setup.py 12.1 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
import sys
import warnings
import os
5
6
import re
import ast
Tri Dao's avatar
Tri Dao committed
7
from pathlib import Path
Tri Dao's avatar
Tri Dao committed
8
from packaging.version import parse, Version
9
import platform
Tri Dao's avatar
Tri Dao committed
10
11

from setuptools import setup, find_packages
12
from setuptools.command.build import build
Tri Dao's avatar
Tri Dao committed
13
import subprocess
14
from setuptools.command.bdist_egg import bdist_egg
Tri Dao's avatar
Tri Dao committed
15

Pierce Freeman's avatar
Pierce Freeman committed
16
17
import urllib.request
import urllib.error
Tri Dao's avatar
Tri Dao committed
18
19
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
20
from wheel.bdist_wheel import bdist_wheel as _bdist_wheel
Tri Dao's avatar
Tri Dao committed
21
22
23
24
25


with open("README.md", "r", encoding="utf-8") as fh:
    long_description = fh.read()

Tri Dao's avatar
Tri Dao committed
26
27
28
29

# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))

30
PACKAGE_NAME = "flash_attn_wheels"
Tri Dao's avatar
Tri Dao committed
31

32
33
34
35
36
37
38
39
40
# @pierce - TODO: Update for proper release
BASE_WHEEL_URL = "https://github.com/piercefreeman/flash-attention/releases/download/{tag_name}/{wheel_name}"

# FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels
# SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation
FORCE_BUILD = os.getenv("FLASH_ATTENTION_FORCE_BUILD", "FALSE") == "TRUE"
SKIP_CUDA_BUILD = os.getenv("FLASH_ATTENTION_SKIP_CUDA_BUILD", "FALSE") == "TRUE"


41
42
def get_platform():
    """
43
    Returns the platform name as used in wheel filenames.
44
45
46
47
    """
    if sys.platform.startswith('linux'):
        return 'linux_x86_64'
    elif sys.platform == 'darwin':
48
49
        mac_version = '.'.join(platform.mac_ver()[0].split('.')[:2])
        return f'macosx_{mac_version}_x86_64'
50
51
52
53
54
55
    elif sys.platform == 'win32':
        return 'win_amd64'
    else:
        raise ValueError('Unsupported platform: {}'.format(sys.platform))


Tri Dao's avatar
Tri Dao committed
56
57
58
59
def get_cuda_bare_metal_version(cuda_dir):
    raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
    output = raw_output.split()
    release_idx = output.index("release") + 1
Tri Dao's avatar
Tri Dao committed
60
    bare_metal_version = parse(output[release_idx].split(",")[0])
Tri Dao's avatar
Tri Dao committed
61

Tri Dao's avatar
Tri Dao committed
62
    return raw_output, bare_metal_version
Tri Dao's avatar
Tri Dao committed
63
64
65


def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
Tri Dao's avatar
Tri Dao committed
66
67
    raw_output, bare_metal_version = get_cuda_bare_metal_version(cuda_dir)
    torch_binary_version = parse(torch.version.cuda)
Tri Dao's avatar
Tri Dao committed
68
69
70
71

    print("\nCompiling cuda extensions with")
    print(raw_output + "from " + cuda_dir + "/bin\n")

Tri Dao's avatar
Tri Dao committed
72
    if (bare_metal_version != torch_binary_version):
Tri Dao's avatar
Tri Dao committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        raise RuntimeError(
            "Cuda extensions are being compiled with a version of Cuda that does "
            "not match the version used to compile Pytorch binaries.  "
            "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda)
            + "In some cases, a minor-version mismatch will not cause later errors:  "
            "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798.  "
            "You can try commenting out this check (at your own risk)."
        )


def raise_if_cuda_home_none(global_option: str) -> None:
    if CUDA_HOME is not None:
        return
    raise RuntimeError(
        f"{global_option} was requested, but nvcc was not found.  Are you sure your environment has nvcc available?  "
        "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
        "only images whose names contain 'devel' will provide nvcc."
    )


def append_nvcc_threads(nvcc_extra_args):
Tri Dao's avatar
Tri Dao committed
94
95
    _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
    if bare_metal_version >= Version("11.2"):
Tri Dao's avatar
Tri Dao committed
96
97
98
99
100
101
102
103
104
105
106
        return nvcc_extra_args + ["--threads", "4"]
    return nvcc_extra_args


if not torch.cuda.is_available():
    # https://github.com/NVIDIA/apex/issues/486
    # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
    # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
    print(
        "\nWarning: Torch did not find available GPUs on this system.\n",
        "If your intention is to cross-compile, this is not an error.\n"
Tri Dao's avatar
Tri Dao committed
107
108
        "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
        "Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
Tri Dao's avatar
Tri Dao committed
109
110
111
112
        "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
        "If you wish to cross-compile for a single specific architecture,\n"
        'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n',
    )
Tri Dao's avatar
Tri Dao committed
113
114
115
116
117
118
119
120
    if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None and CUDA_HOME is not None:
        _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
        if bare_metal_version >= Version("11.8"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;9.0"
        elif bare_metal_version >= Version("11.1"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
        elif bare_metal_version == Version("11.0"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
Tri Dao's avatar
Tri Dao committed
121
        else:
Tri Dao's avatar
Tri Dao committed
122
123
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"

Tri Dao's avatar
Tri Dao committed
124
125
126
cmdclass = {}
ext_modules = []

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
if not SKIP_CUDA_BUILD:
    print("\n\ntorch.__version__  = {}\n\n".format(torch.__version__))
    TORCH_MAJOR = int(torch.__version__.split(".")[0])
    TORCH_MINOR = int(torch.__version__.split(".")[1])

    # Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
    # See https://github.com/pytorch/pytorch/pull/70650
    generator_flag = []
    torch_dir = torch.__path__[0]
    if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
        generator_flag = ["-DOLD_GENERATOR_PATH"]

    raise_if_cuda_home_none("flash_attn")
    # Check, if CUDA11 is installed for compute capability 8.0
    cc_flag = []
    _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
    if bare_metal_version < Version("11.0"):
        raise RuntimeError("FlashAttention is only supported on CUDA 11 and above")
    cc_flag.append("-gencode")
    cc_flag.append("arch=compute_75,code=sm_75")
Tri Dao's avatar
Tri Dao committed
147
    cc_flag.append("-gencode")
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    cc_flag.append("arch=compute_80,code=sm_80")
    if bare_metal_version >= Version("11.8"):
        cc_flag.append("-gencode")
        cc_flag.append("arch=compute_90,code=sm_90")

    subprocess.run(["git", "submodule", "update", "--init", "csrc/flash_attn/cutlass"])
    ext_modules.append(
        CUDAExtension(
            name="flash_attn_cuda",
            sources=[
                "csrc/flash_attn/fmha_api.cpp",
                "csrc/flash_attn/src/fmha_fwd_hdim32.cu",
                "csrc/flash_attn/src/fmha_fwd_hdim64.cu",
                "csrc/flash_attn/src/fmha_fwd_hdim128.cu",
                "csrc/flash_attn/src/fmha_bwd_hdim32.cu",
                "csrc/flash_attn/src/fmha_bwd_hdim64.cu",
                "csrc/flash_attn/src/fmha_bwd_hdim128.cu",
                "csrc/flash_attn/src/fmha_block_fprop_fp16_kernel.sm80.cu",
                "csrc/flash_attn/src/fmha_block_dgrad_fp16_kernel_loop.sm80.cu",
            ],
            extra_compile_args={
                "cxx": ["-O3", "-std=c++17"] + generator_flag,
                "nvcc": append_nvcc_threads(
                    [
                        "-O3",
                        "-std=c++17",
                        "-U__CUDA_NO_HALF_OPERATORS__",
                        "-U__CUDA_NO_HALF_CONVERSIONS__",
                        "-U__CUDA_NO_HALF2_OPERATORS__",
                        "-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
                        "--expt-relaxed-constexpr",
                        "--expt-extended-lambda",
                        "--use_fast_math",
                        "--ptxas-options=-v",
                        "-lineinfo"
                    ]
                    + generator_flag
                    + cc_flag
                ),
            },
            include_dirs=[
                Path(this_dir) / 'csrc' / 'flash_attn',
                Path(this_dir) / 'csrc' / 'flash_attn' / 'src',
                Path(this_dir) / 'csrc' / 'flash_attn' / 'cutlass' / 'include',
            ],
        )
Tri Dao's avatar
Tri Dao committed
194
195
    )

196
197
198
199
200
201
202
203
204
205
def get_package_version():
    with open(Path(this_dir) / "flash_attn" / "__init__.py", "r") as f:
        version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE)
    public_version = ast.literal_eval(version_match.group(1))
    local_version = os.environ.get("FLASH_ATTN_LOCAL_VERSION")
    if local_version:
        return f"{public_version}+{local_version}"
    else:
        return str(public_version)

206

207
208
209
210
211
212
class CachedWheelsCommand(_bdist_wheel):
     """
     The CachedWheelsCommand plugs into the default bdist wheel, which is ran by pip when it cannot
     find an existing wheel (which is currently the case for all flash attention installs). We use
     the environment parameters to detect whether there is already a pre-built version of a compatible
     wheel available and short-circuits the standard full build pipeline.
213

214
215
     """
     def run(self):
216
        if FORCE_BUILD:
217
            return build.run(self)
218
219
220
221
222
223
224
225
226
227
228
229
230

        raise_if_cuda_home_none("flash_attn")

        # Determine the version numbers that will be used to determine the correct wheel
        _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME)
        torch_version_raw = parse(torch.__version__)
        python_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
        platform_name = get_platform()
        flash_version = get_package_version()
        cuda_version = f"{cuda_version_raw.major}{cuda_version_raw.minor}"
        torch_version = f"{torch_version_raw.major}.{torch_version_raw.minor}.{torch_version_raw.micro}"

        # Determine wheel URL based on CUDA version, torch version, python version and OS
231
        wheel_filename = f'{PACKAGE_NAME}-{flash_version}+cu{cuda_version}torch{torch_version}-{python_version}-{python_version}-{platform_name}.whl'
232
233
234
235
236
237
238
239
        wheel_url = BASE_WHEEL_URL.format(
            tag_name=f"v{flash_version}",
            wheel_name=wheel_filename
        )
        print("Guessing wheel URL: ", wheel_url)
        
        try:
            urllib.request.urlretrieve(wheel_url, wheel_filename)
240
241
242
243
244
245
246
247
248
249
250
251
252

            # Make the archive
            # Lifted from the root wheel processing command
            # https://github.com/pypa/wheel/blob/cf71108ff9f6ffc36978069acb28824b44ae028e/src/wheel/bdist_wheel.py#LL381C9-L381C85
            if not os.path.exists(self.dist_dir):
                os.makedirs(self.dist_dir)

            impl_tag, abi_tag, plat_tag = self.get_tag()
            archive_basename = f"{self.wheel_dist_name}-{impl_tag}-{abi_tag}-{plat_tag}"
        
            wheel_path = os.path.join(self.dist_dir, archive_basename + ".whl")
            print("Raw wheel path", wheel_path)
            os.rename(wheel_filename, wheel_path)
253
254
255
        except urllib.error.HTTPError:
            print("Precompiled wheel not found. Building from source...")
            # If the wheel could not be downloaded, build from source
256
            super().run()
257
258


Tri Dao's avatar
Tri Dao committed
259
setup(
260
    # @pierce - TODO: Revert for official release
261
    name=PACKAGE_NAME,
262
    version=get_package_version(),
Tri Dao's avatar
Tri Dao committed
263
264
265
    packages=find_packages(
        exclude=("build", "csrc", "include", "tests", "dist", "docs", "benchmarks", "flash_attn.egg-info",)
    ),
266
267
268
269
270
    #author="Tri Dao",
    #author_email="trid@stanford.edu",
    # @pierce - TODO: Revert for official release
    author="Pierce Freeman",
    author_email="pierce@freeman.vc",
Tri Dao's avatar
Tri Dao committed
271
272
273
    description="Flash Attention: Fast and Memory-Efficient Exact Attention",
    long_description=long_description,
    long_description_content_type="text/markdown",
274
275
    #url="https://github.com/HazyResearch/flash-attention",
    url="https://github.com/piercefreeman/flash-attention",
Tri Dao's avatar
Tri Dao committed
276
277
    classifiers=[
        "Programming Language :: Python :: 3",
278
        "License :: OSI Approved :: BSD License",
Phil Wang's avatar
Phil Wang committed
279
        "Operating System :: Unix",
Tri Dao's avatar
Tri Dao committed
280
    ],
Tri Dao's avatar
Tri Dao committed
281
    ext_modules=ext_modules,
282
    cmdclass={
283
        'bdist_wheel': CachedWheelsCommand,
284
285
        "build_ext": BuildExtension
    } if ext_modules else {
286
        'bdist_wheel': CachedWheelsCommand,
287
    },
Gustaf's avatar
Gustaf committed
288
289
290
291
    python_requires=">=3.7",
    install_requires=[
        "torch",
        "einops",
Pavel Shvets's avatar
Pavel Shvets committed
292
        "packaging",
293
        "ninja",
Gustaf's avatar
Gustaf committed
294
    ],
Tri Dao's avatar
Tri Dao committed
295
)