test_baichuan.py 17 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import os
import time
from pathlib import Path

import torch
import pytest

from einops import rearrange

from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM

from flash_attn.models.gpt import (
    GPTLMHeadModel,
    combine_state_dicts_tp,
    shard_state_dict_tp,
)
from flash_attn.models.baichuan import (
    remap_state_dict_hf_baichuan,
    baichuan_config_to_gpt2_config,
)
from flash_attn.utils.distributed import all_gather_raw
from flash_attn.utils.pretrained import state_dict_from_pretrained
from flash_attn.utils.generation import update_graph_cache


26
@pytest.mark.parametrize("model_name", ["baichuan-inc/Baichuan-7B", "baichuan-inc/Baichuan-13B-Base"])
27
28
def test_baichuan_state_dict(model_name):
    config = baichuan_config_to_gpt2_config(
Tri Dao's avatar
Tri Dao committed
29
        AutoConfig.from_pretrained(model_name, trust_remote_code=True)
30
    )
Tri Dao's avatar
Tri Dao committed
31
32
33
34
    pretrained_state_dict = remap_state_dict_hf_baichuan(
        state_dict_from_pretrained(model_name), config
    )
    model = GPTLMHeadModel(config, device="meta")  # Without device='meta' init is very slow
35
36
37
38
39
40
41
    state_dict = model.state_dict()
    assert len(state_dict.keys()) == len(pretrained_state_dict.keys())
    assert state_dict.keys() == pretrained_state_dict.keys()
    for k in state_dict.keys():
        assert state_dict[k].shape == pretrained_state_dict[k].shape


42
@pytest.mark.parametrize("model_name", ["baichuan-inc/Baichuan-7B", "baichuan-inc/Baichuan-13B-Base"])
43
44
45
46
47
48
49
50
def test_baichuan_optimized(model_name):
    """Check that our implementation of Baichuan (with all optimizations enabled) matches the
    HF implementation: the output of our forward pass in fp16 should be around the same as the HF
    forward pass in fp16, when compared to the HF forward pass in fp32.
    """
    dtype = torch.float16
    device = "cuda"
    config = baichuan_config_to_gpt2_config(
Tri Dao's avatar
Tri Dao committed
51
        AutoConfig.from_pretrained(model_name, trust_remote_code=True)
52
53
54
55
56
57
58
    )
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = True
    config.residual_in_fp32 = True

Tri Dao's avatar
Tri Dao committed
59
60
61
    pretrained_state_dict = remap_state_dict_hf_baichuan(
        state_dict_from_pretrained(model_name), config
    )
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    model = GPTLMHeadModel(config, device=device, dtype=dtype)
    model.load_state_dict(pretrained_state_dict)
    model.eval()

    torch.manual_seed(0)
    batch_size = 2
    max_seqlen = 256
    seqlens = torch.randint(
        max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device
    )
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
    )
    with torch.no_grad():
        out = model.transformer(input_ids)
        logits = model(input_ids).logits
    del model

    # Without device_map, the model is loaded on the CPU, which is very slow
    # Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
    model_ref = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
83
        model_name, device_map="auto", trust_remote_code=True
84
85
86
87
88
89
90
91
    )
    model_ref.eval()
    with torch.no_grad():
        out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
        logits_ref = model_ref(input_ids).logits.to(device=device)
    del model_ref

    model_hf = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
92
        model_name, torch_dtype=dtype, device_map={"": device}, trust_remote_code=True,
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    )
    model_hf.eval()
    with torch.no_grad():
        out_hf = model_hf.model(input_ids).last_hidden_state
        logits_hf = model_hf(input_ids).logits
    del model_hf

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
    print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
    assert (out - out_ref).abs().max().item() < 3 * (
        out_hf - out_ref
    ).abs().max().item()

    print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
    print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
    print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
    print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
    assert (logits - logits_ref).abs().max().item() < 3 * (
        logits_hf - logits_ref
    ).abs().max().item()


Tri Dao's avatar
Tri Dao committed
117
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_baichuan.py -k "test_baichuan_parallel_forward"
118
@pytest.mark.parametrize("world_size", [2])
119
@pytest.mark.parametrize("model_name", ["baichuan-inc/Baichuan-7B", "baichuan-inc/Baichuan-13B-Base"])
Tri Dao's avatar
Tri Dao committed
120
def test_baichuan_parallel_forward(model_name, world_size):
121
122
123
124
125
126
127
128
    """Check that our implementation of Baichuan (with all optimizations enabled) matches the
    HF implementation: the output of our forward pass in fp16 should be around the same as the HF
    forward pass in fp16, when compared to the HF forward pass in fp32.
    """
    from apex.transformer import parallel_state

    dtype = torch.float16
    config = baichuan_config_to_gpt2_config(
Tri Dao's avatar
Tri Dao committed
129
        AutoConfig.from_pretrained(model_name, trust_remote_code=True)
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    )
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = True
    config.residual_in_fp32 = True

    if not torch.distributed.is_initialized():
        torch.distributed.init_process_group(backend="nccl", init_method="env://")
    device = f"cuda:{torch.distributed.get_rank()}"
    assert world_size <= torch.distributed.get_world_size()
    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    process_group = parallel_state.get_tensor_model_parallel_group()

Tri Dao's avatar
Tri Dao committed
145
146
147
    pretrained_state_dict = remap_state_dict_hf_baichuan(
        state_dict_from_pretrained(model_name), config
    )
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

    model = GPTLMHeadModel(
        config, process_group=process_group, device=device, dtype=dtype
    )
    model.load_state_dict(
        shard_state_dict_tp(pretrained_state_dict, config, world_size, rank)
    )
    model.eval()

    torch.manual_seed(0)
    batch_size = 2
    max_seqlen = 256
    seqlens = torch.randint(
        max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device
    )
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
    )
    with torch.no_grad():
        out = model.transformer(input_ids)
        out, _ = all_gather_raw(out, process_group=process_group)
        out = rearrange(out, "(b s) d -> b s d", b=batch_size)
        logits = model(input_ids).logits
        logits = rearrange(logits, "(b s) d -> b s d", b=batch_size)
        logits, _ = all_gather_raw(logits, process_group)
        logits = rearrange(logits, "(n b) ... d -> b ... (n d)", b=batch_size)
    del model
Tri Dao's avatar
Tri Dao committed
175
    parallel_state.destroy_model_parallel()
176
177
178
179

    if rank == 0:
        # Without device_map, the model is loaded on the CPU, which is very slow
        model_ref = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
180
            model_name, device_map="auto", trust_remote_code=True
181
182
183
184
185
186
187
188
        )
        model_ref.eval()
        with torch.no_grad():
            out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
            logits_ref = model_ref(input_ids).logits.to(device=device)
        del model_ref

        model_hf = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
189
            model_name, torch_dtype=dtype, device_map="auto", trust_remote_code=True
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        )
        model_hf.eval()
        with torch.no_grad():
            out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device)
            logits_hf = model_hf(input_ids).logits.to(device=device)
        del model_hf

        print(f"Output max diff: {(out - out_ref).abs().max().item()}")
        print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
        print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
        print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
        assert (out - out_ref).abs().max().item() < 2 * (
            out_hf - out_ref
        ).abs().max().item()

        print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
        print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
        print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
        print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
        assert (logits - logits_ref).abs().max().item() < 2 * (
            logits_hf - logits_ref
        ).abs().max().item()


214
@pytest.mark.parametrize("model_name", ["baichuan-inc/Baichuan-7B", "baichuan-inc/Baichuan-13B-Base"])
215
def test_baichuan_generation(model_name):
216
217
218
    dtype = torch.float16
    device = "cuda"
    config = baichuan_config_to_gpt2_config(
Tri Dao's avatar
Tri Dao committed
219
        AutoConfig.from_pretrained(model_name, trust_remote_code=True)
220
221
222
223
224
225
226
    )
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = True
    config.residual_in_fp32 = True

Tri Dao's avatar
Tri Dao committed
227
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
228
229
230
231
    eos_token_id = tokenizer.eos_token_id

    torch.manual_seed(0)
    batch_size = 1
232
233
    seqlen = 2048
    max_length = 2048 + 150
234
235
236
237
238
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
    )

    model_hf = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
239
        model_name, torch_dtype=dtype, device_map={"": device}, trust_remote_code=True
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    )
    model_hf.eval()
    print("HF fp16")
    torch.cuda.synchronize()
    start = time.time()
    out_hf = model_hf.generate(
        input_ids=input_ids,
        max_length=max_length,
        return_dict_in_generate=True,
        output_scores=True,
    )
    torch.cuda.synchronize()
    print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
    del model_hf

    # Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
    model_ref = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
257
        model_name, device_map="auto", trust_remote_code=True
258
259
260
261
262
263
264
265
    )
    model_ref.eval()
    with torch.no_grad():
        logits_ref = (
            model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1].to(device=device)
        )
    del model_ref

Tri Dao's avatar
Tri Dao committed
266
267
268
    pretrained_state_dict = remap_state_dict_hf_baichuan(
        state_dict_from_pretrained(model_name), config
    )
269
270
271
272
    model = GPTLMHeadModel(config, device=device, dtype=dtype)
    model.load_state_dict(pretrained_state_dict)
    model.eval()

273
    model(input_ids)  # Warm up
274
275
276
277
278
279
280
281
282
    print("Without CUDA graph")
    torch.cuda.synchronize()
    start = time.time()
    out = model.generate(
        input_ids=input_ids,
        max_length=max_length,
        eos_token_id=eos_token_id,
        return_dict_in_generate=True,
        output_scores=True,
Tri Dao's avatar
Tri Dao committed
283
        enable_timing=True,
284
285
286
287
288
289
290
        teacher_outputs=out_hf.sequences,
    )
    torch.cuda.synchronize()
    print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")

    # Capture graph outside the timing loop
    batch_size, seqlen_og = input_ids.shape
291
    model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
292
293
294
295
296
297
298
299
300
    print("With CUDA graph")
    torch.cuda.synchronize()
    start = time.time()
    out_cg = model.generate(
        input_ids=input_ids,
        max_length=max_length,
        cg=True,
        return_dict_in_generate=True,
        output_scores=True,
Tri Dao's avatar
Tri Dao committed
301
        enable_timing=True,
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
        teacher_outputs=out_hf.sequences,
    )
    torch.cuda.synchronize()
    print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")

    with torch.no_grad():
        logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1) : -1]
    logits_hf = torch.stack(out_hf.scores, dim=1)
    logits = torch.stack(out.scores, dim=1)
    logits_cg = torch.stack(out_cg.scores, dim=1)

    del model

    hf_error = (logits_hf - logits_ref).abs().max().item()

    print(f"HF fp16 logits max diff: {hf_error}")
    print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }")
    print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }")

    assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
    assert (logits - logits_ref).abs().max().item() < 2 * hf_error
    assert torch.equal(logits_cg, logits)


# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_baichuan.py -k "baichuan_parallel_generation"
@pytest.mark.parametrize("world_size", [2])
Tri Dao's avatar
Tri Dao committed
328
@pytest.mark.parametrize("model_name", ["baichuan-inc/Baichuan-7B"])
329
330
331
332
333
334
335
336
337
def test_baichuan_parallel_generation(model_name, world_size):
    """Check that our implementation matches the HF implementation:
    the scores in fp16 should be around the same as the HF scores in fp16, when compared to
    the HF scores in fp32.
    """
    from apex.transformer import parallel_state

    dtype = torch.float16
    config = baichuan_config_to_gpt2_config(
Tri Dao's avatar
Tri Dao committed
338
        AutoConfig.from_pretrained(model_name, trust_remote_code=True)
339
    )
340
    config.use_flash_attn = True
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = False
    config.residual_in_fp32 = True
    config.pad_vocab_size_multiple = 8 * world_size
    config.sequence_parallel = False  # Need to set this to False for generation

    os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0"
    if not torch.distributed.is_initialized():
        torch.distributed.init_process_group(backend="nccl", init_method="env://")
    device = f"cuda:{torch.distributed.get_rank()}"
    assert world_size <= torch.distributed.get_world_size()
    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    process_group = parallel_state.get_tensor_model_parallel_group()

    torch.manual_seed(0)
    batch_size = 1
    seqlen = 100
    max_length = 150
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
    )

    # Need this, otherwise when we capture the graph the process for GPU 1 would run on both
    # GPU0 and GPU1 and things would hang
    torch.cuda.set_device(device)

Tri Dao's avatar
Tri Dao committed
369
370
371
    pretrained_state_dict = remap_state_dict_hf_baichuan(
        state_dict_from_pretrained(model_name), config
    )
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

    model = GPTLMHeadModel(
        config, process_group=process_group, device=device, dtype=dtype
    )
    model.load_state_dict(
        shard_state_dict_tp(pretrained_state_dict, config, world_size, rank)
    )
    model.eval()

    print("Without CUDA graph")
    out = model.generate(
        input_ids=input_ids,
        max_length=max_length,
        tensor_parallel=world_size,
        vocab_size=config.vocab_size,
        # teacher_outputs=out_hf.sequences,
        return_dict_in_generate=True,
        output_scores=True,
Tri Dao's avatar
Tri Dao committed
390
        enable_timing=True,
391
392
393
394
    )

    # Capture graph outside the timing loop
    batch_size, seqlen_og = input_ids.shape
395
    model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
396
397
398
399
400
401
402
403
404
405
    print("With CUDA graph")
    out_cg = model.generate(
        input_ids=input_ids,
        max_length=max_length,
        tensor_parallel=world_size,
        vocab_size=config.vocab_size,
        cg=True,
        # teacher_outputs=out_hf.sequences,
        return_dict_in_generate=True,
        output_scores=True,
Tri Dao's avatar
Tri Dao committed
406
        enable_timing=True,
407
408
409
410
411
412
413
    )
    del model
    parallel_state.destroy_model_parallel()

    if rank == 0:
        # Without device_map, the model is loaded on the CPU, which is very slow
        model_hf = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
414
            model_name, torch_dtype=dtype, device_map="auto", trust_remote_code=True
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
        )
        model_hf.eval()
        print("HF fp16")
        torch.cuda.synchronize()
        start = time.time()
        with torch.inference_mode():
            out_hf = model_hf.generate(
                input_ids=input_ids,
                max_length=max_length,
                return_dict_in_generate=True,
                output_scores=True,
            )
        torch.cuda.synchronize()
        print(
            f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms"
        )
        del model_hf

        model_ref = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
434
            model_name, device_map="auto", trust_remote_code=True
435
436
437
438
439
440
441
442
443
444
445
446
447
448
        )
        model_ref.eval()
        with torch.inference_mode():
            logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1]
        del model_ref
        logits_hf = torch.stack(out_hf.scores, dim=1)

        logits = torch.stack(out.scores, dim=1)
        logits_cg = torch.stack(out_cg.scores, dim=1)

        hf_error = (logits_hf - logits_ref).abs().max().item()
        print(f"HF fp16 logits max diff: {hf_error}")
        print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }")
        print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }")
449
        assert (logits - logits_ref).abs().max().item() < 2 * hf_error
450
        assert torch.equal(logits_cg, logits)