test_baichuan.py 17.3 KB
Newer Older
1
# Copyright (c) 2023, Tri Dao.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import os
import time
from pathlib import Path

import torch
import pytest

from einops import rearrange

from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM

from flash_attn.models.gpt import (
    GPTLMHeadModel,
    combine_state_dicts_tp,
    shard_state_dict_tp,
)
from flash_attn.models.baichuan import (
    remap_state_dict_hf_baichuan,
    baichuan_config_to_gpt2_config,
)
from flash_attn.utils.distributed import all_gather_raw
from flash_attn.utils.pretrained import state_dict_from_pretrained
from flash_attn.utils.generation import update_graph_cache


Tri Dao's avatar
Tri Dao committed
27
28
29
30
31
32
33
34
35
@pytest.mark.parametrize(
    "model_name",
    [
        "baichuan-inc/Baichuan-7B",
        "baichuan-inc/Baichuan-13B-Base",
        "baichuan-inc/Baichuan2-7B-Base",
        "baichuan-inc/Baichuan2-13B-Base",
    ],
)
36
37
def test_baichuan_state_dict(model_name):
    config = baichuan_config_to_gpt2_config(
Tri Dao's avatar
Tri Dao committed
38
        AutoConfig.from_pretrained(model_name, trust_remote_code=True)
39
    )
Tri Dao's avatar
Tri Dao committed
40
41
42
43
    pretrained_state_dict = remap_state_dict_hf_baichuan(
        state_dict_from_pretrained(model_name), config
    )
    model = GPTLMHeadModel(config, device="meta")  # Without device='meta' init is very slow
44
45
46
47
48
49
50
    state_dict = model.state_dict()
    assert len(state_dict.keys()) == len(pretrained_state_dict.keys())
    assert state_dict.keys() == pretrained_state_dict.keys()
    for k in state_dict.keys():
        assert state_dict[k].shape == pretrained_state_dict[k].shape


Tri Dao's avatar
Tri Dao committed
51
52
53
54
55
56
57
58
59
@pytest.mark.parametrize(
    "model_name",
    [
        "baichuan-inc/Baichuan-7B",
        "baichuan-inc/Baichuan-13B-Base",
        "baichuan-inc/Baichuan2-7B-Base",
        "baichuan-inc/Baichuan2-13B-Base",
    ],
)
60
61
62
63
64
65
66
67
def test_baichuan_optimized(model_name):
    """Check that our implementation of Baichuan (with all optimizations enabled) matches the
    HF implementation: the output of our forward pass in fp16 should be around the same as the HF
    forward pass in fp16, when compared to the HF forward pass in fp32.
    """
    dtype = torch.float16
    device = "cuda"
    config = baichuan_config_to_gpt2_config(
Tri Dao's avatar
Tri Dao committed
68
        AutoConfig.from_pretrained(model_name, trust_remote_code=True)
69
70
71
72
73
74
75
    )
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = True
    config.residual_in_fp32 = True

Tri Dao's avatar
Tri Dao committed
76
77
78
    pretrained_state_dict = remap_state_dict_hf_baichuan(
        state_dict_from_pretrained(model_name), config
    )
79
80
81
82
83
84
85
    model = GPTLMHeadModel(config, device=device, dtype=dtype)
    model.load_state_dict(pretrained_state_dict)
    model.eval()

    torch.manual_seed(0)
    batch_size = 2
    max_seqlen = 256
Tri Dao's avatar
Tri Dao committed
86
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
87
88
89
90
91
92
93
94
95
96
97
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
    )
    with torch.no_grad():
        out = model.transformer(input_ids)
        logits = model(input_ids).logits
    del model

    # Without device_map, the model is loaded on the CPU, which is very slow
    # Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
    model_ref = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
98
        model_name, device_map="auto", trust_remote_code=True
99
100
101
102
103
104
105
106
    )
    model_ref.eval()
    with torch.no_grad():
        out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
        logits_ref = model_ref(input_ids).logits.to(device=device)
    del model_ref

    model_hf = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
107
108
109
110
        model_name,
        torch_dtype=dtype,
        device_map={"": device},
        trust_remote_code=True,
111
112
113
114
115
116
117
118
119
120
121
    )
    model_hf.eval()
    with torch.no_grad():
        out_hf = model_hf.model(input_ids).last_hidden_state
        logits_hf = model_hf(input_ids).logits
    del model_hf

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
    print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
122
    assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
123
124
125
126
127
128
129
130
131
132

    print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
    print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
    print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
    print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
    assert (logits - logits_ref).abs().max().item() < 3 * (
        logits_hf - logits_ref
    ).abs().max().item()


Tri Dao's avatar
Tri Dao committed
133
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_baichuan.py -k "test_baichuan_parallel_forward"
134
@pytest.mark.parametrize("world_size", [2])
Tri Dao's avatar
Tri Dao committed
135
136
137
138
139
140
141
142
143
@pytest.mark.parametrize(
    "model_name",
    [
        "baichuan-inc/Baichuan-7B",
        "baichuan-inc/Baichuan-13B-Base",
        "baichuan-inc/Baichuan2-7B-Base",
        "baichuan-inc/Baichuan2-13B-Base",
    ],
)
Tri Dao's avatar
Tri Dao committed
144
def test_baichuan_parallel_forward(model_name, world_size):
145
146
147
148
149
150
151
152
    """Check that our implementation of Baichuan (with all optimizations enabled) matches the
    HF implementation: the output of our forward pass in fp16 should be around the same as the HF
    forward pass in fp16, when compared to the HF forward pass in fp32.
    """
    from apex.transformer import parallel_state

    dtype = torch.float16
    config = baichuan_config_to_gpt2_config(
Tri Dao's avatar
Tri Dao committed
153
        AutoConfig.from_pretrained(model_name, trust_remote_code=True)
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    )
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = True
    config.residual_in_fp32 = True

    if not torch.distributed.is_initialized():
        torch.distributed.init_process_group(backend="nccl", init_method="env://")
    device = f"cuda:{torch.distributed.get_rank()}"
    assert world_size <= torch.distributed.get_world_size()
    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    process_group = parallel_state.get_tensor_model_parallel_group()

Tri Dao's avatar
Tri Dao committed
169
170
171
    pretrained_state_dict = remap_state_dict_hf_baichuan(
        state_dict_from_pretrained(model_name), config
    )
172

Tri Dao's avatar
Tri Dao committed
173
174
    model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
    model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
175
176
177
178
179
    model.eval()

    torch.manual_seed(0)
    batch_size = 2
    max_seqlen = 256
Tri Dao's avatar
Tri Dao committed
180
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
181
182
183
184
185
186
187
188
189
190
191
192
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
    )
    with torch.no_grad():
        out = model.transformer(input_ids)
        out, _ = all_gather_raw(out, process_group=process_group)
        out = rearrange(out, "(b s) d -> b s d", b=batch_size)
        logits = model(input_ids).logits
        logits = rearrange(logits, "(b s) d -> b s d", b=batch_size)
        logits, _ = all_gather_raw(logits, process_group)
        logits = rearrange(logits, "(n b) ... d -> b ... (n d)", b=batch_size)
    del model
Tri Dao's avatar
Tri Dao committed
193
    parallel_state.destroy_model_parallel()
194
195
196
197

    if rank == 0:
        # Without device_map, the model is loaded on the CPU, which is very slow
        model_ref = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
198
            model_name, device_map="auto", trust_remote_code=True
199
200
201
202
203
204
205
206
        )
        model_ref.eval()
        with torch.no_grad():
            out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
            logits_ref = model_ref(input_ids).logits.to(device=device)
        del model_ref

        model_hf = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
207
            model_name, torch_dtype=dtype, device_map="auto", trust_remote_code=True
208
209
210
211
212
213
214
215
216
217
218
        )
        model_hf.eval()
        with torch.no_grad():
            out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device)
            logits_hf = model_hf(input_ids).logits.to(device=device)
        del model_hf

        print(f"Output max diff: {(out - out_ref).abs().max().item()}")
        print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
        print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
        print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
219
        assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()
220
221
222
223
224
225
226
227
228
229

        print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
        print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
        print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
        print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
        assert (logits - logits_ref).abs().max().item() < 2 * (
            logits_hf - logits_ref
        ).abs().max().item()


Tri Dao's avatar
Tri Dao committed
230
231
232
@pytest.mark.parametrize(
    "model_name", ["baichuan-inc/Baichuan-7B", "baichuan-inc/Baichuan-13B-Base"]
)
233
def test_baichuan_generation(model_name):
234
235
236
    dtype = torch.float16
    device = "cuda"
    config = baichuan_config_to_gpt2_config(
Tri Dao's avatar
Tri Dao committed
237
        AutoConfig.from_pretrained(model_name, trust_remote_code=True)
238
239
240
241
242
243
244
    )
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = True
    config.residual_in_fp32 = True

Tri Dao's avatar
Tri Dao committed
245
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
246
247
248
249
    eos_token_id = tokenizer.eos_token_id

    torch.manual_seed(0)
    batch_size = 1
250
251
    seqlen = 2048
    max_length = 2048 + 150
252
253
254
255
256
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
    )

    model_hf = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
257
        model_name, torch_dtype=dtype, device_map={"": device}, trust_remote_code=True
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    )
    model_hf.eval()
    print("HF fp16")
    torch.cuda.synchronize()
    start = time.time()
    out_hf = model_hf.generate(
        input_ids=input_ids,
        max_length=max_length,
        return_dict_in_generate=True,
        output_scores=True,
    )
    torch.cuda.synchronize()
    print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
    del model_hf

    # Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
    model_ref = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
275
        model_name, device_map="auto", trust_remote_code=True
276
277
278
    )
    model_ref.eval()
    with torch.no_grad():
Tri Dao's avatar
Tri Dao committed
279
        logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1].to(device=device)
280
281
    del model_ref

Tri Dao's avatar
Tri Dao committed
282
283
284
    pretrained_state_dict = remap_state_dict_hf_baichuan(
        state_dict_from_pretrained(model_name), config
    )
285
286
287
288
    model = GPTLMHeadModel(config, device=device, dtype=dtype)
    model.load_state_dict(pretrained_state_dict)
    model.eval()

289
    model(input_ids)  # Warm up
290
291
292
293
294
295
296
297
298
    print("Without CUDA graph")
    torch.cuda.synchronize()
    start = time.time()
    out = model.generate(
        input_ids=input_ids,
        max_length=max_length,
        eos_token_id=eos_token_id,
        return_dict_in_generate=True,
        output_scores=True,
Tri Dao's avatar
Tri Dao committed
299
        enable_timing=True,
300
301
302
303
304
305
306
        teacher_outputs=out_hf.sequences,
    )
    torch.cuda.synchronize()
    print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")

    # Capture graph outside the timing loop
    batch_size, seqlen_og = input_ids.shape
307
    model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
308
309
310
311
312
313
314
315
316
    print("With CUDA graph")
    torch.cuda.synchronize()
    start = time.time()
    out_cg = model.generate(
        input_ids=input_ids,
        max_length=max_length,
        cg=True,
        return_dict_in_generate=True,
        output_scores=True,
Tri Dao's avatar
Tri Dao committed
317
        enable_timing=True,
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
        teacher_outputs=out_hf.sequences,
    )
    torch.cuda.synchronize()
    print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")

    with torch.no_grad():
        logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1) : -1]
    logits_hf = torch.stack(out_hf.scores, dim=1)
    logits = torch.stack(out.scores, dim=1)
    logits_cg = torch.stack(out_cg.scores, dim=1)

    del model

    hf_error = (logits_hf - logits_ref).abs().max().item()

    print(f"HF fp16 logits max diff: {hf_error}")
    print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }")
    print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }")

    assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
    assert (logits - logits_ref).abs().max().item() < 2 * hf_error
    assert torch.equal(logits_cg, logits)


# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_baichuan.py -k "baichuan_parallel_generation"
@pytest.mark.parametrize("world_size", [2])
Tri Dao's avatar
Tri Dao committed
344
@pytest.mark.parametrize("model_name", ["baichuan-inc/Baichuan-7B"])
345
346
347
348
349
350
351
352
353
def test_baichuan_parallel_generation(model_name, world_size):
    """Check that our implementation matches the HF implementation:
    the scores in fp16 should be around the same as the HF scores in fp16, when compared to
    the HF scores in fp32.
    """
    from apex.transformer import parallel_state

    dtype = torch.float16
    config = baichuan_config_to_gpt2_config(
Tri Dao's avatar
Tri Dao committed
354
        AutoConfig.from_pretrained(model_name, trust_remote_code=True)
355
    )
356
    config.use_flash_attn = True
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = False
    config.residual_in_fp32 = True
    config.pad_vocab_size_multiple = 8 * world_size
    config.sequence_parallel = False  # Need to set this to False for generation

    os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0"
    if not torch.distributed.is_initialized():
        torch.distributed.init_process_group(backend="nccl", init_method="env://")
    device = f"cuda:{torch.distributed.get_rank()}"
    assert world_size <= torch.distributed.get_world_size()
    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    process_group = parallel_state.get_tensor_model_parallel_group()

    torch.manual_seed(0)
    batch_size = 1
    seqlen = 100
    max_length = 150
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
    )

    # Need this, otherwise when we capture the graph the process for GPU 1 would run on both
    # GPU0 and GPU1 and things would hang
    torch.cuda.set_device(device)

Tri Dao's avatar
Tri Dao committed
385
386
387
    pretrained_state_dict = remap_state_dict_hf_baichuan(
        state_dict_from_pretrained(model_name), config
    )
388

Tri Dao's avatar
Tri Dao committed
389
390
    model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
    model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
391
392
393
394
395
396
397
398
399
400
401
    model.eval()

    print("Without CUDA graph")
    out = model.generate(
        input_ids=input_ids,
        max_length=max_length,
        tensor_parallel=world_size,
        vocab_size=config.vocab_size,
        # teacher_outputs=out_hf.sequences,
        return_dict_in_generate=True,
        output_scores=True,
Tri Dao's avatar
Tri Dao committed
402
        enable_timing=True,
403
404
405
406
    )

    # Capture graph outside the timing loop
    batch_size, seqlen_og = input_ids.shape
407
    model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
408
409
410
411
412
413
414
415
416
417
    print("With CUDA graph")
    out_cg = model.generate(
        input_ids=input_ids,
        max_length=max_length,
        tensor_parallel=world_size,
        vocab_size=config.vocab_size,
        cg=True,
        # teacher_outputs=out_hf.sequences,
        return_dict_in_generate=True,
        output_scores=True,
Tri Dao's avatar
Tri Dao committed
418
        enable_timing=True,
419
420
421
422
423
424
425
    )
    del model
    parallel_state.destroy_model_parallel()

    if rank == 0:
        # Without device_map, the model is loaded on the CPU, which is very slow
        model_hf = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
426
            model_name, torch_dtype=dtype, device_map="auto", trust_remote_code=True
427
428
429
430
431
432
433
434
435
436
437
438
439
        )
        model_hf.eval()
        print("HF fp16")
        torch.cuda.synchronize()
        start = time.time()
        with torch.inference_mode():
            out_hf = model_hf.generate(
                input_ids=input_ids,
                max_length=max_length,
                return_dict_in_generate=True,
                output_scores=True,
            )
        torch.cuda.synchronize()
Tri Dao's avatar
Tri Dao committed
440
        print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
441
442
443
        del model_hf

        model_ref = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
444
            model_name, device_map="auto", trust_remote_code=True
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        )
        model_ref.eval()
        with torch.inference_mode():
            logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1]
        del model_ref
        logits_hf = torch.stack(out_hf.scores, dim=1)

        logits = torch.stack(out.scores, dim=1)
        logits_cg = torch.stack(out_cg.scores, dim=1)

        hf_error = (logits_hf - logits_ref).abs().max().item()
        print(f"HF fp16 logits max diff: {hf_error}")
        print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }")
        print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }")
459
        assert (logits - logits_ref).abs().max().item() < 2 * hf_error
460
        assert torch.equal(logits_cg, logits)