test_baichuan.py 17.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import os
import time
from pathlib import Path

import torch
import pytest

from einops import rearrange

from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM

from flash_attn.models.gpt import (
    GPTLMHeadModel,
    combine_state_dicts_tp,
    shard_state_dict_tp,
)
from flash_attn.models.baichuan import (
    remap_state_dict_hf_baichuan,
    baichuan_config_to_gpt2_config,
)
from flash_attn.utils.distributed import all_gather_raw
from flash_attn.utils.pretrained import state_dict_from_pretrained
from flash_attn.utils.generation import update_graph_cache


Tri Dao's avatar
Tri Dao committed
26
27
28
29
30
31
32
33
34
@pytest.mark.parametrize(
    "model_name",
    [
        "baichuan-inc/Baichuan-7B",
        "baichuan-inc/Baichuan-13B-Base",
        "baichuan-inc/Baichuan2-7B-Base",
        "baichuan-inc/Baichuan2-13B-Base",
    ],
)
35
36
def test_baichuan_state_dict(model_name):
    config = baichuan_config_to_gpt2_config(
Tri Dao's avatar
Tri Dao committed
37
        AutoConfig.from_pretrained(model_name, trust_remote_code=True)
38
    )
Tri Dao's avatar
Tri Dao committed
39
40
41
42
    pretrained_state_dict = remap_state_dict_hf_baichuan(
        state_dict_from_pretrained(model_name), config
    )
    model = GPTLMHeadModel(config, device="meta")  # Without device='meta' init is very slow
43
44
45
46
47
48
49
    state_dict = model.state_dict()
    assert len(state_dict.keys()) == len(pretrained_state_dict.keys())
    assert state_dict.keys() == pretrained_state_dict.keys()
    for k in state_dict.keys():
        assert state_dict[k].shape == pretrained_state_dict[k].shape


Tri Dao's avatar
Tri Dao committed
50
51
52
53
54
55
56
57
58
@pytest.mark.parametrize(
    "model_name",
    [
        "baichuan-inc/Baichuan-7B",
        "baichuan-inc/Baichuan-13B-Base",
        "baichuan-inc/Baichuan2-7B-Base",
        "baichuan-inc/Baichuan2-13B-Base",
    ],
)
59
60
61
62
63
64
65
66
def test_baichuan_optimized(model_name):
    """Check that our implementation of Baichuan (with all optimizations enabled) matches the
    HF implementation: the output of our forward pass in fp16 should be around the same as the HF
    forward pass in fp16, when compared to the HF forward pass in fp32.
    """
    dtype = torch.float16
    device = "cuda"
    config = baichuan_config_to_gpt2_config(
Tri Dao's avatar
Tri Dao committed
67
        AutoConfig.from_pretrained(model_name, trust_remote_code=True)
68
69
70
71
72
73
74
    )
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = True
    config.residual_in_fp32 = True

Tri Dao's avatar
Tri Dao committed
75
76
77
    pretrained_state_dict = remap_state_dict_hf_baichuan(
        state_dict_from_pretrained(model_name), config
    )
78
79
80
81
82
83
84
    model = GPTLMHeadModel(config, device=device, dtype=dtype)
    model.load_state_dict(pretrained_state_dict)
    model.eval()

    torch.manual_seed(0)
    batch_size = 2
    max_seqlen = 256
Tri Dao's avatar
Tri Dao committed
85
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
86
87
88
89
90
91
92
93
94
95
96
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
    )
    with torch.no_grad():
        out = model.transformer(input_ids)
        logits = model(input_ids).logits
    del model

    # Without device_map, the model is loaded on the CPU, which is very slow
    # Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
    model_ref = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
97
        model_name, device_map="auto", trust_remote_code=True
98
99
100
101
102
103
104
105
    )
    model_ref.eval()
    with torch.no_grad():
        out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
        logits_ref = model_ref(input_ids).logits.to(device=device)
    del model_ref

    model_hf = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
106
107
108
109
        model_name,
        torch_dtype=dtype,
        device_map={"": device},
        trust_remote_code=True,
110
111
112
113
114
115
116
117
118
119
120
    )
    model_hf.eval()
    with torch.no_grad():
        out_hf = model_hf.model(input_ids).last_hidden_state
        logits_hf = model_hf(input_ids).logits
    del model_hf

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
    print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
121
    assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
122
123
124
125
126
127
128
129
130
131

    print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
    print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
    print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
    print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
    assert (logits - logits_ref).abs().max().item() < 3 * (
        logits_hf - logits_ref
    ).abs().max().item()


Tri Dao's avatar
Tri Dao committed
132
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_baichuan.py -k "test_baichuan_parallel_forward"
133
@pytest.mark.parametrize("world_size", [2])
Tri Dao's avatar
Tri Dao committed
134
135
136
137
138
139
140
141
142
@pytest.mark.parametrize(
    "model_name",
    [
        "baichuan-inc/Baichuan-7B",
        "baichuan-inc/Baichuan-13B-Base",
        "baichuan-inc/Baichuan2-7B-Base",
        "baichuan-inc/Baichuan2-13B-Base",
    ],
)
Tri Dao's avatar
Tri Dao committed
143
def test_baichuan_parallel_forward(model_name, world_size):
144
145
146
147
148
149
150
151
    """Check that our implementation of Baichuan (with all optimizations enabled) matches the
    HF implementation: the output of our forward pass in fp16 should be around the same as the HF
    forward pass in fp16, when compared to the HF forward pass in fp32.
    """
    from apex.transformer import parallel_state

    dtype = torch.float16
    config = baichuan_config_to_gpt2_config(
Tri Dao's avatar
Tri Dao committed
152
        AutoConfig.from_pretrained(model_name, trust_remote_code=True)
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    )
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = True
    config.residual_in_fp32 = True

    if not torch.distributed.is_initialized():
        torch.distributed.init_process_group(backend="nccl", init_method="env://")
    device = f"cuda:{torch.distributed.get_rank()}"
    assert world_size <= torch.distributed.get_world_size()
    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    process_group = parallel_state.get_tensor_model_parallel_group()

Tri Dao's avatar
Tri Dao committed
168
169
170
    pretrained_state_dict = remap_state_dict_hf_baichuan(
        state_dict_from_pretrained(model_name), config
    )
171

Tri Dao's avatar
Tri Dao committed
172
173
    model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
    model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
174
175
176
177
178
    model.eval()

    torch.manual_seed(0)
    batch_size = 2
    max_seqlen = 256
Tri Dao's avatar
Tri Dao committed
179
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
180
181
182
183
184
185
186
187
188
189
190
191
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
    )
    with torch.no_grad():
        out = model.transformer(input_ids)
        out, _ = all_gather_raw(out, process_group=process_group)
        out = rearrange(out, "(b s) d -> b s d", b=batch_size)
        logits = model(input_ids).logits
        logits = rearrange(logits, "(b s) d -> b s d", b=batch_size)
        logits, _ = all_gather_raw(logits, process_group)
        logits = rearrange(logits, "(n b) ... d -> b ... (n d)", b=batch_size)
    del model
Tri Dao's avatar
Tri Dao committed
192
    parallel_state.destroy_model_parallel()
193
194
195
196

    if rank == 0:
        # Without device_map, the model is loaded on the CPU, which is very slow
        model_ref = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
197
            model_name, device_map="auto", trust_remote_code=True
198
199
200
201
202
203
204
205
        )
        model_ref.eval()
        with torch.no_grad():
            out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
            logits_ref = model_ref(input_ids).logits.to(device=device)
        del model_ref

        model_hf = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
206
            model_name, torch_dtype=dtype, device_map="auto", trust_remote_code=True
207
208
209
210
211
212
213
214
215
216
217
        )
        model_hf.eval()
        with torch.no_grad():
            out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device)
            logits_hf = model_hf(input_ids).logits.to(device=device)
        del model_hf

        print(f"Output max diff: {(out - out_ref).abs().max().item()}")
        print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
        print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
        print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
218
        assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()
219
220
221
222
223
224
225
226
227
228

        print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
        print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
        print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
        print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
        assert (logits - logits_ref).abs().max().item() < 2 * (
            logits_hf - logits_ref
        ).abs().max().item()


Tri Dao's avatar
Tri Dao committed
229
230
231
@pytest.mark.parametrize(
    "model_name", ["baichuan-inc/Baichuan-7B", "baichuan-inc/Baichuan-13B-Base"]
)
232
def test_baichuan_generation(model_name):
233
234
235
    dtype = torch.float16
    device = "cuda"
    config = baichuan_config_to_gpt2_config(
Tri Dao's avatar
Tri Dao committed
236
        AutoConfig.from_pretrained(model_name, trust_remote_code=True)
237
238
239
240
241
242
243
    )
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = True
    config.residual_in_fp32 = True

Tri Dao's avatar
Tri Dao committed
244
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
245
246
247
248
    eos_token_id = tokenizer.eos_token_id

    torch.manual_seed(0)
    batch_size = 1
249
250
    seqlen = 2048
    max_length = 2048 + 150
251
252
253
254
255
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
    )

    model_hf = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
256
        model_name, torch_dtype=dtype, device_map={"": device}, trust_remote_code=True
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    )
    model_hf.eval()
    print("HF fp16")
    torch.cuda.synchronize()
    start = time.time()
    out_hf = model_hf.generate(
        input_ids=input_ids,
        max_length=max_length,
        return_dict_in_generate=True,
        output_scores=True,
    )
    torch.cuda.synchronize()
    print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
    del model_hf

    # Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
    model_ref = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
274
        model_name, device_map="auto", trust_remote_code=True
275
276
277
    )
    model_ref.eval()
    with torch.no_grad():
Tri Dao's avatar
Tri Dao committed
278
        logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1].to(device=device)
279
280
    del model_ref

Tri Dao's avatar
Tri Dao committed
281
282
283
    pretrained_state_dict = remap_state_dict_hf_baichuan(
        state_dict_from_pretrained(model_name), config
    )
284
285
286
287
    model = GPTLMHeadModel(config, device=device, dtype=dtype)
    model.load_state_dict(pretrained_state_dict)
    model.eval()

288
    model(input_ids)  # Warm up
289
290
291
292
293
294
295
296
297
    print("Without CUDA graph")
    torch.cuda.synchronize()
    start = time.time()
    out = model.generate(
        input_ids=input_ids,
        max_length=max_length,
        eos_token_id=eos_token_id,
        return_dict_in_generate=True,
        output_scores=True,
Tri Dao's avatar
Tri Dao committed
298
        enable_timing=True,
299
300
301
302
303
304
305
        teacher_outputs=out_hf.sequences,
    )
    torch.cuda.synchronize()
    print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")

    # Capture graph outside the timing loop
    batch_size, seqlen_og = input_ids.shape
306
    model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
307
308
309
310
311
312
313
314
315
    print("With CUDA graph")
    torch.cuda.synchronize()
    start = time.time()
    out_cg = model.generate(
        input_ids=input_ids,
        max_length=max_length,
        cg=True,
        return_dict_in_generate=True,
        output_scores=True,
Tri Dao's avatar
Tri Dao committed
316
        enable_timing=True,
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        teacher_outputs=out_hf.sequences,
    )
    torch.cuda.synchronize()
    print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")

    with torch.no_grad():
        logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1) : -1]
    logits_hf = torch.stack(out_hf.scores, dim=1)
    logits = torch.stack(out.scores, dim=1)
    logits_cg = torch.stack(out_cg.scores, dim=1)

    del model

    hf_error = (logits_hf - logits_ref).abs().max().item()

    print(f"HF fp16 logits max diff: {hf_error}")
    print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }")
    print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }")

    assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
    assert (logits - logits_ref).abs().max().item() < 2 * hf_error
    assert torch.equal(logits_cg, logits)


# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_baichuan.py -k "baichuan_parallel_generation"
@pytest.mark.parametrize("world_size", [2])
Tri Dao's avatar
Tri Dao committed
343
@pytest.mark.parametrize("model_name", ["baichuan-inc/Baichuan-7B"])
344
345
346
347
348
349
350
351
352
def test_baichuan_parallel_generation(model_name, world_size):
    """Check that our implementation matches the HF implementation:
    the scores in fp16 should be around the same as the HF scores in fp16, when compared to
    the HF scores in fp32.
    """
    from apex.transformer import parallel_state

    dtype = torch.float16
    config = baichuan_config_to_gpt2_config(
Tri Dao's avatar
Tri Dao committed
353
        AutoConfig.from_pretrained(model_name, trust_remote_code=True)
354
    )
355
    config.use_flash_attn = True
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = False
    config.residual_in_fp32 = True
    config.pad_vocab_size_multiple = 8 * world_size
    config.sequence_parallel = False  # Need to set this to False for generation

    os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0"
    if not torch.distributed.is_initialized():
        torch.distributed.init_process_group(backend="nccl", init_method="env://")
    device = f"cuda:{torch.distributed.get_rank()}"
    assert world_size <= torch.distributed.get_world_size()
    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    process_group = parallel_state.get_tensor_model_parallel_group()

    torch.manual_seed(0)
    batch_size = 1
    seqlen = 100
    max_length = 150
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
    )

    # Need this, otherwise when we capture the graph the process for GPU 1 would run on both
    # GPU0 and GPU1 and things would hang
    torch.cuda.set_device(device)

Tri Dao's avatar
Tri Dao committed
384
385
386
    pretrained_state_dict = remap_state_dict_hf_baichuan(
        state_dict_from_pretrained(model_name), config
    )
387

Tri Dao's avatar
Tri Dao committed
388
389
    model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
    model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
390
391
392
393
394
395
396
397
398
399
400
    model.eval()

    print("Without CUDA graph")
    out = model.generate(
        input_ids=input_ids,
        max_length=max_length,
        tensor_parallel=world_size,
        vocab_size=config.vocab_size,
        # teacher_outputs=out_hf.sequences,
        return_dict_in_generate=True,
        output_scores=True,
Tri Dao's avatar
Tri Dao committed
401
        enable_timing=True,
402
403
404
405
    )

    # Capture graph outside the timing loop
    batch_size, seqlen_og = input_ids.shape
406
    model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
407
408
409
410
411
412
413
414
415
416
    print("With CUDA graph")
    out_cg = model.generate(
        input_ids=input_ids,
        max_length=max_length,
        tensor_parallel=world_size,
        vocab_size=config.vocab_size,
        cg=True,
        # teacher_outputs=out_hf.sequences,
        return_dict_in_generate=True,
        output_scores=True,
Tri Dao's avatar
Tri Dao committed
417
        enable_timing=True,
418
419
420
421
422
423
424
    )
    del model
    parallel_state.destroy_model_parallel()

    if rank == 0:
        # Without device_map, the model is loaded on the CPU, which is very slow
        model_hf = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
425
            model_name, torch_dtype=dtype, device_map="auto", trust_remote_code=True
426
427
428
429
430
431
432
433
434
435
436
437
438
        )
        model_hf.eval()
        print("HF fp16")
        torch.cuda.synchronize()
        start = time.time()
        with torch.inference_mode():
            out_hf = model_hf.generate(
                input_ids=input_ids,
                max_length=max_length,
                return_dict_in_generate=True,
                output_scores=True,
            )
        torch.cuda.synchronize()
Tri Dao's avatar
Tri Dao committed
439
        print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
440
441
442
        del model_hf

        model_ref = AutoModelForCausalLM.from_pretrained(
Tri Dao's avatar
Tri Dao committed
443
            model_name, device_map="auto", trust_remote_code=True
444
445
446
447
448
449
450
451
452
453
454
455
456
457
        )
        model_ref.eval()
        with torch.inference_mode():
            logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1]
        del model_ref
        logits_hf = torch.stack(out_hf.scores, dim=1)

        logits = torch.stack(out.scores, dim=1)
        logits_cg = torch.stack(out_cg.scores, dim=1)

        hf_error = (logits_hf - logits_ref).abs().max().item()
        print(f"HF fp16 logits max diff: {hf_error}")
        print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }")
        print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }")
458
        assert (logits - logits_ref).abs().max().item() < 2 * hf_error
459
        assert torch.equal(logits_cg, logits)