flash_api.cpp 47.4 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
/******************************************************************************
2
 * Copyright (c) 2024, Tri Dao.
Tri Dao's avatar
Tri Dao committed
3
4
 ******************************************************************************/

Tri Dao's avatar
Tri Dao committed
5
6
7
// Include these 2 headers instead of torch/extension.h since we don't need all of the torch headers.
#include <torch/python.h>
#include <torch/nn/functional.h>
Tri Dao's avatar
Tri Dao committed
8
9
10
11
12
13
14
15
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>

#include <cutlass/numeric_types.h>

#include "flash.h"
#include "static_switch.h"

16
#define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA")
Tri Dao's avatar
Tri Dao committed
17
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
18
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
Tri Dao's avatar
Tri Dao committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38


void set_params_fprop(Flash_fwd_params &params,
                      // sizes
                      const size_t b,
                      const size_t seqlen_q,
                      const size_t seqlen_k,
                      const size_t seqlen_q_rounded,
                      const size_t seqlen_k_rounded,
                      const size_t h,
                      const size_t h_k,
                      const size_t d,
                      const size_t d_rounded,
                      // device pointers
                      const at::Tensor q,
                      const at::Tensor k,
                      const at::Tensor v,
                      at::Tensor out,
                      void *cu_seqlens_q_d,
                      void *cu_seqlens_k_d,
39
                      void *seqused_k,
Tri Dao's avatar
Tri Dao committed
40
41
42
43
                      void *p_d,
                      void *softmax_lse_d,
                      float p_dropout,
                      float softmax_scale,
Tri Dao's avatar
Tri Dao committed
44
                      int window_size_left,
45
                      int window_size_right,
46
47
48
                      const float softcap,
                      bool seqlenq_ngroups_swapped=false,
                      const bool unpadded_lse=false) {
Tri Dao's avatar
Tri Dao committed
49
50

    // Reset the parameters
51
    params = {};
Tri Dao's avatar
Tri Dao committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

    params.is_bf16 = q.dtype() == torch::kBFloat16;

    // Set the pointers and strides.
    params.q_ptr = q.data_ptr();
    params.k_ptr = k.data_ptr();
    params.v_ptr = v.data_ptr();
    // All stride are in elements, not bytes.
    params.q_row_stride = q.stride(-3);
    params.k_row_stride = k.stride(-3);
    params.v_row_stride = v.stride(-3);
    params.q_head_stride = q.stride(-2);
    params.k_head_stride = k.stride(-2);
    params.v_head_stride = v.stride(-2);
    params.o_ptr = out.data_ptr();
    params.o_row_stride = out.stride(-3);
    params.o_head_stride = out.stride(-2);

    if (cu_seqlens_q_d == nullptr) {
        params.q_batch_stride = q.stride(0);
        params.k_batch_stride = k.stride(0);
        params.v_batch_stride = v.stride(0);
        params.o_batch_stride = out.stride(0);
75
76
77
78
        if (seqlenq_ngroups_swapped) {
             params.q_batch_stride *= seqlen_q;
             params.o_batch_stride *= seqlen_q;
        }
Tri Dao's avatar
Tri Dao committed
79
80
81
82
    }

    params.cu_seqlens_q = static_cast<int *>(cu_seqlens_q_d);
    params.cu_seqlens_k = static_cast<int *>(cu_seqlens_k_d);
83
    params.seqused_k = static_cast<int *>(seqused_k);
Tri Dao's avatar
Tri Dao committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

    // P = softmax(QK^T)
    params.p_ptr = p_d;

    // Softmax sum
    params.softmax_lse_ptr = softmax_lse_d;

    // Set the dimensions.
    params.b = b;
    params.h = h;
    params.h_k = h_k;
    params.h_h_k_ratio = h / h_k;
    params.seqlen_q = seqlen_q;
    params.seqlen_k = seqlen_k;
    params.seqlen_q_rounded = seqlen_q_rounded;
    params.seqlen_k_rounded = seqlen_k_rounded;
    params.d = d;
    params.d_rounded = d_rounded;

    // Set the different scale values.
104
105
106
107
108
109
110
111
112
113
114
115
116
    #ifdef FLASHATTENTION_DISABLE_SOFTCAP
        TORCH_CHECK(softcap <= 0.0, "This flash attention build does not support softcap.");
    #endif
    if (softcap > 0.0) {
        params.softcap = softmax_scale / softcap;
        params.scale_softmax = softcap;
        params.scale_softmax_log2 = softcap * M_LOG2E;
    } else{
        // Remove potential NaN
        params.softcap = 0.0;
        params.scale_softmax = softmax_scale;
        params.scale_softmax_log2 = softmax_scale * M_LOG2E;
    }
Tri Dao's avatar
Tri Dao committed
117
118
119
120
121
122
123
124
125
126
127

    // Set this to probability of keeping an element to simplify things.
    params.p_dropout = 1.f - p_dropout;
    // Convert p from float to int so we don't have to convert the random uint to float to compare.
    // [Minor] We want to round down since when we do the comparison we use <= instead of <
    // params.p_dropout_in_uint = uint32_t(std::floor(params.p_dropout * 4294967295.0));
    // params.p_dropout_in_uint16_t = uint16_t(std::floor(params.p_dropout * 65535.0));
    params.p_dropout_in_uint8_t = uint8_t(std::floor(params.p_dropout * 255.0));
    params.rp_dropout = 1.f / params.p_dropout;
    params.scale_softmax_rp_dropout = params.rp_dropout * params.scale_softmax;
    TORCH_CHECK(p_dropout < 1.f);
128
129
130
    #ifdef FLASHATTENTION_DISABLE_DROPOUT
        TORCH_CHECK(p_dropout == 0.0f, "This flash attention build does not support dropout.");
    #endif
Tri Dao's avatar
Tri Dao committed
131

Tri Dao's avatar
Tri Dao committed
132
133
134
135
136
137
138
139
140
    // Causal is the special case where window_size_right == 0 and window_size_left < 0.
    // Local is the more general case where window_size_right >= 0 or window_size_left >= 0.
    params.is_causal = window_size_left < 0 && window_size_right == 0;

    if (window_size_left < 0 && window_size_right >= 0) { window_size_left = seqlen_k; }
    if (window_size_left >= 0 && window_size_right < 0) { window_size_right = seqlen_k; }
    params.window_size_left = window_size_left;
    params.window_size_right = window_size_right;

141
142
143
144
145
    #ifdef FLASHATTENTION_DISABLE_LOCAL
        TORCH_CHECK(params.is_causal || (window_size_left < 0 && window_size_right < 0),
            "This flash attention build does not support local attention.");
    #endif

Tri Dao's avatar
Tri Dao committed
146
    params.is_seqlens_k_cumulative = true;
147
148
149
150

    #ifdef FLASHATTENTION_DISABLE_UNEVEN_K
        TORCH_CHECK(d == d_rounded, "This flash attention build does not support headdim not being a multiple of 32.");
    #endif
151
152
153

    params.unpadded_lse = unpadded_lse;
    params.seqlenq_ngroups_swapped = seqlenq_ngroups_swapped;
Tri Dao's avatar
Tri Dao committed
154
155
}

Tri Dao's avatar
Tri Dao committed
156
void run_mha_fwd(Flash_fwd_params &params, cudaStream_t stream, bool force_split_kernel=false) {
Tri Dao's avatar
Tri Dao committed
157
    FP16_SWITCH(!params.is_bf16, [&] {
158
        HEADDIM_SWITCH(params.d, [&] {
159
160
161
162
163
164
165
            BOOL_SWITCH(params.is_causal, Is_causal, [&] {
                if (params.num_splits <= 1 && !force_split_kernel) {  // If we don't set it num_splits == 0
                    run_mha_fwd_<elem_type, kHeadDim, Is_causal>(params, stream);
                } else {
                    run_mha_fwd_splitkv_dispatch<elem_type, kHeadDim, Is_causal>(params, stream);
                }
            });
Tri Dao's avatar
Tri Dao committed
166
167
168
169
        });
    });
}

Tri Dao's avatar
Tri Dao committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// Find the number of splits that maximizes the occupancy. For example, if we have
// batch * n_heads = 48 and we have 108 SMs, having 2 splits (efficiency = 0.89) is
// better than having 3 splits (efficiency = 0.67). However, we also don't want too many
// splits as that would incur more HBM reads/writes.
// So we find the best efficiency, then find the smallest number of splits that gets 85%
// of the best efficiency.
inline int num_splits_heuristic(int batch_nheads_mblocks, int num_SMs, int num_n_blocks, int max_splits) {
    // If we have enough to almost fill the SMs, then just use 1 split
    if (batch_nheads_mblocks >= 0.8f * num_SMs) { return 1; }
    max_splits = std::min({max_splits, num_SMs, num_n_blocks});
    float max_efficiency = 0.f;
    std::vector<float> efficiency;
    efficiency.reserve(max_splits);
    auto ceildiv = [](int a, int b) { return (a + b - 1) / b; };
    // Some splits are not eligible. For example, if we have 64 blocks and choose 11 splits,
    // we'll have 6 * 10 + 4 blocks. If we choose 12 splits, we'll have 6 * 11 + (-2) blocks
    // (i.e. it's 11 splits anyway).
    // So we check if the number of blocks per split is the same as the previous num_splits.
    auto is_split_eligible = [&ceildiv, &num_n_blocks](int num_splits) {
        return num_splits == 1 || ceildiv(num_n_blocks, num_splits) != ceildiv(num_n_blocks, num_splits - 1);
    };
    for (int num_splits = 1; num_splits <= max_splits; num_splits++) {
        if (!is_split_eligible(num_splits)) {
            efficiency.push_back(0.f);
        } else {
            float n_waves = float(batch_nheads_mblocks * num_splits) / num_SMs;
            float eff = n_waves / ceil(n_waves);
            // printf("num_splits = %d, eff = %f\n", num_splits, eff);
            if (eff > max_efficiency) { max_efficiency = eff; }
            efficiency.push_back(eff);
        }
    }
    for (int num_splits = 1; num_splits <= max_splits; num_splits++) {
        if (!is_split_eligible(num_splits)) { continue; }
        if (efficiency[num_splits - 1] >= 0.85 * max_efficiency) {
            // printf("num_splits chosen = %d\n", num_splits);
            return num_splits;
        }
    }
    return 1;
}

212
std::tuple<at::Tensor, at::Tensor> set_params_splitkv(Flash_fwd_params &params, const int batch_size,
Tri Dao's avatar
Tri Dao committed
213
214
215
    const int num_heads, const int head_size, const int max_seqlen_k, const int max_seqlen_q,
    const int head_size_rounded, const float p_dropout,
    const int num_splits, cudaDeviceProp *dprops, struct c10::TensorOptions opts) {
216
217
218
219
220
221
222
223

    // This needs to match with run_mha_fwd_splitkv_dispatch
    const int block_n = head_size <= 64 ? 256 : (head_size <= 128 ? 128 : 64);
    const int num_n_blocks = (max_seqlen_k + block_n - 1) / block_n;
    // Technically kBlockM = 64 only for the splitKV kernels, not the standard kernel.
    // In any case we don't expect seqlen_q to be larger than 64 for inference.
    const int num_m_blocks = (max_seqlen_q + 64 - 1) / 64;
    params.num_splits = num_splits;
224
225
226
    at::Tensor softmax_lse_accum;
    at::Tensor out_accum;

227
228
    if (p_dropout == 0.0f) {  // SplitKV is not implemented for dropout
        if (num_splits < 1) {
229
230
            // We multiply number of SMs by 2 to hard-code the fact that we're using 128 threads per block.
            params.num_splits = num_splits_heuristic(batch_size * num_heads * num_m_blocks, dprops->multiProcessorCount * 2, num_n_blocks, 128);
231
232
        }
        if (params.num_splits > 1) {
233
234
            softmax_lse_accum = torch::empty({params.num_splits, batch_size, num_heads, max_seqlen_q}, opts.dtype(at::kFloat));
            out_accum = torch::empty({params.num_splits, batch_size, num_heads, max_seqlen_q, head_size_rounded}, opts.dtype(at::kFloat));
235
236
237
238
239
            params.softmax_lseaccum_ptr = softmax_lse_accum.data_ptr();
            params.oaccum_ptr = out_accum.data_ptr();
        }
        TORCH_CHECK(params.num_splits <= 128, "num_splits > 128 not supported");
    }
240
241

    return std::make_tuple(softmax_lse_accum, out_accum);
242
243
}

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
void set_params_alibi(Flash_fwd_params &params, c10::optional<at::Tensor> &alibi_slopes_, int batch_size, int num_heads){
#ifdef FLASHATTENTION_DISABLE_ALIBI
    TORCH_CHECK(!alibi_slopes_.has_value(), "This flash attention build does not support alibi.");
    params.alibi_slopes_ptr = nullptr;
#else
    if (alibi_slopes_.has_value()) {
        auto alibi_slopes = alibi_slopes_.value();
        TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
        CHECK_DEVICE(alibi_slopes);
        TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
        TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({num_heads}) || alibi_slopes.sizes() == torch::IntArrayRef({batch_size, num_heads}));
        params.alibi_slopes_ptr = alibi_slopes.data_ptr();
        params.alibi_slopes_batch_stride = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0;
    } else {
        params.alibi_slopes_ptr = nullptr;
    }
#endif
}

Tri Dao's avatar
Tri Dao committed
263
std::vector<at::Tensor>
264
mha_fwd(at::Tensor &q,         // batch_size x seqlen_q x num_heads x head_size
Tri Dao's avatar
Tri Dao committed
265
266
267
        const at::Tensor &k,         // batch_size x seqlen_k x num_heads_k x head_size
        const at::Tensor &v,         // batch_size x seqlen_k x num_heads_k x head_size
        c10::optional<at::Tensor> &out_,             // batch_size x seqlen_q x num_heads x head_size
268
        c10::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
Tri Dao's avatar
Tri Dao committed
269
270
        const float p_dropout,
        const float softmax_scale,
271
        bool is_causal,
272
        int window_size_left,
Tri Dao's avatar
Tri Dao committed
273
        int window_size_right,
274
        const float softcap,
Tri Dao's avatar
Tri Dao committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        const bool return_softmax,
        c10::optional<at::Generator> gen_) {

    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");

295
    CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
Tri Dao's avatar
Tri Dao committed
296
297
298
299
300
301
302
303

    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");

    const auto sizes = q.sizes();

    const int batch_size = sizes[0];
304
305
    int seqlen_q = sizes[1];
    int num_heads = sizes[2];
Tri Dao's avatar
Tri Dao committed
306
307
308
309
310
311
312
    const int head_size_og = sizes[3];
    const int seqlen_k = k.size(1);
    const int num_heads_k = k.size(2);
    TORCH_CHECK(batch_size > 0, "batch size must be postive");
    TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

313
314
    if (softcap > 0.f) { TORCH_CHECK(p_dropout == 0.f, "Softcapping does not support dropout for now"); }

315
316
317
    if (window_size_left >= seqlen_k) { window_size_left = -1; }
    if (window_size_right >= seqlen_k) { window_size_right = -1; }

318
319
    // causal=true is the same as causal=false in this case
    if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; }
Tri Dao's avatar
Tri Dao committed
320
    if (is_causal) { window_size_right = 0; }
321

322
323
    // Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
    // H/t Daniel Haziza
324
    const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size_og % 8 == 0 && !alibi_slopes_.has_value();
325
    const int ngroups = num_heads / num_heads_k;
326
327
328
329
    if (seqlenq_ngroups_swapped) {
        q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
        seqlen_q = ngroups;
        num_heads = num_heads_k;
330
331
    }

Tri Dao's avatar
Tri Dao committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og);
    CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size_og);
    CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size_og);

    at::Tensor q_padded, k_padded, v_padded;
    if (head_size_og % 8 != 0) {
        q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        q_padded = q;
        k_padded = k;
        v_padded = v;
    }

    at::Tensor out;
    if (out_.has_value()) {
        out = out_.value();
        TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
351
        CHECK_DEVICE(out);
Tri Dao's avatar
Tri Dao committed
352
        TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
353
354
355
356
        CHECK_SHAPE(out, batch_size, sizes[1], sizes[2], head_size_og);
        if (seqlenq_ngroups_swapped) {
            out = out.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
        }
Tri Dao's avatar
Tri Dao committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
        if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
    } else {
        out = torch::empty_like(q_padded);
    }

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size = round_multiple(head_size_og, 8);
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(seqlen_k, 128);

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();

    auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
    at::Tensor p;
    // Only return softmax if there's dropout to reduce compilation time
    if (return_softmax) {
        TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0");
        p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts);
    }

    Flash_fwd_params params;
    set_params_fprop(params,
                     batch_size,
                     seqlen_q, seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q_padded, k_padded, v_padded, out,
                     /*cu_seqlens_q_d=*/nullptr,
                     /*cu_seqlens_k_d=*/nullptr,
392
                     /*seqused_k=*/nullptr,
Tri Dao's avatar
Tri Dao committed
393
394
395
396
                     return_softmax ? p.data_ptr() : nullptr,
                     softmax_lse.data_ptr(),
                     p_dropout,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
397
                     window_size_left,
398
399
400
                     window_size_right,
                     softcap
                     );
Tri Dao's avatar
Tri Dao committed
401

402
403
404
405
406
    // Keep references to these tensors to extend their lifetime
    at::Tensor softmax_lse_accum, out_accum;
    std::tie(softmax_lse_accum, out_accum) = set_params_splitkv(
        params, batch_size, num_heads, head_size, seqlen_k, seqlen_q,
        head_size_rounded, p_dropout, /*num_splits*/ 0, dprops, opts);
Tri Dao's avatar
Tri Dao committed
407

408
409
410
411
412
413
414
415
416
    // number of times random will be generated per thread, to offset philox counter in thc random
    // state
    // We use a custom RNG that increases the offset by batch_size * nheads * 32.
    int64_t counter_offset = params.b * params.h * 32;
    auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA);
    auto rng_state = torch::empty({2}, options.dtype(torch::kInt64));
    // Forward kernel will populate memory with the seed and offset.
    params.rng_state = reinterpret_cast<uint64_t*>(rng_state.data_ptr());

Tri Dao's avatar
Tri Dao committed
417
418
419
420
421
422
423
424
    if (p_dropout > 0.0)  {
        auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
            gen_, at::cuda::detail::getDefaultCUDAGenerator());
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        params.philox_args = gen->philox_cuda_state(counter_offset);
    }

425
    set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
426

427
428
429
430
431
432
433
434
    if (seqlen_k > 0) {
        auto stream = at::cuda::getCurrentCUDAStream().stream();
        run_mha_fwd(params, stream);
    } else {
        // If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
        out.zero_();
        softmax_lse.fill_(std::numeric_limits<float>::infinity());
    }
Tri Dao's avatar
Tri Dao committed
435
436
437
438
439
440
441

    at::Tensor out_padded = out;
    if (head_size_og % 8 != 0) {
        out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        if (out_.has_value()) { out_.value().copy_(out); }
    }

442
443
444
445
446
    if (seqlenq_ngroups_swapped) {
        out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
        out_padded = out_padded.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
        q_padded = q_padded.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
        softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1});
447
    }
448
    return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse, p, rng_state};
Tri Dao's avatar
Tri Dao committed
449
450
451
}

std::vector<at::Tensor>
452
mha_varlen_fwd(at::Tensor &q,  // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
453
454
               const at::Tensor &k,  // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
               const at::Tensor &v,  // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
Tri Dao's avatar
Tri Dao committed
455
456
457
               c10::optional<at::Tensor> &out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
               const at::Tensor &cu_seqlens_q,  // b+1
               const at::Tensor &cu_seqlens_k,  // b+1
458
               c10::optional<at::Tensor> &seqused_k, // b. If given, only this many elements of each batch element's keys are used.
459
               c10::optional<at::Tensor> &block_table_, // batch_size x max_num_blocks_per_seq
460
               c10::optional<at::Tensor> &alibi_slopes_, // num_heads or b x num_heads
461
               int max_seqlen_q,
Tri Dao's avatar
Tri Dao committed
462
463
464
465
               const int max_seqlen_k,
               const float p_dropout,
               const float softmax_scale,
               const bool zero_tensors,
466
               bool is_causal,
467
               int window_size_left,
Tri Dao's avatar
Tri Dao committed
468
               int window_size_right,
469
               const float softcap,
Tri Dao's avatar
Tri Dao committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
               const bool return_softmax,
               c10::optional<at::Generator> gen_) {

    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
    TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32");
    TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32");

492
493
494
    CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
    CHECK_DEVICE(cu_seqlens_q);
    CHECK_DEVICE(cu_seqlens_k);
Tri Dao's avatar
Tri Dao committed
495

496
497
498
499
500
501
502
503
504
    at::Tensor block_table;
    const bool paged_KV = block_table_.has_value();
    if (paged_KV) {
        block_table = block_table_.value();
        CHECK_DEVICE(block_table);
        TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32");
        TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension");
    }

Tri Dao's avatar
Tri Dao committed
505
506
507
    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
508
509
    CHECK_CONTIGUOUS(cu_seqlens_q);
    CHECK_CONTIGUOUS(cu_seqlens_k);
Tri Dao's avatar
Tri Dao committed
510
511
512
513

    const auto sizes = q.sizes();

    const int batch_size = cu_seqlens_q.numel() - 1;
514
    int num_heads = sizes[1];
Tri Dao's avatar
Tri Dao committed
515
    const int head_size_og = sizes[2];
516
517
    const int num_heads_k = paged_KV ? k.size(2) : k.size(1);

518
519
    if (softcap > 0.f) { TORCH_CHECK(p_dropout == 0.f, "Softcapping does not support dropout for now"); }

520
521
522
    const int max_num_blocks_per_seq = !paged_KV ? 0 : block_table.size(1);
    const int num_blocks = !paged_KV ? 0 : k.size(0);
    const int page_block_size = !paged_KV ? 1 : k.size(1);
523
    TORCH_CHECK(!paged_KV || page_block_size % 16 == 0, "Paged KV cache block size must be divisible by 16");
524
525
526
527
528
529
530
531
532

    if (max_seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; }  // causal=true is the same as causal=false in this case
    if (is_causal) { window_size_right = 0; }

    void *cu_seqlens_q_d = cu_seqlens_q.data_ptr();

    // Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
    // H/t Daniel Haziza
    const int seqlenq_ngroups_swapped = max_seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size_og % 8 == 0 && !alibi_slopes_.has_value();
533
    const int ngroups = num_heads / num_heads_k;
534
535
536
537
538
539
540
541
542
    if (seqlenq_ngroups_swapped) {
        q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2).reshape({batch_size * ngroups, num_heads_k, head_size_og});
        max_seqlen_q = ngroups;
        num_heads = num_heads_k;
        cu_seqlens_q_d = nullptr;
    }

    const int total_q = q.sizes()[0];

Tri Dao's avatar
Tri Dao committed
543
544
545
546
    TORCH_CHECK(batch_size > 0, "batch size must be positive");
    TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

547
548
549
    if (window_size_left >= max_seqlen_k) { window_size_left = -1; }
    if (window_size_right >= max_seqlen_k) { window_size_right = -1; }

Tri Dao's avatar
Tri Dao committed
550
    CHECK_SHAPE(q, total_q, num_heads, head_size_og);
551
552
553
554
555
556
557
558
559
560
    if (!paged_KV) {
        const int total_k = k.size(0);
        CHECK_SHAPE(k, total_k, num_heads_k, head_size_og);
        CHECK_SHAPE(v, total_k, num_heads_k, head_size_og);
    } else {
        CHECK_SHAPE(k, num_blocks, page_block_size, num_heads_k, head_size_og);
        CHECK_SHAPE(v, num_blocks, page_block_size, num_heads_k, head_size_og);
        CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq);
    }

Tri Dao's avatar
Tri Dao committed
561
562
    CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
    CHECK_SHAPE(cu_seqlens_k, batch_size + 1);
563
564
565
566
567
568
569
    if (seqused_k.has_value()){
        auto seqused_k_ = seqused_k.value();
        TORCH_CHECK(seqused_k_.dtype() == torch::kInt32, "seqused_k must have dtype int32");
        TORCH_CHECK(seqused_k_.is_cuda(), "seqused_k must be on CUDA device");
        TORCH_CHECK(seqused_k_.is_contiguous(), "seqused_k must be contiguous");
        CHECK_SHAPE(seqused_k_, batch_size);
    }
Tri Dao's avatar
Tri Dao committed
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

    at::Tensor q_padded, k_padded, v_padded;
    if (head_size_og % 8 != 0) {
        q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        q_padded = q;
        k_padded = k;
        v_padded = v;
    }

    at::Tensor out;
    if (out_.has_value()) {
        out = out_.value();
        TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
586
        CHECK_DEVICE(out);
Tri Dao's avatar
Tri Dao committed
587
        TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
588
589
590
591
        CHECK_SHAPE(out, sizes[0], sizes[1], head_size_og);
        if (seqlenq_ngroups_swapped) {
            out = out.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2).reshape({batch_size * ngroups, num_heads_k, head_size_og});
        }
Tri Dao's avatar
Tri Dao committed
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
    } else {
        out = torch::empty_like(q_padded);
    }

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size = round_multiple(head_size_og, 8);
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128);

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();
608
    auto softmax_lse = torch::empty({num_heads, total_q}, opts.dtype(at::kFloat));
Tri Dao's avatar
Tri Dao committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
    at::Tensor p;
    // Only return softmax if there's dropout to reduce compilation time
    if (return_softmax) {
        TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0");
        p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts);
    }

    if (zero_tensors) {
        out.zero_();
        softmax_lse.fill_(-std::numeric_limits<float>::infinity());
        if (return_softmax) {p.zero_();}
    }

    Flash_fwd_params params;
    set_params_fprop(params,
                     batch_size,
                     max_seqlen_q, max_seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q_padded, k_padded, v_padded, out,
630
                     cu_seqlens_q_d,
Tri Dao's avatar
Tri Dao committed
631
                     cu_seqlens_k.data_ptr(),
632
                     seqused_k.has_value() ? seqused_k.value().data_ptr() : nullptr,
Tri Dao's avatar
Tri Dao committed
633
634
635
636
                     return_softmax ? p.data_ptr() : nullptr,
                     softmax_lse.data_ptr(),
                     p_dropout,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
637
                     window_size_left,
638
                     window_size_right,
639
640
641
642
                     softcap,
                     seqlenq_ngroups_swapped,
                     /*unpadded_lse*/true);
    params.total_q = total_q;
643
644
645
646
647
648
649
650

    if (paged_KV) {
        params.block_table = block_table.data_ptr<int>();
        params.block_table_batch_stride = block_table.stride(0);
        params.k_batch_stride = k_padded.stride(0);
        params.v_batch_stride = v_padded.stride(0);
    }
    params.page_block_size = page_block_size;
651
652
    // Keep references to these tensors to extend their lifetime
    at::Tensor softmax_lse_accum, out_accum;
653
654
    if (seqlenq_ngroups_swapped) {
        // Only apply split-k for decoding
655
656
657
658
        std::tie(softmax_lse_accum, out_accum) =
            set_params_splitkv(params, batch_size, num_heads, head_size,
                               max_seqlen_k, max_seqlen_q, head_size_rounded,
                               p_dropout, /*num_splits*/ 0, dprops, opts);
659
    }
Tri Dao's avatar
Tri Dao committed
660

661
662
663
664
665
666
667
668
669
    // number of times random will be generated per thread, to offset philox counter in thc random
    // state
    // We use a custom RNG that increases the offset by batch_size * nheads * 32.
    int64_t counter_offset = params.b * params.h * 32;
    auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA);
    auto rng_state = torch::empty({2}, options.dtype(torch::kInt64));
    // Forward kernel will populate memory with the seed and offset.
    params.rng_state = reinterpret_cast<uint64_t*>(rng_state.data_ptr());

Tri Dao's avatar
Tri Dao committed
670
671
672
673
674
675
676
677
    if (p_dropout > 0.0)  {
        auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
            gen_, at::cuda::detail::getDefaultCUDAGenerator());
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        params.philox_args = gen->philox_cuda_state(counter_offset);
    }

678
    set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
679

680
681
    if (max_seqlen_k > 0) {
        auto stream = at::cuda::getCurrentCUDAStream().stream();
682
        run_mha_fwd(params, stream, paged_KV);
683
684
685
686
687
    } else {
        // If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
        out.zero_();
        softmax_lse.fill_(std::numeric_limits<float>::infinity());
    }
Tri Dao's avatar
Tri Dao committed
688
689
690
691
692
693
694

    at::Tensor out_padded = out;
    if (head_size_og % 8 != 0) {
        out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        if (out_.has_value()) { out_.value().copy_(out); }
    }

695
    if (seqlenq_ngroups_swapped) {
Grigory Sizov's avatar
Grigory Sizov committed
696
697
        int64_t size_before[] = {batch_size, max_seqlen_q, num_heads_k, head_size_og};
        int64_t size_after[] = {batch_size, num_heads_k * max_seqlen_q, head_size_og};
698
699
700
        out = out.reshape(size_before).transpose(1, 2).reshape(size_after);
        out_padded = out_padded.reshape(size_before).transpose(1, 2).reshape(size_after);
        q_padded = q_padded.reshape(size_before).transpose(1, 2).reshape(size_after);
701
        softmax_lse = softmax_lse.reshape({num_heads * max_seqlen_q, batch_size});
702
703
    }

704
    return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse, p, rng_state};
Tri Dao's avatar
Tri Dao committed
705
706
}

Tri Dao's avatar
Tri Dao committed
707
std::vector<at::Tensor>
708
mha_fwd_kvcache(at::Tensor &q,                 // batch_size x seqlen_q x num_heads x head_size
Tri Dao's avatar
Tri Dao committed
709
710
                const at::Tensor &kcache,            // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
                const at::Tensor &vcache,            // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
711
712
                c10::optional<const at::Tensor> &k_, // batch_size x seqlen_knew x num_heads_k x head_size
                c10::optional<const at::Tensor> &v_, // batch_size x seqlen_knew x num_heads_k x head_size
Tri Dao's avatar
Tri Dao committed
713
                c10::optional<const at::Tensor> &seqlens_k_, // batch_size
714
715
                c10::optional<const at::Tensor> &rotary_cos_, // seqlen_ro x (rotary_dim / 2)
                c10::optional<const at::Tensor> &rotary_sin_, // seqlen_ro x (rotary_dim / 2)
716
                c10::optional<const at::Tensor> &cache_batch_idx_, // indices to index into the KV cache
Tri Dao's avatar
Tri Dao committed
717
                c10::optional<at::Tensor> &block_table_, // batch_size x max_num_blocks_per_seq
718
                c10::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
Tri Dao's avatar
Tri Dao committed
719
720
                c10::optional<at::Tensor> &out_,             // batch_size x seqlen_q x num_heads x head_size
                const float softmax_scale,
721
                bool is_causal,
722
                int window_size_left,
Tri Dao's avatar
Tri Dao committed
723
                int window_size_right,
724
                const float softcap,
725
                bool is_rotary_interleaved,   // if true, rotary combines indices 0 & 1, else indices 0 & rotary_dim / 2
726
                int num_splits
Tri Dao's avatar
Tri Dao committed
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
                ) {

    auto dprops = at::cuda::getCurrentDeviceProperties();
    // bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
    TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
    // We will support Turing in the near future
    // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");

    auto q_dtype = q.dtype();
    TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
                "FlashAttention only support fp16 and bf16 data type");
    if (q_dtype == torch::kBFloat16) {
        TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
    }
    TORCH_CHECK(kcache.dtype() == q_dtype, "query and key must have the same dtype");
    TORCH_CHECK(vcache.dtype() == q_dtype, "query and value must have the same dtype");

746
    CHECK_DEVICE(q); CHECK_DEVICE(kcache); CHECK_DEVICE(vcache);
Tri Dao's avatar
Tri Dao committed
747
748
749
750
751

    TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(kcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");
    TORCH_CHECK(vcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");

Tri Dao's avatar
Tri Dao committed
752
753
754
755
756
757
758
759
760
761
    at::Tensor block_table;
    const bool paged_KV = block_table_.has_value();
    if (paged_KV) {
        TORCH_CHECK(!cache_batch_idx_.has_value(), "Paged KVcache does not support cache_batch_idx");
        block_table = block_table_.value();
        CHECK_DEVICE(block_table);
        TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32");
        TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension");
    }

Tri Dao's avatar
Tri Dao committed
762
763
764
    const auto sizes = q.sizes();

    const int batch_size = sizes[0];
765
    int seqlen_q = sizes[1];
766
    const int seqlen_q_og = seqlen_q;
767
    int num_heads = sizes[2];
768
    const int num_heads_og = num_heads;
Tri Dao's avatar
Tri Dao committed
769
    const int head_size_og = sizes[3];
Tri Dao's avatar
Tri Dao committed
770
771
772
773

    const int max_num_blocks_per_seq = !paged_KV ? 0 : block_table.size(1);
    const int num_blocks = !paged_KV ? 0 : kcache.size(0);
    const int page_block_size = !paged_KV ? 1 : kcache.size(1);
skrider's avatar
skrider committed
774
    TORCH_CHECK(!paged_KV || page_block_size % 16 == 0, "Paged KV cache block size must be divisible by 16");
Tri Dao's avatar
Tri Dao committed
775
    const int seqlen_k = !paged_KV ? kcache.size(1) : max_num_blocks_per_seq * page_block_size;
Tri Dao's avatar
Tri Dao committed
776
    const int num_heads_k = kcache.size(2);
Tri Dao's avatar
Tri Dao committed
777
    const int batch_size_c = !paged_KV ? kcache.size(0) : batch_size;
Tri Dao's avatar
Tri Dao committed
778
779
780
781
    TORCH_CHECK(batch_size > 0, "batch size must be postive");
    TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
    TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");

782
783
    // causal=true is the same as causal=false in this case
    if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; }
Tri Dao's avatar
Tri Dao committed
784
    if (is_causal) { window_size_right = 0; }
785

786
787
    // Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
    // H/t Daniel Haziza
788
    const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && head_size_og % 8 == 0 && !alibi_slopes_.has_value();
789
790
791
792
793
    if (seqlenq_ngroups_swapped) {
        const int ngroups = num_heads / num_heads_k;
        q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
        seqlen_q = ngroups;
        num_heads = num_heads_k;
794
795
    }

796
797
798
    if (window_size_left >= seqlen_k) { window_size_left = -1; }
    if (window_size_right >= seqlen_k) { window_size_right = -1; }

Tri Dao's avatar
Tri Dao committed
799
    CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og);
Tri Dao's avatar
Tri Dao committed
800
801
802
803
804
805
806
807
    if (!paged_KV) {
        CHECK_SHAPE(kcache, batch_size_c, seqlen_k, num_heads_k, head_size_og);
        CHECK_SHAPE(vcache, batch_size_c, seqlen_k, num_heads_k, head_size_og);
    } else {
        CHECK_SHAPE(kcache, num_blocks, page_block_size, num_heads_k, head_size_og);
        CHECK_SHAPE(vcache, num_blocks, page_block_size, num_heads_k, head_size_og);
        CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq);
    }
Tri Dao's avatar
Tri Dao committed
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823

    at::Tensor q_padded, kcache_padded, vcache_padded;
    if (head_size_og % 8 != 0) {
        q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        kcache_padded = torch::nn::functional::pad(kcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        vcache_padded = torch::nn::functional::pad(vcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
    } else {
        q_padded = q;
        kcache_padded = kcache;
        vcache_padded = vcache;
    }

    at::Tensor out;
    if (out_.has_value()) {
        out = out_.value();
        TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
824
        CHECK_DEVICE(out);
Tri Dao's avatar
Tri Dao committed
825
        TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
826
827
828
829
830
831
        CHECK_SHAPE(out, batch_size, seqlen_q_og, num_heads_og, head_size_og);
        if (head_size_og % 8 != 0) {
            out = torch::empty_like(q_padded);
        } else if (seqlenq_ngroups_swapped) {
            out = out.reshape({batch_size, num_heads, seqlen_q, head_size_og}).transpose(1, 2);
        }
Tri Dao's avatar
Tri Dao committed
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
    } else {
        out = torch::empty_like(q_padded);
    }

    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int head_size = round_multiple(head_size_og, 8);
    const int head_size_rounded = round_multiple(head_size, 32);
    const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
    const int seqlen_k_rounded = round_multiple(seqlen_k, 128);

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)q.get_device()};

    auto opts = q.options();

    auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));

    Flash_fwd_params params;
    set_params_fprop(params,
                     batch_size,
                     seqlen_q, seqlen_k,
                     seqlen_q_rounded, seqlen_k_rounded,
                     num_heads, num_heads_k,
                     head_size, head_size_rounded,
                     q_padded, kcache_padded, vcache_padded, out,
                     /*cu_seqlens_q_d=*/nullptr,
                     /*cu_seqlens_k_d=*/nullptr,
860
                     /*seqused_k=*/nullptr,
Tri Dao's avatar
Tri Dao committed
861
862
863
864
                     /*p_ptr=*/nullptr,
                     softmax_lse.data_ptr(),
                     /*p_dropout=*/0.f,
                     softmax_scale,
Tri Dao's avatar
Tri Dao committed
865
                     window_size_left,
866
867
868
                     window_size_right,
                     softcap
                     );
Tri Dao's avatar
Tri Dao committed
869
870
871
872
873
874
875
876
877
878

    at::Tensor k, v, k_padded, v_padded;
    if (k_.has_value()) {
        TORCH_CHECK(v_.has_value(), "If key is supplied, value must also be passed in");
        TORCH_CHECK(seqlens_k_.has_value(), "If key is supplied, seqlens_k must also be passed in");
        TORCH_CHECK(seqlen_q <= seqlen_k, "If key is supplied, it must have seqlen <= the seqlen of the KV cache");
        k = k_.value();
        v = v_.value();
        TORCH_CHECK(k.dtype() == q_dtype, "Key must have the same dtype as query");
        TORCH_CHECK(v.dtype() == q_dtype, "Value must have the same dtype as query");
879
        CHECK_DEVICE(k); CHECK_DEVICE(v);
Tri Dao's avatar
Tri Dao committed
880
881
        TORCH_CHECK(k.stride(-1) == 1, "Key tensor must have contiguous last dimension");
        TORCH_CHECK(v.stride(-1) == 1, "Value tensor must have contiguous last dimension");
882
883
884
        int seqlen_knew = k.size(1);
        CHECK_SHAPE(k, batch_size, seqlen_knew, num_heads_k, head_size_og);
        CHECK_SHAPE(v, batch_size, seqlen_knew, num_heads_k, head_size_og);
Tri Dao's avatar
Tri Dao committed
885
886
887
888
889
890
891
        if (head_size_og % 8 != 0) {
            k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
            v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
        } else {
            k_padded = k;
            v_padded = v;
        }
892
        params.seqlen_knew = seqlen_knew;
Tri Dao's avatar
Tri Dao committed
893
894
895
896
897
898
899
900
901
902
903
904
905
906
        params.knew_ptr = k_padded.data_ptr();
        params.vnew_ptr = v_padded.data_ptr();
        // All stride are in elements, not bytes.
        params.knew_batch_stride = k_padded.stride(0);
        params.vnew_batch_stride = v_padded.stride(0);
        params.knew_row_stride = k_padded.stride(-3);
        params.vnew_row_stride = v_padded.stride(-3);
        params.knew_head_stride = k_padded.stride(-2);
        params.vnew_head_stride = v_padded.stride(-2);
    }

    if (seqlens_k_.has_value()) {
        auto seqlens_k = seqlens_k_.value();
        TORCH_CHECK(seqlens_k.dtype() == torch::kInt32, "seqlens_k must have dtype int32");
907
908
        CHECK_DEVICE(seqlens_k);
        CHECK_CONTIGUOUS(seqlens_k);
Tri Dao's avatar
Tri Dao committed
909
910
911
912
913
        CHECK_SHAPE(seqlens_k, batch_size);
        params.cu_seqlens_k = static_cast<int *>(seqlens_k.data_ptr());
    }
    params.is_seqlens_k_cumulative = !(seqlens_k_.has_value());

914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
    if (rotary_cos_.has_value()) {
        TORCH_CHECK(k_.has_value(), "If rotary cos/sin are provided, new key / value to be appended to KV cache must also be provided");
        auto rotary_cos = rotary_cos_.value();
        CHECK_DEVICE(rotary_cos);
        params.rotary_dim = rotary_cos.size(1) * 2;
        TORCH_CHECK(params.rotary_dim <= head_size, "rotary_dim must be <= headdim");
        TORCH_CHECK(params.rotary_dim % 16 == 0, "Only rotary dimensions divisible by 16 are currently supported");
        const int seqlen_ro = rotary_cos.size(0);
        TORCH_CHECK(seqlen_ro >= seqlen_k, "cos/sin seqlen must be at least the seqlen of KV cache");
        CHECK_SHAPE(rotary_cos, seqlen_ro, params.rotary_dim / 2);
        CHECK_CONTIGUOUS(rotary_cos);
        TORCH_CHECK(rotary_cos.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query");

        TORCH_CHECK(rotary_sin_.has_value(), "If rotary cos is provided, rotary sin must also be provided");
        auto rotary_sin = rotary_sin_.value();
        CHECK_DEVICE(rotary_sin);
        CHECK_SHAPE(rotary_sin, seqlen_ro, params.rotary_dim / 2);
        CHECK_CONTIGUOUS(rotary_sin);
        TORCH_CHECK(rotary_sin.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query");
        params.rotary_cos_ptr = rotary_cos.data_ptr();
        params.rotary_sin_ptr = rotary_sin.data_ptr();
        params.is_rotary_interleaved = is_rotary_interleaved;
    } else {
        params.rotary_dim = 0;
    }

940
941
942
943
944
945
946
    if (cache_batch_idx_.has_value()) {
        auto cache_batch_idx = cache_batch_idx_.value();
        CHECK_DEVICE(cache_batch_idx);
        CHECK_CONTIGUOUS(cache_batch_idx);
        TORCH_CHECK(cache_batch_idx.scalar_type() == torch::kInt32, "cache_batch_idx must have dtype int32");
        params.cache_batch_idx = reinterpret_cast<int *>(cache_batch_idx.data_ptr());
    }
947

948
949
950
951
952
    // Keep references to these tensors to extend their lifetime
    at::Tensor softmax_lse_accum, out_accum;
    std::tie(softmax_lse_accum, out_accum) = set_params_splitkv(
        params, batch_size, num_heads, head_size, seqlen_k, seqlen_q,
        head_size_rounded, /*dropout*/ 0.f, num_splits, dprops, opts);
Tri Dao's avatar
Tri Dao committed
953

Tri Dao's avatar
Tri Dao committed
954
955
956
957
958
959
    if (paged_KV) {
        params.block_table = block_table.data_ptr<int>();
        params.block_table_batch_stride = block_table.stride(0);
    }
    params.page_block_size = page_block_size;

960
961

    set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
962

Tri Dao's avatar
Tri Dao committed
963
    auto stream = at::cuda::getCurrentCUDAStream().stream();
Tri Dao's avatar
Tri Dao committed
964
965
966
    // Only split kernel supports appending to KV cache, or indexing to the cache with cache_batch_idx,
    // or paged KV cache
    run_mha_fwd(params, stream, /*force_split_kernel=*/k_.has_value() || cache_batch_idx_.has_value() || paged_KV);
Tri Dao's avatar
Tri Dao committed
967
968
969
970
971
972
973
974
975
976
977
978

    if (head_size_og % 8 != 0) {
        out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
        if (out_.has_value()) { out_.value().copy_(out); }
        if (k_.has_value()) {
            // It's expensive to copy the KV cache here for the case where head size not divisible by 8,
            // but we don't expect to get this case in practice. This is just so that the code works for that case.
            kcache.copy_(kcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}));
            vcache.copy_(vcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}));
        }
    }

979
980
981
    if (seqlenq_ngroups_swapped) {
        out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
        softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1});
982
    }
Tri Dao's avatar
Tri Dao committed
983
984
985
    return {out, softmax_lse};
}

Tri Dao's avatar
Tri Dao committed
986
987
988
989
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.doc() = "FlashAttention";
    m.def("fwd", &mha_fwd, "Forward pass");
    m.def("varlen_fwd", &mha_varlen_fwd, "Forward pass (variable length)");
Woosuk Kwon's avatar
Woosuk Kwon committed
990
991
    // m.def("bwd", &mha_bwd, "Backward pass");
    // m.def("varlen_bwd", &mha_varlen_bwd, "Backward pass (variable length)");
Tri Dao's avatar
Tri Dao committed
992
    m.def("fwd_kvcache", &mha_fwd_kvcache, "Forward pass, with KV-cache");
Tri Dao's avatar
Tri Dao committed
993
}