setup.py 13.5 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
import sys
import warnings
import os
5
6
import re
import ast
Tri Dao's avatar
Tri Dao committed
7
from pathlib import Path
Tri Dao's avatar
Tri Dao committed
8
from packaging.version import parse, Version
9
import platform
Tri Dao's avatar
Tri Dao committed
10
11
12
13

from setuptools import setup, find_packages
import subprocess

Pierce Freeman's avatar
Pierce Freeman committed
14
15
import urllib.request
import urllib.error
Tri Dao's avatar
Tri Dao committed
16
17
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
18
from wheel.bdist_wheel import bdist_wheel as _bdist_wheel
Tri Dao's avatar
Tri Dao committed
19
20
21
22
23


with open("README.md", "r", encoding="utf-8") as fh:
    long_description = fh.read()

Tri Dao's avatar
Tri Dao committed
24
25
26
27

# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))

28
PACKAGE_NAME = "flash_attn"
Tri Dao's avatar
Tri Dao committed
29

30
BASE_WHEEL_URL = "https://github.com/Dao-AILab/flash-attention/releases/download/{tag_name}/{wheel_name}"
31
32
33
34
35
36
37

# FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels
# SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation
FORCE_BUILD = os.getenv("FLASH_ATTENTION_FORCE_BUILD", "FALSE") == "TRUE"
SKIP_CUDA_BUILD = os.getenv("FLASH_ATTENTION_SKIP_CUDA_BUILD", "FALSE") == "TRUE"


38
39
def get_platform():
    """
40
    Returns the platform name as used in wheel filenames.
41
42
43
44
    """
    if sys.platform.startswith('linux'):
        return 'linux_x86_64'
    elif sys.platform == 'darwin':
45
46
        mac_version = '.'.join(platform.mac_ver()[0].split('.')[:2])
        return f'macosx_{mac_version}_x86_64'
47
48
49
50
51
    elif sys.platform == 'win32':
        return 'win_amd64'
    else:
        raise ValueError('Unsupported platform: {}'.format(sys.platform))

Tri Dao's avatar
Tri Dao committed
52
53
54
55
56

def get_cuda_bare_metal_version(cuda_dir):
    raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
    output = raw_output.split()
    release_idx = output.index("release") + 1
Tri Dao's avatar
Tri Dao committed
57
    bare_metal_version = parse(output[release_idx].split(",")[0])
Tri Dao's avatar
Tri Dao committed
58

Tri Dao's avatar
Tri Dao committed
59
    return raw_output, bare_metal_version
Tri Dao's avatar
Tri Dao committed
60
61
62


def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
Tri Dao's avatar
Tri Dao committed
63
64
    raw_output, bare_metal_version = get_cuda_bare_metal_version(cuda_dir)
    torch_binary_version = parse(torch.version.cuda)
Tri Dao's avatar
Tri Dao committed
65
66
67
68

    print("\nCompiling cuda extensions with")
    print(raw_output + "from " + cuda_dir + "/bin\n")

Tri Dao's avatar
Tri Dao committed
69
    if (bare_metal_version != torch_binary_version):
Tri Dao's avatar
Tri Dao committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        raise RuntimeError(
            "Cuda extensions are being compiled with a version of Cuda that does "
            "not match the version used to compile Pytorch binaries.  "
            "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda)
            + "In some cases, a minor-version mismatch will not cause later errors:  "
            "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798.  "
            "You can try commenting out this check (at your own risk)."
        )


def raise_if_cuda_home_none(global_option: str) -> None:
    if CUDA_HOME is not None:
        return
    raise RuntimeError(
        f"{global_option} was requested, but nvcc was not found.  Are you sure your environment has nvcc available?  "
        "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
        "only images whose names contain 'devel' will provide nvcc."
    )


def append_nvcc_threads(nvcc_extra_args):
Tri Dao's avatar
Tri Dao committed
91
92
    _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
    if bare_metal_version >= Version("11.2"):
Tri Dao's avatar
Tri Dao committed
93
94
95
96
97
98
99
100
101
102
103
        return nvcc_extra_args + ["--threads", "4"]
    return nvcc_extra_args


if not torch.cuda.is_available():
    # https://github.com/NVIDIA/apex/issues/486
    # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
    # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
    print(
        "\nWarning: Torch did not find available GPUs on this system.\n",
        "If your intention is to cross-compile, this is not an error.\n"
Tri Dao's avatar
Tri Dao committed
104
105
        "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
        "Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
Tri Dao's avatar
Tri Dao committed
106
107
108
109
        "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
        "If you wish to cross-compile for a single specific architecture,\n"
        'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n',
    )
Tri Dao's avatar
Tri Dao committed
110
111
112
113
114
115
116
117
    if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None and CUDA_HOME is not None:
        _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
        if bare_metal_version >= Version("11.8"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;9.0"
        elif bare_metal_version >= Version("11.1"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
        elif bare_metal_version == Version("11.0"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
Tri Dao's avatar
Tri Dao committed
118
        else:
Tri Dao's avatar
Tri Dao committed
119
120
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"

Tri Dao's avatar
Tri Dao committed
121
122
123
cmdclass = {}
ext_modules = []

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
if not SKIP_CUDA_BUILD:
    print("\n\ntorch.__version__  = {}\n\n".format(torch.__version__))
    TORCH_MAJOR = int(torch.__version__.split(".")[0])
    TORCH_MINOR = int(torch.__version__.split(".")[1])

    # Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
    # See https://github.com/pytorch/pytorch/pull/70650
    generator_flag = []
    torch_dir = torch.__path__[0]
    if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
        generator_flag = ["-DOLD_GENERATOR_PATH"]

    raise_if_cuda_home_none("flash_attn")
    # Check, if CUDA11 is installed for compute capability 8.0
    cc_flag = []
    _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
    if bare_metal_version < Version("11.0"):
        raise RuntimeError("FlashAttention is only supported on CUDA 11 and above")
142
143
    # cc_flag.append("-gencode")
    # cc_flag.append("arch=compute_75,code=sm_75")
Tri Dao's avatar
Tri Dao committed
144
    cc_flag.append("-gencode")
145
146
147
148
149
    cc_flag.append("arch=compute_80,code=sm_80")
    if bare_metal_version >= Version("11.8"):
        cc_flag.append("-gencode")
        cc_flag.append("arch=compute_90,code=sm_90")

150
    subprocess.run(["git", "submodule", "update", "--init", "csrc/cutlass"])
151
152
    ext_modules.append(
        CUDAExtension(
153
            name="flash_attn_2_cuda",
154
            sources=[
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
                "csrc/flash_attn/flash_api.cpp",
                "csrc/flash_attn/src/flash_fwd_hdim32_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim32_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim64_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim64_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim96_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim96_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim128_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim128_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim160_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim160_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim192_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim192_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim224_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim224_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim256_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim256_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim32_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim32_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim64_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim64_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim96_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim96_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim128_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim128_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim160_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim160_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim192_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim192_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim224_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim224_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim256_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim256_bf16_sm80.cu",
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
            ],
            extra_compile_args={
                "cxx": ["-O3", "-std=c++17"] + generator_flag,
                "nvcc": append_nvcc_threads(
                    [
                        "-O3",
                        "-std=c++17",
                        "-U__CUDA_NO_HALF_OPERATORS__",
                        "-U__CUDA_NO_HALF_CONVERSIONS__",
                        "-U__CUDA_NO_HALF2_OPERATORS__",
                        "-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
                        "--expt-relaxed-constexpr",
                        "--expt-extended-lambda",
                        "--use_fast_math",
                        "--ptxas-options=-v",
203
                        # "--ptxas-options=-O2",
204
205
206
207
208
209
210
211
212
                        "-lineinfo"
                    ]
                    + generator_flag
                    + cc_flag
                ),
            },
            include_dirs=[
                Path(this_dir) / 'csrc' / 'flash_attn',
                Path(this_dir) / 'csrc' / 'flash_attn' / 'src',
213
                Path(this_dir) / 'csrc' / 'cutlass' / 'include',
214
215
            ],
        )
Tri Dao's avatar
Tri Dao committed
216

Tri Dao's avatar
Tri Dao committed
217

218
219
220
221
222
223
224
225
226
227
def get_package_version():
    with open(Path(this_dir) / "flash_attn" / "__init__.py", "r") as f:
        version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE)
    public_version = ast.literal_eval(version_match.group(1))
    local_version = os.environ.get("FLASH_ATTN_LOCAL_VERSION")
    if local_version:
        return f"{public_version}+{local_version}"
    else:
        return str(public_version)

Tri Dao's avatar
Tri Dao committed
228

229
230
231
232
233
234
class CachedWheelsCommand(_bdist_wheel):
     """
     The CachedWheelsCommand plugs into the default bdist wheel, which is ran by pip when it cannot
     find an existing wheel (which is currently the case for all flash attention installs). We use
     the environment parameters to detect whether there is already a pre-built version of a compatible
     wheel available and short-circuits the standard full build pipeline.
235

236
237
     """
     def run(self):
238
        if FORCE_BUILD:
Pierce Freeman's avatar
Pierce Freeman committed
239
            return super().run()
240
241
242
243
244
245
246
247
248
249
250
251
252

        raise_if_cuda_home_none("flash_attn")

        # Determine the version numbers that will be used to determine the correct wheel
        _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME)
        torch_version_raw = parse(torch.__version__)
        python_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
        platform_name = get_platform()
        flash_version = get_package_version()
        cuda_version = f"{cuda_version_raw.major}{cuda_version_raw.minor}"
        torch_version = f"{torch_version_raw.major}.{torch_version_raw.minor}.{torch_version_raw.micro}"

        # Determine wheel URL based on CUDA version, torch version, python version and OS
253
        wheel_filename = f'{PACKAGE_NAME}-{flash_version}+cu{cuda_version}torch{torch_version}-{python_version}-{python_version}-{platform_name}.whl'
254
255
256
257
258
        wheel_url = BASE_WHEEL_URL.format(
            tag_name=f"v{flash_version}",
            wheel_name=wheel_filename
        )
        print("Guessing wheel URL: ", wheel_url)
259

260
261
        try:
            urllib.request.urlretrieve(wheel_url, wheel_filename)
262
263
264
265
266
267
268
269
270

            # Make the archive
            # Lifted from the root wheel processing command
            # https://github.com/pypa/wheel/blob/cf71108ff9f6ffc36978069acb28824b44ae028e/src/wheel/bdist_wheel.py#LL381C9-L381C85
            if not os.path.exists(self.dist_dir):
                os.makedirs(self.dist_dir)

            impl_tag, abi_tag, plat_tag = self.get_tag()
            archive_basename = f"{self.wheel_dist_name}-{impl_tag}-{abi_tag}-{plat_tag}"
271

272
273
274
            wheel_path = os.path.join(self.dist_dir, archive_basename + ".whl")
            print("Raw wheel path", wheel_path)
            os.rename(wheel_filename, wheel_path)
275
276
277
        except urllib.error.HTTPError:
            print("Precompiled wheel not found. Building from source...")
            # If the wheel could not be downloaded, build from source
278
            super().run()
279
280


Tri Dao's avatar
Tri Dao committed
281
setup(
282
    # @pierce - TODO: Revert for official release
283
    name=PACKAGE_NAME,
284
    version=get_package_version(),
Tri Dao's avatar
Tri Dao committed
285
286
287
288
    packages=find_packages(
        exclude=("build", "csrc", "include", "tests", "dist", "docs", "benchmarks", "flash_attn.egg-info",)
    ),
    author="Tri Dao",
Tri Dao's avatar
Tri Dao committed
289
    author_email="trid@cs.stanford.edu",
Tri Dao's avatar
Tri Dao committed
290
291
292
    description="Flash Attention: Fast and Memory-Efficient Exact Attention",
    long_description=long_description,
    long_description_content_type="text/markdown",
Tri Dao's avatar
Tri Dao committed
293
    url="https://github.com/Dao-AILab/flash-attention",
Tri Dao's avatar
Tri Dao committed
294
295
    classifiers=[
        "Programming Language :: Python :: 3",
296
        "License :: OSI Approved :: BSD License",
Phil Wang's avatar
Phil Wang committed
297
        "Operating System :: Unix",
Tri Dao's avatar
Tri Dao committed
298
    ],
Tri Dao's avatar
Tri Dao committed
299
    ext_modules=ext_modules,
300
    cmdclass={
301
        'bdist_wheel': CachedWheelsCommand,
302
303
        "build_ext": BuildExtension
    } if ext_modules else {
304
        'bdist_wheel': CachedWheelsCommand,
305
    },
Gustaf's avatar
Gustaf committed
306
307
308
309
    python_requires=">=3.7",
    install_requires=[
        "torch",
        "einops",
Pavel Shvets's avatar
Pavel Shvets committed
310
        "packaging",
311
        "ninja",
Gustaf's avatar
Gustaf committed
312
    ],
Tri Dao's avatar
Tri Dao committed
313
)