = partial(mlp_cls, hidden_features=inner_dim, activation=activation,
                              checkpoint_lvl=mlp_checkpoint_lvl,
127
                              **parallel_kwargs, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
128
129
130
        elif fused_dense_sqrelu_dense:
            assert FusedDenseSqreluDense is not None
            mlp_cls = partial(FusedDenseSqreluDense, hidden_features=inner_dim,
131
                              checkpoint_lvl=mlp_checkpoint_lvl, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
132
133
134
135
136
        else:
            raise RuntimeError('MLP type not supported')
    return mlp_cls


137
138
def create_block(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
139
    sequence_parallel = getattr(config, 'sequence_parallel', True)
140
141
142
    mixer_cls = create_mixer_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
    mlp_cls = create_mlp_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
    norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_epsilon, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
143
144
145
146
    # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
    residual_in_fp32 = getattr(config, 'residual_in_fp32', False)
    resid_dropout1 = config.resid_pdrop if layer_idx is None or layer_idx > 0 else config.embd_pdrop
    prenorm = getattr(config, 'prenorm', True)
Tri Dao's avatar
Tri Dao committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    parallel_block = getattr(config, 'parallel_block', False)
    if not parallel_block:
        block = Block(
            config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls,
            prenorm=prenorm, resid_dropout1=resid_dropout1, resid_dropout2=config.resid_pdrop,
            fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False),
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
            mark_shared_params=process_group is not None
        )
    else:
        assert prenorm
        block = ParallelBlock(
            config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls,
            resid_dropout1=resid_dropout1, resid_dropout2=config.resid_pdrop,
            tied_norm=getattr(config, 'parallel_block_tied_norm', False),
            fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False),
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
            mark_shared_params=process_group is not None
        )
Tri Dao's avatar
Tri Dao committed
168
169
170
171
    block.layer_idx = layer_idx
    return block


172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
class GPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
        super().__init__()
        if not isinstance(config, GPT2Config):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    @classmethod
188
189
    def from_pretrained(cls, model_name, config, *args, strict=True, device=None, dtype=None,
                        world_size=1, rank=0, **kwargs):
190
191
192
193
194
        """
        Instantiate a GPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.
        """
        # Instantiate model.
195
        model = cls(config, *args, device=device, dtype=dtype, **kwargs)
196
197
        # Load state_dict in cpu because we already initialized the model in GPU, and we don't
        # want extra stuff taking up more GPU memory
Tri Dao's avatar
Tri Dao committed
198
        state_dict = state_dict_from_pretrained(
199
            model_name, device='cpu', dtype=dtype
200
        )
Tri Dao's avatar
Tri Dao committed
201
        if model_name.startswith('gpt2'):
Tri Dao's avatar
Tri Dao committed
202
            state_dict = remap_state_dict_hf_gpt2(state_dict, config)
Tri Dao's avatar
Tri Dao committed
203
        elif model_name.startswith('facebook/opt'):
Tri Dao's avatar
Tri Dao committed
204
205
206
207
            state_dict = remap_state_dict_hf_opt(state_dict, config)
        elif model_name.startswith('EleutherAI/gpt-j-'):
            state_dict = remap_state_dict_hf_gptj(state_dict, config)
            strict = False  # We have rotary_emb.inf_freq buffers not in the GPT-J checkpoint
Tri Dao's avatar
Tri Dao committed
208
209
        else:
            raise NotImplementedError(f'Model {model_name} not supported')
210
211
212
        if world_size > 1:
            state_dict = shard_state_dict_tp(state_dict, config, world_size, rank)
        load_return = model.load_state_dict(state_dict, strict=strict)
213
214
215
        logger.info(load_return)
        return model

Tri Dao's avatar
Tri Dao committed
216

Tri Dao's avatar
Tri Dao committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
def _init_weights(module, n_layer, initializer_range=0.02, rescale_prenorm_residual=True):
    if isinstance(module, nn.Linear):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        nn.init.normal_(module.weight, std=initializer_range)

    if rescale_prenorm_residual:
        # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
        #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
        #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
        #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
        #
        # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
        for name, p in module.named_parameters():
            if name in ["out_proj.weight", "fc2.weight"]:
                # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer))


239
class GPTModel(GPTPreTrainedModel):
Tri Dao's avatar
Tri Dao committed
240

241
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
242
        super().__init__(config)
243
244
        factory_kwargs = {'device': device, 'dtype': dtype}
        self.process_group = process_group
245
        self.sequence_parallel = getattr(config, 'sequence_parallel', True)
246
247
        assert config.activation_function in ['gelu', 'gelu_new', 'gelu_fast', 'gelu_approx',
                                              'relu', 'sqrelu']
248
249
250
        pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
        vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple)
                      * pad_vocab_size_multiple)
Tri Dao's avatar
Tri Dao committed
251
252
253
254
255
        # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
        self.residual_in_fp32 = getattr(config, 'residual_in_fp32', False)
        # These 2 options are for OPT-350m
        self.prenorm = getattr(config, 'prenorm', True)
        word_embed_proj_dim = getattr(config, 'word_embed_proj_dim', None)
Tri Dao's avatar
Tri Dao committed
256
257
        # For GPT-J, GPT-NeoX
        self.parallel_block = getattr(config, 'parallel_block', False)
Tri Dao's avatar
Tri Dao committed
258

259
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
260
261
262
263
            self.embeddings = GPT2Embeddings(
                config.hidden_size, vocab_size, config.max_position_embeddings,
                word_embed_proj_dim=word_embed_proj_dim, **factory_kwargs
            )
264
265
        else:
            self.embeddings = ParallelGPT2Embeddings(
266
                config.hidden_size, vocab_size, config.max_position_embeddings,
267
268
                process_group=process_group, sequence_parallel=self.sequence_parallel,
                **factory_kwargs
269
            )
Tri Dao's avatar
Tri Dao committed
270

Tri Dao's avatar
Tri Dao committed
271
        # We change the order of dropout, residual and layer norm:
Tri Dao's avatar
Tri Dao committed
272
        # Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
Tri Dao's avatar
Tri Dao committed
273
274
275
        # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
        # the main branch (output of MLP). The model definition is unchanged, but the mapping of the
        # nn.Dropout probabilities are changed.
Tri Dao's avatar
Tri Dao committed
276
        # This is for performance reason: we can fuse dropout + add + layer_norm.
Tri Dao's avatar
Tri Dao committed
277
278
279
280
        self.layers = nn.ModuleList([create_block(config, layer_idx=i, process_group=process_group,
                                                  **factory_kwargs)
                                     for i in range(config.num_hidden_layers)])

Tri Dao's avatar
Tri Dao committed
281
282
283
        self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False)
        if self.fused_dropout_add_ln and dropout_add_layer_norm is None:
            raise ImportError('dropout_add_layer_norm is not installed')
Tri Dao's avatar
Tri Dao committed
284
285
286
287
        if self.prenorm:
            self.drop_f = nn.Dropout(config.resid_pdrop)
            self.ln_f = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon,
                                    **factory_kwargs)
288
        if process_group is not None:
Tri Dao's avatar
Tri Dao committed
289
            for p in self.ln_f.parameters():
290
291
292
293
294
                # Mark the norm parameters as "shared_params" so that we sync their values at init.
                p._shared_params = True
                # Mark the norm params as "sequence_parallel" so we run all-reduce on their grads.
                if self.sequence_parallel:
                    p._sequence_parallel = True
295

Tri Dao's avatar
Tri Dao committed
296
297
        self.apply(partial(_init_weights, n_layer=config.num_hidden_layers,
                           initializer_range=config.initializer_range))
298
299
300
        self.tie_weights()

    def tie_weights(self):
301
        if self.process_group is not None:
302
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
303

Tri Dao's avatar
Tri Dao committed
304
    def forward(self, input_ids, position_ids=None, inference_params=None):
305
306
307
308
        # If using Tensor Parallel with sequence parallel, we combine the batch and the seqlen
        # dimensions so that we can split on it easily, in case of small batch size.
        # Only the attention layers need to know the seqlen.
        embedding_kwargs = ({'combine_batch_seqlen_dim': True}
309
                            if self.process_group is not None and self.sequence_parallel else {})
310
        hidden_states = self.embeddings(input_ids, position_ids=position_ids, **embedding_kwargs)
Tri Dao's avatar
Tri Dao committed
311
312
        if self.parallel_block:
            hidden_states2 = None
Tri Dao's avatar
Tri Dao committed
313
        residual = None
314
315
        mixer_kwargs = ({'seqlen': input_ids.shape[1]}
                        if self.process_group is not None and self.sequence_parallel else {})
Tri Dao's avatar
Tri Dao committed
316
317
        if inference_params is not None:
            mixer_kwargs['inference_params'] = inference_params
Tri Dao's avatar
Tri Dao committed
318
        for layer in self.layers:
Tri Dao's avatar
Tri Dao committed
319
            if self.prenorm:
Tri Dao's avatar
Tri Dao committed
320
321
322
323
324
325
326
                if not self.parallel_block:
                    hidden_states, residual = layer(hidden_states, residual,
                                                    mixer_kwargs=mixer_kwargs)
                else:
                    hidden_states, hidden_states2, residual = layer(
                        hidden_states, hidden_states2, residual, mixer_kwargs=mixer_kwargs
                    )
Tri Dao's avatar
Tri Dao committed
327
328
329
330
331
            else:
                hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
        if self.prenorm:
            if not self.fused_dropout_add_ln:
                dropped = self.drop_f(hidden_states)
Tri Dao's avatar
Tri Dao committed
332
333
334
335
336
337
                if not self.parallel_block:
                    residual = (dropped + residual) if residual is not None else dropped
                else:
                    dropped2 = self.drop_f(hidden_states2)
                    residual = ((residual + dropped + dropped2)
                                if residual is not None else dropped + dropped2)
Tri Dao's avatar
Tri Dao committed
338
339
                hidden_states = self.ln_f(residual.to(dtype=self.ln_f.weight.dtype))
            else:
Tri Dao's avatar
Tri Dao committed
340
                assert not self.parallel_block
Tri Dao's avatar
Tri Dao committed
341
                # Set prenorm=False here since we don't need the residual
Tri Dao's avatar
Tri Dao committed
342
343
344
345
346
                hidden_states = dropout_add_layer_norm(
                    hidden_states, residual, self.ln_f.weight, self.ln_f.bias,
                    self.drop_f.p if self.training else 0.0, self.ln_f.eps, prenorm=False,
                    residual_in_fp32=self.residual_in_fp32
                )
Tri Dao's avatar
Tri Dao committed
347
348
349
        return hidden_states


Tri Dao's avatar
Tri Dao committed
350
class GPTLMHeadModel(GPTPreTrainedModel, GenerationMixin):
Tri Dao's avatar
Tri Dao committed
351

352
353
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
        factory_kwargs = {'device': device, 'dtype': dtype}
354
        super().__init__(config)
355
356
        self.process_group = process_group
        self.transformer = GPTModel(config, process_group=process_group, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
357
        self.tie_word_embeddings = getattr(config, 'tie_word_embeddings', True)
358
359
360
        pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
        vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple)
                      * pad_vocab_size_multiple)
Tri Dao's avatar
Tri Dao committed
361
362
363
364
365
366
367
        # This option is for OPT-350m
        word_embed_proj_dim = getattr(config, 'word_embed_proj_dim', None)
        embed_dim = config.n_embd if word_embed_proj_dim is None else word_embed_proj_dim
        if word_embed_proj_dim is not None:
            self.project_out = nn.Linear(config.n_embd, embed_dim, bias=False, **factory_kwargs)
        else:
            self.project_out = None
368
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
369
370
            self.lm_head = nn.Linear(embed_dim, vocab_size, bias=not self.tie_word_embeddings,
                                     **factory_kwargs)
371
372
373
        else:
            if ColumnParallelLinear is None:
                raise ImportError('fused_dense_lib is not installed')
374
            self.lm_head = ColumnParallelLinear(
Tri Dao's avatar
Tri Dao committed
375
                embed_dim, vocab_size, process_group, bias=not self.tie_word_embeddings,
376
377
                sequence_parallel=getattr(config, 'sequence_parallel', True), **factory_kwargs
            )
Tri Dao's avatar
Tri Dao committed
378
379
380
381
382
383
        # Initialize weights and apply final processing
        self.apply(partial(_init_weights, n_layer=config.num_hidden_layers,
                           initializer_range=config.initializer_range))
        self.tie_weights()

    def tie_weights(self):
Tri Dao's avatar
Tri Dao committed
384
385
        if self.tie_word_embeddings:
            self.lm_head.weight = self.transformer.embeddings.word_embeddings.weight
386
        if self.process_group is not None:
387
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
388

Tri Dao's avatar
Tri Dao committed
389
390
391
392
393
394
395
    def forward(self, input_ids, position_ids=None, inference_params=None):
        """
            inference_params: for generation. Adapted from Megatron-LM (and Apex)
            https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
        """
        hidden_states = self.transformer(input_ids, position_ids=position_ids,
                                         inference_params=inference_params)
Tri Dao's avatar
Tri Dao committed
396
397
        if self.project_out is not None:
            hidden_states = self.project_out(hidden_states)
Tri Dao's avatar
Tri Dao committed
398
        lm_logits = self.lm_head(hidden_states)
399
400
401
402
        # During inference, we want the full logit for sampling
        if isinstance(self.lm_head, ColumnParallelLinear) and inference_params is not None:
            lm_logits, _ = all_gather_raw(lm_logits, self.lm_head.process_group)
            lm_logits = rearrange(lm_logits, '(n b) s d -> b s (n d)', b=hidden_states.shape[0])
Tri Dao's avatar
Tri Dao committed
403
404
        CausalLMOutput = namedtuple('CausalLMOutput', ['logits'])
        return CausalLMOutput(logits=lm_logits)
405

Tri Dao's avatar
Tri Dao committed
406
407
408
409
410
    def load_state_dict(self, state_dict, strict=True):
        # Remapping from our checkpoints that used a different ordering of layers in the block
        # Previous: Attn / MLP -> Dropout -> Add -> LN
        # Current: Dropout -> Add -> LN -> Attn / MLP
        if 'transformer.ln_0.weight' in state_dict:
Tri Dao's avatar
Tri Dao committed
411
            n_layers = len(self.transformer.layers)
Tri Dao's avatar
Tri Dao committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
            ln_weight = state_dict.pop(f'transformer.layers.{n_layers - 1}.norm2.weight')
            ln_bias = state_dict.pop(f'transformer.layers.{n_layers - 1}.norm2.bias')
            state_dict['transformer.ln_f.weight'] = ln_weight
            state_dict['transformer.ln_f.bias'] = ln_bias
            for l in reversed(range(n_layers)):
                ln_weight = state_dict.pop(f'transformer.layers.{l}.norm1.weight')
                ln_bias = state_dict.pop(f'transformer.layers.{l}.norm1.bias')
                state_dict[f'transformer.layers.{l}.norm2.weight'] = ln_weight
                state_dict[f'transformer.layers.{l}.norm2.bias'] = ln_bias
                if l > 0:
                    ln_weight = state_dict.pop(f'transformer.layers.{l - 1}.norm2.weight')
                    ln_bias = state_dict.pop(f'transformer.layers.{l - 1}.norm2.bias')
                    state_dict[f'transformer.layers.{l}.norm1.weight'] = ln_weight
                    state_dict[f'transformer.layers.{l}.norm1.bias'] = ln_bias
            ln_weight = state_dict.pop('transformer.ln_0.weight')
            ln_bias = state_dict.pop('transformer.ln_0.bias')
            state_dict[f'transformer.layers.0.norm1.weight'] = ln_weight
            state_dict[f'transformer.layers.0.norm1.bias'] = ln_bias
        return super().load_state_dict(state_dict, strict=strict)

432

Tri Dao's avatar
Tri Dao committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
def shard_state_dict_tp(state_dict, config, world_size, rank):
    """Convert the state_dict of a standard GPT model to the state_dict of a GPT model
    with tensor parallel.
    """
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0

    def shard_first_dim(state_dict, key):
        x = state_dict[key]
        dim = x.shape[0] // world_size
        state_dict[key] = x[rank * dim:(rank + 1) * dim]

    def shard_last_dim(state_dict, key):
        x = state_dict[key]
        dim = x.shape[-1] // world_size
        state_dict[key] = x[..., rank * dim:(rank + 1) * dim]

    def shard_qkv_headdim(state_dict, key):
        x = rearrange(state_dict[key], '(three d) ... -> three d ...', three=3)
        dim = x.shape[1] // world_size
        state_dict[key] = rearrange(x[:, rank * dim:(rank + 1) * dim],
                                    'three d ... -> (three d) ...')

    shard_first_dim(state_dict, 'transformer.embeddings.word_embeddings.weight')
    if 'lm_head.weight' in state_dict:
        shard_first_dim(state_dict, 'lm_head.weight')
    if 'transformer.embeddings.position_embeddings.weight' in state_dict:
        shard_last_dim(state_dict, 'transformer.embeddings.position_embeddings.weight')
    for i in range(config.num_hidden_layers):
        shard_qkv_headdim(state_dict, f'transformer.layers.{i}.mixer.Wqkv.weight')
        shard_qkv_headdim(state_dict, f'transformer.layers.{i}.mixer.Wqkv.bias')
        shard_last_dim(state_dict, f'transformer.layers.{i}.mixer.out_proj.weight')
        if rank != 0:
            state_dict.pop(f'transformer.layers.{i}.mixer.out_proj.bias')
        shard_first_dim(state_dict, f'transformer.layers.{i}.mlp.fc1.weight')
        shard_first_dim(state_dict, f'transformer.layers.{i}.mlp.fc1.bias')
        shard_last_dim(state_dict, f'transformer.layers.{i}.mlp.fc2.weight')
        if rank != 0:
            state_dict.pop(f'transformer.layers.{i}.mlp.fc2.bias')
    return state_dict


def combine_state_dicts_tp(state_dicts, config):
    """Convert the state_dict of a standard GPT model to the state_dict of a GPT model
    with tensor parallel.
    """
    world_size = len(state_dicts)
    keys = state_dicts[0].keys()
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0

    # The word embeddings from Megatron are weird, for each shard only the first
    # vocab_size // world_size coordinates are nonzero.
    def combine_word_embeddings(state_dicts, state_dict, key):
        assert all(s[key].shape[0] == vocab_size for s in state_dicts)
        state_dict[key] = torch.cat([s[key][:vocab_size // world_size] for s in state_dicts], dim=0)

    def combine_dim(state_dicts, state_dict, key, dim=-1):
        state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)

    def combine_qkv_headdim(state_dicts, state_dict, key):
        xs = [rearrange(s[key], '(three d) ... -> three d ...', three=3) for s in state_dicts]
        state_dict[key] = rearrange(torch.cat(xs, dim=1), 'three d ... -> (three d) ...')

    state_dict = state_dicts[0].copy()  # don't modify state_dict[0] inplace
    combine_word_embeddings(state_dicts, state_dict, 'transformer.embeddings.word_embeddings.weight')
    if 'lm_head.weight' in state_dict:
        combine_word_embeddings(state_dicts, state_dict, 'lm_head.weight')
    if 'transformer.embeddings.position_embeddings.weight' in state_dict:
        combine_dim(state_dicts, state_dict, 'transformer.embeddings.position_embeddings.weight', -1)
    for i in range(config.num_hidden_layers):
        combine_qkv_headdim(state_dicts, state_dict, f'transformer.layers.{i}.mixer.Wqkv.weight')
        combine_qkv_headdim(state_dicts, state_dict, f'transformer.layers.{i}.mixer.Wqkv.bias')
        combine_dim(state_dicts, state_dict, f'transformer.layers.{i}.mixer.out_proj.weight', -1)
        combine_dim(state_dicts, state_dict, f'transformer.layers.{i}.mlp.fc1.weight', 0)
        combine_dim(state_dicts, state_dict, f'transformer.layers.{i}.mlp.fc1.bias', 0)
        combine_dim(state_dicts, state_dict, f'transformer.layers.{i}.mlp.fc2.weight', -1)
    return state_dict


def remap_state_dict_hf_gpt2(state_dict, config):
522
523
524
525
526
527
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
        return re.sub(r'^wpe.', 'transformer.embeddings.position_embeddings.', key)
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
    word_embeddings = state_dict.pop('wte.weight')
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
528
529
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
530
    state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
531
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
532
533
534
535
    )
    state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']

    # LayerNorm
Tri Dao's avatar
Tri Dao committed
536
537
538
539
540
    def key_mapping_ln(key):
        key = re.sub(r'^ln_f.(weight|bias)', r'transformer.ln_f.\1', key)
        key = re.sub(r'^h.(\d+).ln_(1|2).(weight|bias)', r'transformer.layers.\1.norm\2.\3', key)
        return key
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

    # MLP
    for d in range(config.num_hidden_layers):
        W1 = state_dict.pop(f'h.{d}.mlp.c_fc.weight')
        state_dict[f'transformer.layers.{d}.mlp.fc1.weight'] = W1.t()
        W2 = state_dict.pop(f'h.{d}.mlp.c_proj.weight')
        state_dict[f'transformer.layers.{d}.mlp.fc2.weight'] = W2.t()
    def key_mapping_mlp(key):
        key = re.sub(r'^h.(\d+).mlp.c_fc.bias', r'transformer.layers.\1.mlp.fc1.bias', key)
        key = re.sub(r'^h.(\d+).mlp.c_proj.bias', r'transformer.layers.\1.mlp.fc2.bias', key)
        return key
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
    for d in range(config.num_hidden_layers):
        state_dict.pop(f'h.{d}.attn.bias')  # We don't store this bias
        Wqkv = state_dict.pop(f'h.{d}.attn.c_attn.weight')
        state_dict[f'transformer.layers.{d}.mixer.Wqkv.weight'] = Wqkv.t()
        Wout = state_dict.pop(f'h.{d}.attn.c_proj.weight')
        state_dict[f'transformer.layers.{d}.mixer.out_proj.weight'] = Wout.t()
    def key_mapping_attn(key):
        key = re.sub(r'^h.(\d+).attn.c_attn.bias', r'transformer.layers.\1.mixer.Wqkv.bias', key)
        key = re.sub(r'^h.(\d+).attn.c_proj.bias', r'transformer.layers.\1.mixer.out_proj.bias', key)
        return key
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

    return state_dict
568
569


Tri Dao's avatar
Tri Dao committed
570
571
572
573
574
575
576
577
578
579
580
581
def remap_state_dict_megatron(state_dict, config):
    def key_mapping_transformer(key):
        key = re.sub(r'^language_model.encoder.', 'transformer.', key)
        key = re.sub(r'^language_model.', 'transformer.', key)
        return key
    state_dict = OrderedDict((key_mapping_transformer(k), v) for k, v in state_dict.items())
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
        return re.sub(r'^wpe.', 'transformer.embeddings.position_embeddings.', key)
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
    word_embeddings = state_dict.pop('transformer.embedding.word_embeddings.weight')
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
582
583
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
Tri Dao's avatar
Tri Dao committed
584
585
586
587
    state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
    )
    state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']
588

Tri Dao's avatar
Tri Dao committed
589
590
591
592
593
594
595
596
597
    # LayerNorm
    def key_mapping_ln(key):
        key = re.sub(r'^transformer.final_layernorm.(weight|bias)', r'transformer.ln_f.\1', key)
        key = re.sub(r'^transformer.layers.(\d+).input_layernorm.(weight|bias)',
                     r'transformer.layers.\1.norm1.\2', key)
        key = re.sub(r'^transformer.layers.(\d+).post_attention_layernorm.(weight|bias)',
                     r'transformer.layers.\1.norm2.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
598

Tri Dao's avatar
Tri Dao committed
599
600
601
602
603
604
605
606
    # MLP
    def key_mapping_mlp(key):
        key = re.sub(r'^transformer.layers.(\d+).mlp.dense_h_to_4h.(weight|bias)',
                     r'transformer.layers.\1.mlp.fc1.\2', key)
        key = re.sub(r'^transformer.layers.(\d+).mlp.dense_4h_to_h.(weight|bias)',
                     r'transformer.layers.\1.mlp.fc2.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
607

Tri Dao's avatar
Tri Dao committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
    # Attention
    def key_mapping_attn(key):
        key = re.sub(r'^transformer.layers.(\d+).self_attention.rotary_emb.inv_freq',
                     r'transformer.layers.\1.mixer.rotary_emb.inv_freq', key)
        key = re.sub(r'^transformer.layers.(\d+).self_attention.query_key_value.(weight|bias)',
                     r'transformer.layers.\1.mixer.Wqkv.\2', key)
        key = re.sub(r'^transformer.layers.(\d+).self_attention.dense.(weight|bias)',
                     r'transformer.layers.\1.mixer.out_proj.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
    # Megatron stores Wqkv as ((nheads 3 headdim), hidden_dim)
    # while we store Wqkv as ((3 nheads headdim), hidden_dim)
    headdim = config.hidden_size // config.num_attention_heads
    for d in range(config.num_hidden_layers):
        Wqkv = state_dict.pop(f'transformer.layers.{d}.mixer.Wqkv.weight')
        state_dict[f'transformer.layers.{d}.mixer.Wqkv.weight'] = rearrange(
            Wqkv, '(nheads three headdim) ... -> (three nheads headdim) ...',
            three=3, headdim=headdim
        )
        bqkv = state_dict.pop(f'transformer.layers.{d}.mixer.Wqkv.bias')
        state_dict[f'transformer.layers.{d}.mixer.Wqkv.bias'] = rearrange(
            bqkv, '(nheads three headdim) -> (three nheads headdim)',
            three=3, headdim=headdim
        )
632
633

    return state_dict