flash_fwd_kernel.h 73.8 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
/******************************************************************************
2
 * Copyright (c) 2024, Tri Dao.
Tri Dao's avatar
Tri Dao committed
3
4
5
6
 ******************************************************************************/

#pragma once

Tri Dao's avatar
Tri Dao committed
7
#include <cute/tensor.hpp>
Tri Dao's avatar
Tri Dao committed
8
9
10
11
12
13
14
15
16

#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>

#include "block_info.h"
#include "kernel_traits.h"
#include "utils.h"
#include "softmax.h"
17
#include "mask.h"
18
#include "dropout.h"
19
#include "rotary.h"
20

Tri Dao's avatar
Tri Dao committed
21
22
23
24
25
26
namespace flash {

using namespace cute;

////////////////////////////////////////////////////////////////////////////////////////////////////

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
template<typename ElementAccum, typename Params, int kBlockM, bool Is_even_MN>
__forceinline__ __device__ auto get_lse_tile(const Params &params, const int bidb, const int bidh, const int m_block, const BlockInfo</*Varlen=*/!Is_even_MN> &binfo) {
        // When params.unpadded_lse is false, LSE is written as (b, h, seqlen_q) - this is non-variable seqlen path.
        // Otherwise, when params.seqlenq_ngroups_swapped is true, it is written as (h, seqlen_q, b) to account for seqlen_q <-> h swapping trick.
        // Otherwise, it's written as (h, b, seqlen_q).
        const bool varlen_q = params.unpadded_lse && !params.seqlenq_ngroups_swapped;
        auto lse_offset = varlen_q ? binfo.q_offset(params.seqlen_q, 1, bidb) : 0;
        auto gmem_ptr_lse = make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.softmax_lse_ptr) + lse_offset);

        auto lse_shape = varlen_q ? make_shape(1, params.h, params.total_q) : make_shape(params.b, params.h, params.seqlen_q);
        auto lse_stride = params.seqlenq_ngroups_swapped ? make_stride(1, params.seqlen_q * params.b, params.b) : (
            params.unpadded_lse ? make_stride(params.h * params.total_q, params.total_q, 1) :  make_stride(params.h * params.seqlen_q, params.seqlen_q, 1)
            );

        auto lse_layout = make_layout(lse_shape, lse_stride);
        Tensor mLSE = make_tensor(gmem_ptr_lse, lse_layout);
        auto mLSE_slice = varlen_q ? mLSE(0, bidh, _) : mLSE(bidb, bidh, _);
        return local_tile(mLSE_slice, Shape<Int<kBlockM>>{}, make_coord(m_block));
}


Nicolas Patry's avatar
Nicolas Patry committed
48
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, bool Return_softmax, typename Params>
Tri Dao's avatar
Tri Dao committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
inline __device__ void compute_attn_1rowblock(const Params &params, const int bidb, const int bidh, const int m_block) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    constexpr int kNWarps = Kernel_traits::kNWarps;

66
67
68
    auto seed_offset = at::cuda::philox::unpack(params.philox_args);
    flash::Dropout dropout(std::get<0>(seed_offset), std::get<1>(seed_offset), params.p_dropout_in_uint8_t,
                           bidb, bidh, tidx, params.h);
Tri Dao's avatar
Tri Dao committed
69
70
71
72

    // Save seed and offset for backward, before any early exiting. Otherwise the 0-th thread block might
    // exit early and no one saves the rng states.
    if (Is_dropout && blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx == 0) {
73
74
        params.rng_state[0] = std::get<0>(seed_offset);
        params.rng_state[1] = std::get<1>(seed_offset);
Tri Dao's avatar
Tri Dao committed
75
76
    }

77
    const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
78
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
Tri Dao's avatar
Tri Dao committed
79

Tri Dao's avatar
Tri Dao committed
80
    const int n_block_min = !Is_local ? 0 : std::max(0, (m_block * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q - params.window_size_left) / kBlockN);
Tri Dao's avatar
Tri Dao committed
81
    int n_block_max = cute::ceil_div(binfo.actual_seqlen_k, kBlockN);
Tri Dao's avatar
Tri Dao committed
82
    if (Is_causal || Is_local) {
83
        n_block_max = std::min(n_block_max,
Tri Dao's avatar
Tri Dao committed
84
                               cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right, kBlockN));
Tri Dao's avatar
Tri Dao committed
85
86
87
        // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) {
        //     printf("m_block = %d, n_block_max = %d\n", m_block, n_block_max);
        // }
88
89
90
91
    }
    // We exit early and write 0 to gO and gLSE. This also covers the case where actual_seqlen_k == 0.
    // Otherwise we might read OOB elements from gK and gV.
    if ((Is_causal || Is_local || !Is_even_MN) && n_block_max <= n_block_min) {
92
93
94
95
96
97
        Tensor mO = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.o_ptr)
                                              + binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)),
                                make_shape(binfo.actual_seqlen_q, params.h, params.d),
                                make_stride(params.o_row_stride, params.o_head_stride, _1{}));
        Tensor gO = local_tile(mO(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
                              make_coord(m_block, 0));  // (kBlockM, kHeadDim)
98
99

        Tensor gLSE = get_lse_tile<ElementAccum, Params, kBlockM, Is_even_MN>(params, bidb, bidh, m_block, binfo);
100
101
102
103
104
105
106
107
108
109
110
111

        typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
        auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
        Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
        Tensor tOrO = make_tensor<Element>(shape(tOgO));
        clear(tOrO);
        // Construct identity layout for sO
        Tensor cO = make_identity_tensor(make_shape(size<0>(gO), size<1>(gO)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
        // Repeat the partitioning with identity layouts
        Tensor tOcO = gmem_thr_copy_O.partition_D(cO);
        Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
        if (!Is_even_K) {
112
            #pragma unroll
113
114
115
116
117
118
119
120
121
122
            for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
        }
        // Clear_OOB_K must be false since we don't want to write zeros to gmem
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
        );
        #pragma unroll
        for (int m = 0; m < size<1>(tOgO); ++m) {
            const int row = get<0>(tOcO(0, m, 0));
            if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSE(row) = INFINITY; }
123
        }
124
        return;
Tri Dao's avatar
Tri Dao committed
125
    }
Tri Dao's avatar
Tri Dao committed
126
    // if (tidx == 0) { printf("m_block = %d, n_block_min = %d, n_block_max = %d\n", m_block, n_block_min, n_block_max); }
Tri Dao's avatar
Tri Dao committed
127
128
129
130
131
132
133
134

    // We iterate over the blocks in reverse order. This is because the last block is the only one
    // that needs masking when we read K and V from global memory. Moreover, iterating in reverse
    // might save us 1 register (we just need n_block instead of both n_block and n_block_max).

    const index_t row_offset_p = ((bidb * params.h + bidh) * params.seqlen_q_rounded
        + m_block * kBlockM) * params.seqlen_k_rounded + (n_block_max - 1) * kBlockN;

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    Tensor mQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.q_ptr)
                                          + binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)),
                            make_shape(binfo.actual_seqlen_q, params.h, params.d),
                            make_stride(params.q_row_stride, params.q_head_stride, _1{}));
    Tensor gQ = local_tile(mQ(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
                           make_coord(m_block, 0));  // (kBlockM, kHeadDim)
    Tensor mK = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.k_ptr)
                                          + binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)),
                            make_shape(binfo.actual_seqlen_k, params.h_k, params.d),
                            make_stride(params.k_row_stride, params.k_head_stride, _1{}));
    Tensor gK = local_tile(mK(_, bidh / params.h_h_k_ratio, _), Shape<Int<kBlockN>, Int<kHeadDim>>{},
                           make_coord(_, 0));  // (kBlockN, kHeadDim, nblocksN)
    Tensor mV = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.v_ptr)
                                          + binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)),
                            make_shape(binfo.actual_seqlen_k, params.h_k, params.d),
                            make_stride(params.v_row_stride, params.v_head_stride, _1{}));
    Tensor gV = local_tile(mV(_, bidh / params.h_h_k_ratio, _), Shape<Int<kBlockN>, Int<kHeadDim>>{},
                           make_coord(_, 0));  // (kBlockN, kHeadDim, nblocksN)
Tri Dao's avatar
Tri Dao committed
153
154
155
156
157
158
159
160
161
    Tensor gP = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.p_ptr) + row_offset_p),
                            Shape<Int<kBlockM>, Int<kBlockN>>{},
                            make_stride(params.seqlen_k_rounded, _1{}));

    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQ{});
    // Careful we're using the same smem for sQ and sK | sV if Share_Q_K_smem;
    Tensor sK = make_tensor(sQ.data() + (Kernel_traits::Share_Q_K_smem ? 0 : size(sQ)),
                            typename Kernel_traits::SmemLayoutKV{});
skrider's avatar
skrider committed
162

Tri Dao's avatar
Tri Dao committed
163
164
    Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
165
    Tensor sVtNoSwizzle = make_tensor(sV.data().get(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});
Tri Dao's avatar
Tri Dao committed
166

Tri Dao's avatar
Tri Dao committed
167
168
    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
    auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
169
170
171

    Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
172
    Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K, nblocksN)
Tri Dao's avatar
Tri Dao committed
173
    Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
174
    Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K, nblocksN)
Tri Dao's avatar
Tri Dao committed
175
176
177
178
179
180
181
182
    Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);

    typename Kernel_traits::TiledMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tidx);
    Tensor tSrQ  = thr_mma.partition_fragment_A(sQ);                           // (MMA,MMA_M,MMA_K)
    Tensor tSrK  = thr_mma.partition_fragment_B(sK);                           // (MMA,MMA_N,MMA_K)
    Tensor tOrVt  = thr_mma.partition_fragment_B(sVtNoSwizzle);                // (MMA, MMA_K,MMA_N)

Tri Dao's avatar
Tri Dao committed
183
184
    Tensor tSgS  = thr_mma.partition_C(gP);

Tri Dao's avatar
Tri Dao committed
185
186
187
188
189
190
    Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_M, MMA_K

    //
    // Copy Atom retiling
    //

Tri Dao's avatar
Tri Dao committed
191
192
    auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
193
194
195
196
    // if (cute::thread0()) {smem_thr_copy_Q.print_all();}
    Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);
    // if (cute::thread0()) {print(tSsQ.layout()); printf("\n");}

Tri Dao's avatar
Tri Dao committed
197
198
    auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
199
200
    Tensor tSsK = smem_thr_copy_K.partition_S(sK);

Tri Dao's avatar
Tri Dao committed
201
202
    auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
    auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);

    //
    // PREDICATES
    //

    // // Allocate predicate tensors for m and n
    // Tensor tQpQ = make_tensor<bool>(make_shape(size<1>(tQsQ), size<2>(tQsQ)), Stride<_1,_0>{});
    // Tensor tKVpKV = make_tensor<bool>(make_shape(size<1>(tKsK), size<2>(tKsK)), Stride<_1,_0>{});

    // Construct identity layout for sQ and sK
    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    // Tensor tScQ = thr_mma.partition_A(cQ);                           // (MMA,MMA_M,MMA_K)
    // if (cute::thread0()) {
    //     print(tScQ.layout()); printf("\n");
    //     for (int i = 0; i < size(tScQ); ++i) {
    //         printf("%d ", get<0>(tScQ(i)));
    //     }
    //     printf("\n");
    //     for (int i = 0; i < size(tScQ); ++i) {
    //         printf("%d ", get<1>(tScQ(i)));
    //     }
    //     printf("\n");
    // }

    // Repeat the partitioning with identity layouts
    Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ);       // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV);   // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

    // We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
248
249
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ,
                                       binfo.actual_seqlen_q - m_block * kBlockM);
Tri Dao's avatar
Tri Dao committed
250
251
252
253
254
255
256
257
258
259
260
    if (Kernel_traits::Is_Q_in_regs) { cute::cp_async_fence(); }

    // // if (cute::thread(1, 0)) { print(tQsQ); }
    // // Tensor sQNoSwizzle = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)), typename Kernel_traits::SmemLayoutQNoSwizzle{});
    // // if (cute::thread0()) { print(sQNoSwizzle); }

    if (Kernel_traits::Share_Q_K_smem) {
        flash::cp_async_wait<0>();
        __syncthreads();
        Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
        CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view));            // M
Tri Dao's avatar
Tri Dao committed
261
        cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
Tri Dao's avatar
Tri Dao committed
262
263
264
265
266
        __syncthreads();
    }

    int n_block = n_block_max - 1;
    // We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
267
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tKgK(_, _, _, n_block), tKsK, tKVcKV, tKVpKV,
268
                                       binfo.actual_seqlen_k - n_block * kBlockN);
Tri Dao's avatar
Tri Dao committed
269
270
271
272
273
274
275
276
277
    cute::cp_async_fence();
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z < 2) { print(tKgK); }
    // __syncthreads();

    if (Kernel_traits::Is_Q_in_regs && !Kernel_traits::Share_Q_K_smem) {
        flash::cp_async_wait<1>();
        __syncthreads();
        Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
        CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view));            // M
Tri Dao's avatar
Tri Dao committed
278
        cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
Tri Dao's avatar
Tri Dao committed
279
280
281
282
    }

    clear(acc_o);

Tri Dao's avatar
Tri Dao committed
283
284
    flash::Softmax<2 * size<1>(acc_o)> softmax;

285
286
    const float alibi_slope = !Has_alibi || params.alibi_slopes_ptr == nullptr ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
    flash::Mask<Is_causal, Is_local, Has_alibi> mask(binfo.actual_seqlen_k, binfo.actual_seqlen_q, params.window_size_left, params.window_size_right, alibi_slope);
287

Tri Dao's avatar
Tri Dao committed
288
289
290
291
292
293
    // For performance reason, we separate out two kinds of iterations:
    // those that need masking on S, and those that don't.
    // We need masking on S for the very last block when K and V has length not multiple of kBlockN.
    // We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
    // We will have at least 1 "masking" iteration.

294
295
    // If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
    // mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
Tri Dao's avatar
Tri Dao committed
296
    constexpr int n_masking_steps = (!Is_causal && !Is_local)
297
        ? 1
Tri Dao's avatar
Tri Dao committed
298
        : ((Is_even_MN && Is_causal) ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
Tri Dao's avatar
Tri Dao committed
299
300
301
302
303
304
305
306
307
    #pragma unroll
    for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();

        // Advance gV
        if (masking_step > 0) {
308
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV(_, _, _, n_block), tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
309
310
        } else {
            // Clear the smem tiles to account for predicated off loads
311
            flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
312
                gmem_tiled_copy_QKV, tVgV(_, _, _, n_block), tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
313
314
315
316
317
            );
        }
        cute::cp_async_fence();

        flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
Tri Dao's avatar
Tri Dao committed
318
319
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
Tri Dao's avatar
Tri Dao committed
320
321
        );
        // if (cute::thread0()) { print(acc_s); }
Nicolas Patry's avatar
Nicolas Patry committed
322
        if constexpr (Is_softcap){
Phil Wang's avatar
Phil Wang committed
323
            flash::apply_softcap(acc_s, params.softcap);
Nicolas Patry's avatar
Nicolas Patry committed
324
        }
Tri Dao's avatar
Tri Dao committed
325

326
327
328
        mask.template apply_mask<Is_causal, Is_even_MN>(
            acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
        );
Tri Dao's avatar
Tri Dao committed
329
330
331

        flash::cp_async_wait<0>();
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
332
        if (n_block > n_block_min) {
333
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK(_, _, _, n_block - 1), tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
334
335
336
337
338
339
340
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

        // TODO: when we have key_padding_mask we'll need to Check_inf
        masking_step == 0
Tri Dao's avatar
Tri Dao committed
341
342
            ? softmax.template softmax_rescale_o</*Is_first=*/true,  /*Check_inf=*/Is_causal || Is_local>(acc_s, acc_o, params.scale_softmax_log2)
            : softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal || Is_local>(acc_s, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
343

344
345
        // Convert acc_s from fp32 to fp16/bf16
        Tensor rP = flash::convert_type<Element>(acc_s);
346
347
        int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
        int block_col_idx = n_block * (kBlockN / 32);
Tri Dao's avatar
Tri Dao committed
348
        if (Return_softmax) {
349
350
            Tensor rP_drop = make_fragment_like(rP);
            cute::copy(rP, rP_drop);
351
            dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
352
                rP_drop, block_row_idx, block_col_idx, kNWarps
Tri Dao's avatar
Tri Dao committed
353
            );
354
            cute::copy(rP_drop, tSgS);
Tri Dao's avatar
Tri Dao committed
355
            tSgS.data() = tSgS.data() + (-kBlockN);
Tri Dao's avatar
Tri Dao committed
356
357
        }
        if (Is_dropout) {
358
            dropout.apply_dropout(rP, block_row_idx, block_col_idx, kNWarps);
Tri Dao's avatar
Tri Dao committed
359
360
        }

361
362
363
        // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
364
        // if (cute::thread0()) { print(tOrP); }
365
        flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
366
367
368
        // if (cute::thread0()) { print(scores); }

        // This check is at the end of the loop since we always have at least 1 iteration
Tri Dao's avatar
Tri Dao committed
369
        if (n_masking_steps > 1 && n_block <= n_block_min) {
Tri Dao's avatar
Tri Dao committed
370
371
372
373
374
375
            --n_block;
            break;
        }
    }

    // These are the iterations where we don't need masking on S
Tri Dao's avatar
Tri Dao committed
376
    for (; n_block >= n_block_min; --n_block) {
Tri Dao's avatar
Tri Dao committed
377
378
379
380
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();
381
        flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV(_, _, _, n_block), tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
382
383
384
        cute::cp_async_fence();

        flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
Tri Dao's avatar
Tri Dao committed
385
386
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
Tri Dao's avatar
Tri Dao committed
387
        );
Nicolas Patry's avatar
Nicolas Patry committed
388
        if constexpr (Is_softcap){
Phil Wang's avatar
Phil Wang committed
389
            flash::apply_softcap(acc_s, params.softcap);
Nicolas Patry's avatar
Nicolas Patry committed
390
        }
Tri Dao's avatar
Tri Dao committed
391
392
393

        flash::cp_async_wait<0>();
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
394
        if (n_block > n_block_min) {
395
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK(_, _, _, n_block - 1), tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
396
397
398
399
400
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

401
402
403
        mask.template apply_mask</*Causal_mask=*/false>(
            acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
        );
404

Tri Dao's avatar
Tri Dao committed
405
        softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_local>(acc_s, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
406

407
        Tensor rP = flash::convert_type<Element>(acc_s);
408
409
        int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
        int block_col_idx = n_block * (kBlockN / 32);
Tri Dao's avatar
Tri Dao committed
410
        if (Return_softmax) {
411
412
            Tensor rP_drop = make_fragment_like(rP);
            cute::copy(rP, rP_drop);
413
            dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
414
                rP_drop, block_row_idx, block_col_idx, kNWarps
Tri Dao's avatar
Tri Dao committed
415
            );
416
            cute::copy(rP_drop, tSgS);
Tri Dao's avatar
Tri Dao committed
417
            tSgS.data() = tSgS.data() + (-kBlockN);
Tri Dao's avatar
Tri Dao committed
418
419
        }
        if (Is_dropout) {
420
            dropout.apply_dropout(rP, block_row_idx, block_col_idx, kNWarps);
Tri Dao's avatar
Tri Dao committed
421
422
        }

423
424
425
        // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
426
        flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
427
428
429
430
    }

    // Epilogue

Tri Dao's avatar
Tri Dao committed
431
    Tensor lse = softmax.template normalize_softmax_lse<Is_dropout>(acc_o, params.scale_softmax, params.rp_dropout);
Tri Dao's avatar
Tri Dao committed
432
433
434
435
436

    // Convert acc_o from fp32 to fp16/bf16
    Tensor rO = flash::convert_type<Element>(acc_o);
    Tensor sO = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutO{});    // (SMEM_M,SMEM_N)
    // Partition sO to match the accumulator partitioning
Tri Dao's avatar
Tri Dao committed
437
438
    auto smem_tiled_copy_O = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomO{}, tiled_mma);
    auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
439
440
441
442
443
444
    Tensor taccOrO = smem_thr_copy_O.retile_S(rO);        // ((Atom,AtomNum), MMA_M, MMA_N)
    Tensor taccOsO = smem_thr_copy_O.partition_D(sO);     // ((Atom,AtomNum),PIPE_M,PIPE_N)

    // sO has the same size as sQ, so we don't need to sync here.
    if (Kernel_traits::Share_Q_K_smem) { __syncthreads(); }

Tri Dao's avatar
Tri Dao committed
445
    cute::copy(smem_tiled_copy_O, taccOrO, taccOsO);
Tri Dao's avatar
Tri Dao committed
446

447
448
449
450
451
452
    Tensor mO = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.o_ptr)
                                          + binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)),
                            make_shape(binfo.actual_seqlen_q, params.h, params.d),
                            make_stride(params.o_row_stride, params.o_head_stride, _1{}));
    Tensor gO = local_tile(mO(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
                           make_coord(m_block, 0));  // (kBlockM, kHeadDim)
453
    Tensor gLSE = get_lse_tile<ElementAccum, Params, kBlockM, Is_even_MN>(params, bidb, bidh, m_block, binfo);
Tri Dao's avatar
Tri Dao committed
454

Tri Dao's avatar
Tri Dao committed
455
456
    typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
    auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
457
458
459
460
461
462
    Tensor tOsO = gmem_thr_copy_O.partition_S(sO);        // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tOgO = gmem_thr_copy_O.partition_D(gO);

    __syncthreads();

    Tensor tOrO = make_tensor<Element>(shape(tOgO));
Tri Dao's avatar
Tri Dao committed
463
    cute::copy(gmem_tiled_copy_O, tOsO, tOrO);
Tri Dao's avatar
Tri Dao committed
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

    Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor taccOcO = thr_mma.partition_C(caccO);                           // (MMA,MMA_M,MMA_K)
    static_assert(decltype(size<0>(taccOcO))::value == 4);
    // Convert to ((2, 2), MMA_M, MMA_K) then take only the row indices.
    Tensor taccOcO_row = logical_divide(taccOcO, Shape<_2>{})(make_coord(0, _), _, 0);
    CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row));                     // MMA_M
    if (get<1>(taccOcO_row(0)) == 0) {
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) {
            const int row = get<0>(taccOcO_row(mi));
            if (row < binfo.actual_seqlen_q - m_block * kBlockM) { gLSE(row) = lse(mi); }
        }
    }

    // Construct identity layout for sO
    Tensor cO = make_identity_tensor(make_shape(size<0>(sO), size<1>(sO)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    // Repeat the partitioning with identity layouts
    Tensor tOcO = gmem_thr_copy_O.partition_D(cO);                           // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
    }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
489
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
490
        gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
491
492
493
494
495
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

Nicolas Patry's avatar
Nicolas Patry committed
496
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, bool Split, bool Append_KV, typename Params>
Tri Dao's avatar
Tri Dao committed
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
inline __device__ void compute_attn_1rowblock_splitkv(const Params &params, const int bidb, const int bidh, const int m_block, const int n_split_idx, const int num_n_splits) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    constexpr int kNWarps = Kernel_traits::kNWarps;

Tri Dao's avatar
Tri Dao committed
514
515
    using GmemTiledCopyO = std::conditional_t<
        !Split,
516
517
        typename Kernel_traits::GmemTiledCopyO,
        typename Kernel_traits::GmemTiledCopyOaccum
Tri Dao's avatar
Tri Dao committed
518
519
520
    >;
    using ElementO = std::conditional_t<!Split, Element, ElementAccum>;

Tri Dao's avatar
Tri Dao committed
521
    const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
Tri Dao's avatar
Tri Dao committed
522
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("Is_even_MN = %d, is_cumulativ = %d, seqlen_k_cache = %d, actual_seqlen_k = %d\n", Is_even_MN, params.is_seqlens_k_cumulative, binfo.seqlen_k_cache, binfo.actual_seqlen_k); }
523
    // if (threadIdx.x == 0 && blockIdx.y == 1 && blockIdx.z == 0) { printf("params.knew_ptr = %p, seqlen_k_cache + seqlen_knew = %d\n", params.knew_ptr, binfo.seqlen_k_cache + (params.knew_ptr == nullptr ? 0 : params.seqlen_knew)); }
Tri Dao's avatar
Tri Dao committed
524
525
526
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;

    const int n_blocks_per_split = ((params.seqlen_k + kBlockN - 1) / kBlockN + num_n_splits - 1) / num_n_splits;
Tri Dao's avatar
Tri Dao committed
527
528
529
    const int n_block_min = !Is_local
        ? n_split_idx * n_blocks_per_split
        : std::max(n_split_idx * n_blocks_per_split, (m_block * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q - params.window_size_left) / kBlockN);
Tri Dao's avatar
Tri Dao committed
530
    int n_block_max = std::min(cute::ceil_div(binfo.actual_seqlen_k, kBlockN), (n_split_idx + 1) * n_blocks_per_split);
Tri Dao's avatar
Tri Dao committed
531
    if (Is_causal || Is_local) {
Tri Dao's avatar
Tri Dao committed
532
        n_block_max = std::min(n_block_max,
Tri Dao's avatar
Tri Dao committed
533
                               cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right, kBlockN));
Tri Dao's avatar
Tri Dao committed
534
535
536
537
538
    }
    if (n_block_min >= n_block_max) {  // This also covers the case where n_block_max <= 0
        // We exit early and write 0 to gOaccum and -inf to gLSEaccum.
        // Otherwise we might read OOB elements from gK and gV,
        // or get wrong results when we combine gOaccum from different blocks.
Tri Dao's avatar
Tri Dao committed
539
540
        const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
            + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
Tri Dao's avatar
Tri Dao committed
541
542
543
        const index_t row_offset_oaccum = (((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q
            + m_block * kBlockM) * params.d_rounded;
        const index_t row_offset_lseaccum = ((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
Tri Dao's avatar
Tri Dao committed
544
545
546
547
        Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
                                      Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                     make_stride(Split ? kHeadDim : params.o_row_stride, _1{}));
        Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + row_offset_lseaccum),
Tri Dao's avatar
Tri Dao committed
548
549
                                      Shape<Int<kBlockM>>{}, Stride<_1>{});

Tri Dao's avatar
Tri Dao committed
550
        GmemTiledCopyO gmem_tiled_copy_Oaccum;
Tri Dao's avatar
Tri Dao committed
551
552
        auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
        Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);
Tri Dao's avatar
Tri Dao committed
553
        Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
Tri Dao's avatar
Tri Dao committed
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
        clear(tOrOaccum);
        // Construct identity layout for sO
        Tensor cO = make_identity_tensor(make_shape(size<0>(gOaccum), size<1>(gOaccum)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
        // Repeat the partitioning with identity layouts
        Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO);
        Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
        if (!Is_even_K) {
            #pragma unroll
            for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
        }
        // Clear_OOB_K must be false since we don't want to write zeros to gmem
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
        );
        #pragma unroll
        for (int m = 0; m < size<1>(tOgOaccum); ++m) {
            const int row = get<0>(tOcO(0, m, 0));
Tri Dao's avatar
Tri Dao committed
571
            if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSEaccum(row) = Split ? -INFINITY : INFINITY; }
Tri Dao's avatar
Tri Dao committed
572
573
574
575
576
577
578
579
580
        }
        return;
    }

    // We iterate over the blocks in reverse order. This is because the last block is the only one
    // that needs masking when we read K and V from global memory. Moreover, iterating in reverse
    // might save us 1 register (we just need n_block instead of both n_block and n_block_max).

    // We move K and V to the last block.
581
    const int bidb_cache = params.cache_batch_idx == nullptr ? bidb : params.cache_batch_idx[bidb];
Tri Dao's avatar
Tri Dao committed
582
583
584
585
    const int *block_table = params.block_table == nullptr ? nullptr : params.block_table + bidb * params.block_table_batch_stride;
    const index_t row_offset_k = block_table == nullptr
        ? binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb_cache)
          + (n_block_max - 1) * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride
skrider's avatar
skrider committed
586
        : (bidh / params.h_h_k_ratio) * params.k_head_stride; // block addresses are later resolved per-thread
skrider's avatar
skrider committed
587

Tri Dao's avatar
Tri Dao committed
588
589
590
    const index_t row_offset_v = block_table == nullptr
        ? binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb_cache)
          + (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride
skrider's avatar
skrider committed
591
        : (bidh / params.h_h_k_ratio) * params.v_head_stride;
Tri Dao's avatar
Tri Dao committed
592

skrider's avatar
skrider committed
593
    
Tri Dao's avatar
Tri Dao committed
594

595
596
597
598
599
    Tensor mQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.q_ptr) + binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)),
                            make_shape(binfo.actual_seqlen_q, params.h, params.d),
                            make_stride(params.q_row_stride, params.q_head_stride, _1{}));
    Tensor gQ = local_tile(mQ(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
                           make_coord(m_block, 0));  // (kBlockM, kHeadDim)
Tri Dao's avatar
Tri Dao committed
600
601
602
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
Tri Dao's avatar
Tri Dao committed
603
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("k_ptr = %p, row_offset_k = %d, gK_ptr = %p\n", params.k_ptr, row_offset_k, gK.data()); }
Tri Dao's avatar
Tri Dao committed
604
605
606
607
608
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));
    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQ{});
Tri Dao's avatar
Tri Dao committed
609
    Tensor sK = make_tensor(sQ.data() + size(sQ), typename Kernel_traits::SmemLayoutKV{});
Tri Dao's avatar
Tri Dao committed
610
611
    Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
612
    Tensor sVtNoSwizzle = make_tensor(sV.data().get(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});
Tri Dao's avatar
Tri Dao committed
613

skrider's avatar
skrider committed
614
615
616
617
618
619
620
    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_Q;
    auto gmem_thr_copy_Q = gmem_tiled_copy_Q.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopyQKVPaged gmem_tiled_copy_KV;
    auto gmem_thr_copy_KV = gmem_tiled_copy_KV.get_thread_slice(tidx);

    Tensor tQgQ = gmem_thr_copy_Q.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_Q.partition_D(sQ);
skrider's avatar
skrider committed
621

skrider's avatar
skrider committed
622
623
624
625
626
    Tensor tKgK_ = gmem_thr_copy_KV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK_ = gmem_thr_copy_KV.partition_D(sK);
    Tensor tVgV_ = gmem_thr_copy_KV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV_ = gmem_thr_copy_KV.partition_D(sV);

skrider's avatar
skrider committed
627
628
629
630
    Tensor tKgK = make_tensor(tKgK_.data(), reshape_thread_tile(tKgK_.layout()));
    Tensor tKsK = make_tensor(tKsK_.data(), reshape_thread_tile(tKsK_.layout()));
    Tensor tVgV = make_tensor(tVgV_.data(), reshape_thread_tile(tVgV_.layout()));
    Tensor tVsV = make_tensor(tVsV_.data(), reshape_thread_tile(tVsV_.layout()));
skrider's avatar
skrider committed
631
632

    if (block_table != nullptr) {
633
        tKgK.data() = gK.data() + flash::resolve_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block_max, params.page_block_size,
skrider's avatar
skrider committed
634
            block_table, params.k_batch_stride, params.k_row_stride);
635
        tVgV.data() = gV.data() + flash::resolve_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block_max, params.page_block_size,
skrider's avatar
skrider committed
636
637
            block_table, params.v_batch_stride, params.v_row_stride);
    }
Tri Dao's avatar
Tri Dao committed
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

    typename Kernel_traits::TiledMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tidx);
    Tensor tSrQ  = thr_mma.partition_fragment_A(sQ);                           // (MMA,MMA_M,MMA_K)
    Tensor tSrK  = thr_mma.partition_fragment_B(sK);                           // (MMA,MMA_N,MMA_K)
    Tensor tOrVt  = thr_mma.partition_fragment_B(sVtNoSwizzle);                // (MMA, MMA_K,MMA_N)

    Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_M, MMA_K

    //
    // Copy Atom retiling
    //

    auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
    Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);

    auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
    Tensor tSsK = smem_thr_copy_K.partition_S(sK);

    auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
    auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
    Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);

    // PREDICATES
    //

    // // Allocate predicate tensors for m and n
    // Tensor tQpQ = make_tensor<bool>(make_shape(size<1>(tQsQ), size<2>(tQsQ)), Stride<_1,_0>{});
    // Tensor tKVpKV = make_tensor<bool>(make_shape(size<1>(tKsK), size<2>(tKsK)), Stride<_1,_0>{});

    // Construct identity layout for sQ and sK
    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)

    // Repeat the partitioning with identity layouts
skrider's avatar
skrider committed
675
    Tensor tQcQ = gmem_thr_copy_Q.partition_S(cQ);       // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
676
677
    Tensor tKVcKV_ = gmem_thr_copy_KV.partition_S(cKV);   // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)
    Tensor tKVcKV = make_tensor(tKVcKV_.data(), reshape_thread_tile(tKVcKV_.layout()));
Tri Dao's avatar
Tri Dao committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

693
    // Copy from Knew to K, optionally apply rotary embedding.
694
    if constexpr (Append_KV) {
695
696
697
698
699
        typename Kernel_traits::GmemTiledCopyRotcossinPaged gmem_tiled_copy_rotary;
        auto gmem_thr_copy_rotary = gmem_tiled_copy_rotary.get_thread_slice(tidx);
        typename Kernel_traits::GmemTiledCopyRotcossinContPaged gmem_tiled_copy_rotary_cont;
        auto gmem_thr_copy_rotary_cont = gmem_tiled_copy_rotary_cont.get_thread_slice(tidx);
        
700
701
702
        // Even if we have MQA / GQA, all threadblocks responsible for the same KV head are writing to
        // gmem. Technically it's a race condition, but they all write the same content anyway, and it's safe.
        // We want to do this so that all threadblocks can proceed right after they finish writing the KV cache.
Tri Dao's avatar
Tri Dao committed
703
        const index_t row_offset_cossin = ((n_block_max - 1) * kBlockN + (params.leftpad_k == nullptr ? 0 : params.leftpad_k[bidb])) * (params.rotary_dim / 2);
704
705
706
707
708
709
710
711
712
713
714
715
        Tensor gCos = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockN>, Int<kHeadDim / 2>>{},
                                  make_stride(params.rotary_dim / 2, _1{}));
        Tensor gSin = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockN>, Int<kHeadDim / 2>>{},
                                  make_stride(params.rotary_dim / 2, _1{}));
        Tensor gCosCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                      Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                      make_stride(params.rotary_dim / 2, _1{}));
        Tensor gSinCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                      Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                      make_stride(params.rotary_dim / 2, _1{}));
716
717
718
719
720
721
722
723
724
725
726
                                      
        Tensor tRgCos_ = gmem_thr_copy_rotary.partition_S(gCos);
        Tensor tRgSin_ = gmem_thr_copy_rotary.partition_S(gSin);
        Tensor tRgCosCont_ = gmem_thr_copy_rotary_cont.partition_S(gCosCont);
        Tensor tRgSinCont_ = gmem_thr_copy_rotary_cont.partition_S(gSinCont);

        Tensor tRgCos = make_tensor(tRgCos_.data(), reshape_thread_tile(tRgCos_.layout()));
        Tensor tRgSin = make_tensor(tRgSin_.data(), reshape_thread_tile(tRgSin_.layout()));
        Tensor tRgCosCont = make_tensor(tRgCosCont_.data(), reshape_flatten_thread_tile(tRgCosCont_.layout()));
        Tensor tRgSinCont = make_tensor(tRgSinCont_.data(), reshape_flatten_thread_tile(tRgSinCont_.layout()));

727
728
729
730
        // if (cute::thread(0, 0)) { printf("rotary_cos_ptr = %p, gCos.data() = %p, tRgCos.data() = %p, rotary_dim = %d\n", params.rotary_cos_ptr, gCos.data(), tRgCos.data(), params.rotary_dim); }
        // if (cute::thread(8, 0)) { print_tensor(gCos); }
        // if (cute::thread(0, 0)) { print_tensor(tRgCos); }

Tri Dao's avatar
Tri Dao committed
731
732
        // const index_t row_offset_knew = binfo.k_offset(params.knew_batch_stride, params.knew_row_stride, bidb)
        const index_t row_offset_knew = bidb * params.knew_batch_stride
733
            + ((n_block_max - 1) * kBlockN) * params.knew_row_stride + (bidh / params.h_h_k_ratio) * params.knew_head_stride;
Tri Dao's avatar
Tri Dao committed
734
735
        // const index_t row_offset_vnew = binfo.k_offset(params.vnew_batch_stride, params.vnew_row_stride, bidb)
        const index_t row_offset_vnew = bidb * params.vnew_batch_stride
736
737
738
739
740
741
742
743
744
745
746
747
748
            + ((n_block_max - 1) * kBlockN) * params.vnew_row_stride + (bidh / params.h_h_k_ratio) * params.vnew_head_stride;
        // Subtract seqlen_k_cache * row stride so that conceptually gK and gKnew "line up". When we access them,
        // e.g. if gK has 128 rows and gKnew has 64 rows, we access gK[:128] and gKNew[128:128 + 64].
        // This maps to accessing the first 64 rows of knew_ptr.
        Tensor gKnew = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.knew_ptr)
                                                + row_offset_knew - binfo.seqlen_k_cache * params.knew_row_stride),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  make_stride(params.knew_row_stride, _1{}));
        // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("knew_ptr = %p, row_offset_knew = %d, gKnew_ptr = %p\n", params.knew_ptr, row_offset_knew, gKnew.data()); }
        Tensor gVnew = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.vnew_ptr)
                                                + row_offset_vnew - binfo.seqlen_k_cache * params.vnew_row_stride),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  make_stride(params.vnew_row_stride, _1{}));
skrider's avatar
skrider committed
749
750
751
752
753
        typename Kernel_traits::GmemTiledCopyQKVPaged gmem_tiled_copy_KV_new;
        auto gmem_thr_copy_KV_new = gmem_tiled_copy_KV_new.get_thread_slice(tidx);
        Tensor tKgKnew_ = gmem_thr_copy_KV_new.partition_S(gKnew);  // (KCPY, KCPY_N, KCPY_K)
        Tensor tVgVnew_ = gmem_thr_copy_KV_new.partition_S(gVnew);  // (VCPY, VCPY_N, VCPY_K)

skrider's avatar
skrider committed
754
755
        auto tKgKnew = make_tensor(tKgKnew_.data(), reshape_thread_tile(tKgKnew_.layout()));
        auto tVgVnew = make_tensor(tVgVnew_.data(), reshape_thread_tile(tVgVnew_.layout()));
756
757

        const int n_block_copy_min = std::max(n_block_min, binfo.seqlen_k_cache / kBlockN);
Tri Dao's avatar
Tri Dao committed
758
759
        auto tKgK_data = tKgK.data();
        auto tVgV_data = tVgV.data();
760
761
762
763
764
        for (int n_block = n_block_max - 1; n_block >= n_block_copy_min; n_block--) {
            flash::copy_w_min_idx<Is_even_K>(
                tVgVnew, tVgV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN, binfo.seqlen_k_cache - n_block * kBlockN
            );
            tVgVnew.data() = tVgVnew.data() + (-int(kBlockN * params.vnew_row_stride));
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
            if (params.rotary_dim == 0) {
                flash::copy_w_min_idx<Is_even_K>(
                    tKgKnew, tKgK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN, binfo.seqlen_k_cache - n_block * kBlockN
                );
            } else {
                if (params.is_rotary_interleaved) {
                    // Don't clear OOB_K because we're writing to global memory
                    flash::copy_rotary_interleaved<Is_even_K, /*Clear_OOB_K=*/false>(
                        tKgKnew, tKgK, tRgCos, tRgSin, tKVcKV, binfo.actual_seqlen_k - n_block * kBlockN,
                        binfo.seqlen_k_cache - n_block * kBlockN, params.d, params.rotary_dim
                    );
                    tRgCos.data() = tRgCos.data() + (-int(kBlockN * params.rotary_dim / 2));
                    tRgSin.data() = tRgSin.data() + (-int(kBlockN * params.rotary_dim / 2));
                } else {
                    // Don't clear OOB_K because we're writing to global memory
                    flash::copy_rotary_contiguous<Is_even_K, /*Clear_OOB_K=*/false>(
                        tKgKnew, tKgK, tRgCosCont, tRgSinCont, tKVcKV, binfo.actual_seqlen_k - n_block * kBlockN,
                        binfo.seqlen_k_cache - n_block * kBlockN, params.d, params.rotary_dim
                    );
                    tRgCosCont.data() = tRgCosCont.data() + (-int(kBlockN * params.rotary_dim / 2));
                    tRgSinCont.data() = tRgSinCont.data() + (-int(kBlockN * params.rotary_dim / 2));

                }
            }
            tKgKnew.data() = tKgKnew.data() + (-int(kBlockN * params.knew_row_stride));
Tri Dao's avatar
Tri Dao committed
790
791
792
793
794
            if (block_table == nullptr) {
                tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
                tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
            } else {
                if (n_block > n_block_copy_min) {
795
                    tVgV.data() = gV.data() + flash::resolve_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block, params.page_block_size, 
796
                        block_table, params.v_batch_stride, params.v_row_stride);
797
                    tKgK.data() = gK.data() + flash::resolve_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block, params.page_block_size, 
798
                        block_table, params.k_batch_stride, params.k_row_stride);
Tri Dao's avatar
Tri Dao committed
799
800
                }
            }
801
        }
802
        // Need this before we can read in K again, so that we'll see the updated K values.
803
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
804
805
        tKgK.data() = tKgK_data;
        tVgV.data() = tVgV_data;
806
807
    }

808
809
810
    // Read Q from gmem to smem, optionally apply rotary embedding.
    if (!Append_KV || params.rotary_dim == 0) {
        // We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
skrider's avatar
skrider committed
811
        flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_Q, tQgQ, tQsQ, tQcQ, tQpQ,
812
813
                                           binfo.actual_seqlen_q - m_block * kBlockM);
    } else {
814
815
816
817
        typename Kernel_traits::GmemTiledCopyRotcossin gmem_tiled_copy_rotary;
        auto gmem_thr_copy_rotary = gmem_tiled_copy_rotary.get_thread_slice(tidx);
        typename Kernel_traits::GmemTiledCopyRotcossinCont gmem_tiled_copy_rotary_cont;
        auto gmem_thr_copy_rotary_cont = gmem_tiled_copy_rotary_cont.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
818
        const index_t row_offset_cossin = (binfo.seqlen_k_cache + (params.leftpad_k == nullptr ? 0 : params.leftpad_k[bidb]) + (Is_causal || Is_local ? m_block * kBlockM : 0)) * (params.rotary_dim / 2);
819
820
821
822
        // If not causal, all the queries get the same the cos/sin, taken at location seqlen_k_cache.
        // We do this by setting the row stride of gCos / gSin to 0.
        Tensor gCos = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim / 2>>{},
Tri Dao's avatar
Tri Dao committed
823
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
824
825
        Tensor gSin = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim / 2>>{},
Tri Dao's avatar
Tri Dao committed
826
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
827
828
        Tensor gCosCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
Tri Dao's avatar
Tri Dao committed
829
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
830
831
        Tensor gSinCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
Tri Dao's avatar
Tri Dao committed
832
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
        Tensor tRgCos = gmem_thr_copy_rotary.partition_S(gCos);
        Tensor tRgSin = gmem_thr_copy_rotary.partition_S(gSin);
        Tensor tRgCosCont = gmem_thr_copy_rotary_cont.partition_S(gCosCont);
        Tensor tRgSinCont = gmem_thr_copy_rotary_cont.partition_S(gSinCont);
        if (params.is_rotary_interleaved) {
            flash::copy_rotary_interleaved<Is_even_K>(
                tQgQ, tQsQ, tRgCos, tRgSin, tQcQ, binfo.actual_seqlen_q - m_block * kBlockM,
                0, params.d, params.rotary_dim
            );
        } else {
            flash::copy_rotary_contiguous<Is_even_K>(
                tQgQ, tQsQ, tRgCosCont, tRgSinCont, tQcQ, binfo.actual_seqlen_q - m_block * kBlockM,
                0, params.d, params.rotary_dim
            );
        }
    }
Tri Dao's avatar
Tri Dao committed
849
850
851

    int n_block = n_block_max - 1;
    // We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
skrider's avatar
skrider committed
852
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_KV, tKgK, tKsK, tKVcKV, tKVpKV,
853
                                       binfo.actual_seqlen_k - n_block * kBlockN);
Tri Dao's avatar
Tri Dao committed
854
855
    cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
856
857
858
859
    // flash::cp_async_wait<0>();
    // __syncthreads();
    // if (tidx == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(tKsK); }
    // __syncthreads();
Tri Dao's avatar
Tri Dao committed
860
861
862

    clear(acc_o);

Tri Dao's avatar
Tri Dao committed
863
864
    flash::Softmax<2 * size<1>(acc_o)> softmax;

Tri Dao's avatar
Tri Dao committed
865
    const float alibi_slope = !Has_alibi ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
866
    flash::Mask<Is_causal, Is_local, Has_alibi> mask(binfo.actual_seqlen_k, binfo.actual_seqlen_q, params.window_size_left, params.window_size_right, alibi_slope);
867

Tri Dao's avatar
Tri Dao committed
868
869
870
871
872
873
874
875
    // For performance reason, we separate out two kinds of iterations:
    // those that need masking on S, and those that don't.
    // We need masking on S for the very last block when K and V has length not multiple of kBlockN.
    // We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
    // We will have at least 1 "masking" iteration.

    // If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
    // mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
Tri Dao's avatar
Tri Dao committed
876
    constexpr int n_masking_steps = (!Is_causal && !Is_local)
Tri Dao's avatar
Tri Dao committed
877
        ? 1
Tri Dao's avatar
Tri Dao committed
878
        : ((Is_even_MN && Is_causal) ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
Tri Dao's avatar
Tri Dao committed
879
880
881
882
883
884
885
886
887
    #pragma unroll
    for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();

        // Advance gV
        if (masking_step > 0) {
Tri Dao's avatar
Tri Dao committed
888
889
890
            if (block_table == nullptr) {
                tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
            } else {
891
                tVgV.data() = gV.data() + flash::resolve_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block + 1, params.page_block_size,
892
                    block_table, params.v_batch_stride, params.v_row_stride);
Tri Dao's avatar
Tri Dao committed
893
            }
skrider's avatar
skrider committed
894
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_KV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
895
896
        } else {
            // Clear the smem tiles to account for predicated off loads
897
            flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
skrider's avatar
skrider committed
898
                gmem_tiled_copy_KV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
899
900
901
902
            );
        }
        cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
903
        flash::gemm(
Tri Dao's avatar
Tri Dao committed
904
905
906
907
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
        );
        // if (cute::thread0()) { print(acc_s); }
Nicolas Patry's avatar
Nicolas Patry committed
908
        if constexpr (Is_softcap){
Phil Wang's avatar
Phil Wang committed
909
            flash::apply_softcap(acc_s, params.softcap);
Nicolas Patry's avatar
Nicolas Patry committed
910
911
        }

Tri Dao's avatar
Tri Dao committed
912

913
914
915
        mask.template apply_mask<Is_causal, Is_even_MN>(
            acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
        );
Tri Dao's avatar
Tri Dao committed
916
917
918

        flash::cp_async_wait<0>();
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
919
920
921
        // if (tidx == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(tVsV); }
        // __syncthreads();

Tri Dao's avatar
Tri Dao committed
922
923
        if (n_block > n_block_min) {
            // Advance gK
Tri Dao's avatar
Tri Dao committed
924
925
926
            if (block_table == nullptr) {
                tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
            } else {
927
                tKgK.data() = gK.data() + flash::resolve_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block, params.page_block_size, 
928
                    block_table, params.k_batch_stride, params.k_row_stride);
Tri Dao's avatar
Tri Dao committed
929
            }
skrider's avatar
skrider committed
930
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_KV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
931
932
933
934
935
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

Tri Dao's avatar
Tri Dao committed
936
        // We have key_padding_mask so we'll need to Check_inf
Tri Dao's avatar
Tri Dao committed
937
        masking_step == 0
Tri Dao's avatar
Tri Dao committed
938
939
            ? softmax.template softmax_rescale_o</*Is_first=*/true,  /*Check_inf=*/Is_causal || Is_local || !Is_even_MN>(acc_s, acc_o, params.scale_softmax_log2)
            : softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal || Is_local || !Is_even_MN>(acc_s, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
940
        // if (cute::thread0()) { print(scores_max); print(scores_sum); print(scores); }
Tri Dao's avatar
Tri Dao committed
941

942
943
944
945
946
        // Convert acc_s from fp32 to fp16/bf16
        Tensor rP = flash::convert_type<Element>(acc_s);
        // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
Tri Dao's avatar
Tri Dao committed
947

948
        flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963

        // This check is at the end of the loop since we always have at least 1 iteration
        if (n_masking_steps > 1 && n_block <= n_block_min) {
            --n_block;
            break;
        }
    }

    // These are the iterations where we don't need masking on S
    for (; n_block >= n_block_min; --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();
        // Advance gV
Tri Dao's avatar
Tri Dao committed
964
965
966
        if (block_table == nullptr) {
            tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
        } else {
967
            tVgV.data() = gV.data() + flash::resolve_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block + 1, params.page_block_size, 
968
                block_table, params.v_batch_stride, params.v_row_stride);
Tri Dao's avatar
Tri Dao committed
969
        }
skrider's avatar
skrider committed
970
        flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_KV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
971
972
        cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
973
        flash::gemm(
Tri Dao's avatar
Tri Dao committed
974
975
976
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
        );
Nicolas Patry's avatar
Nicolas Patry committed
977
        if constexpr (Is_softcap){
Phil Wang's avatar
Phil Wang committed
978
            flash::apply_softcap(acc_s, params.softcap);
Nicolas Patry's avatar
Nicolas Patry committed
979
        }
Tri Dao's avatar
Tri Dao committed
980
981
982
983
984

        flash::cp_async_wait<0>();
        __syncthreads();
        if (n_block > n_block_min) {
            // Advance gK
Tri Dao's avatar
Tri Dao committed
985
986
987
            if (block_table == nullptr) {
                tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
            } else {
988
                tKgK.data() = gK.data() + flash::resolve_thread_kv_page_slice_offset<Kernel_traits>(tidx, n_block, params.page_block_size, 
989
                    block_table, params.k_batch_stride, params.k_row_stride);            
Tri Dao's avatar
Tri Dao committed
990
            }
skrider's avatar
skrider committed
991
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_KV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
992
993
994
995
996
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

997
998
999
        mask.template apply_mask</*Causal_mask=*/false>(
            acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
        );
Tri Dao's avatar
Tri Dao committed
1000
        softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_local>(acc_s, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
1001

1002
1003
1004
1005
        Tensor rP = flash::convert_type<Element>(acc_s);
        // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
Tri Dao's avatar
Tri Dao committed
1006

1007
        flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
1008
1009
1010
1011
    }

    // Epilogue

Tri Dao's avatar
Tri Dao committed
1012
    Tensor lse = softmax.template normalize_softmax_lse</*Is_dropout=*/false, Split>(acc_o, params.scale_softmax);
Tri Dao's avatar
Tri Dao committed
1013
    // if (cute::thread0()) { print(lse); }
Tri Dao's avatar
Tri Dao committed
1014

Tri Dao's avatar
Tri Dao committed
1015
    Tensor sOaccum = make_tensor(make_smem_ptr(reinterpret_cast<ElementO *>(smem_)), typename Kernel_traits::SmemLayoutO{}); // (SMEM_M,SMEM_N)
Tri Dao's avatar
Tri Dao committed
1016
    // Partition sO to match the accumulator partitioning
Tri Dao's avatar
Tri Dao committed
1017
1018
1019
1020
1021
1022
    using SmemTiledCopyO = std::conditional_t<
        !Split,
        typename Kernel_traits::SmemCopyAtomO,
        typename Kernel_traits::SmemCopyAtomOaccum
    >;
    auto smem_tiled_copy_Oaccum = make_tiled_copy_C(SmemTiledCopyO{}, tiled_mma);
Tri Dao's avatar
Tri Dao committed
1023
    auto smem_thr_copy_Oaccum = smem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1024
1025
    Tensor rO = flash::convert_type<ElementO>(acc_o);
    Tensor taccOrOaccum = smem_thr_copy_Oaccum.retile_S(rO);        // ((Atom,AtomNum), MMA_M, MMA_N)
Tri Dao's avatar
Tri Dao committed
1026
1027
    Tensor taccOsOaccum = smem_thr_copy_Oaccum.partition_D(sOaccum);     // ((Atom,AtomNum),PIPE_M,PIPE_N)

Tri Dao's avatar
Tri Dao committed
1028
1029
1030
    // sOaccum is larger than sQ, so we need to syncthreads here
    // TODO: allocate enough smem for sOaccum
    if constexpr (Split) { __syncthreads(); }
Tri Dao's avatar
Tri Dao committed
1031
1032
1033

    cute::copy(smem_tiled_copy_Oaccum, taccOrOaccum, taccOsOaccum);

Tri Dao's avatar
Tri Dao committed
1034
1035
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
Tri Dao's avatar
Tri Dao committed
1036
1037
    const index_t row_offset_oaccum = (((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q
                                         + m_block * kBlockM) * params.d_rounded;
1038
1039
1040
    const index_t row_offset_lseaccum = (Split || !params.unpadded_lse ?
            ((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q : bidh * params.total_q + binfo.q_offset(params.seqlen_q, 1, bidb)
        ) + m_block * kBlockM;
Tri Dao's avatar
Tri Dao committed
1041

Tri Dao's avatar
Tri Dao committed
1042
    Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
Tri Dao's avatar
Tri Dao committed
1043
                                 Shape<Int<kBlockM>, Int<kHeadDim>>{},
Tri Dao's avatar
Tri Dao committed
1044
1045
                                 make_stride(Split ? kHeadDim : params.o_row_stride, _1{}));
    Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + row_offset_lseaccum),
Tri Dao's avatar
Tri Dao committed
1046
                                   Shape<Int<kBlockM>>{}, Stride<_1>{});
Tri Dao's avatar
Tri Dao committed
1047
    // if (tidx == 0) { printf("row_offset_o = %d, bidh = %d, gOaccum = %p\n", row_offset_o, bidh, gOaccum.data()); }
Tri Dao's avatar
Tri Dao committed
1048

Tri Dao's avatar
Tri Dao committed
1049
    GmemTiledCopyO gmem_tiled_copy_Oaccum;
Tri Dao's avatar
Tri Dao committed
1050
1051
1052
1053
1054
1055
    auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
    Tensor tOsOaccum = gmem_thr_copy_Oaccum.partition_S(sOaccum);        // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);

    __syncthreads();

Tri Dao's avatar
Tri Dao committed
1056
    Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
Tri Dao's avatar
Tri Dao committed
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
    cute::copy(gmem_tiled_copy_Oaccum, tOsOaccum, tOrOaccum);

    Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor taccOcO = thr_mma.partition_C(caccO);                           // (MMA,MMA_M,MMA_K)
    static_assert(decltype(size<0>(taccOcO))::value == 4);
    // Convert to ((2, 2), MMA_M, MMA_K) then take only the row indices.
    Tensor taccOcO_row = logical_divide(taccOcO, Shape<_2>{})(make_coord(0, _), _, 0);
    CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row));                     // MMA_M
    if (get<1>(taccOcO_row(0)) == 0) {
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) {
            const int row = get<0>(taccOcO_row(mi));
            if (row < binfo.actual_seqlen_q - m_block * kBlockM) { gLSEaccum(row) = lse(mi); }
        }
    }

    // Construct identity layout for sO
    Tensor cO = make_identity_tensor(make_shape(size<0>(sOaccum), size<1>(sOaccum)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    // Repeat the partitioning with identity layouts
    Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO);                           // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
    }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
        gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

Nicolas Patry's avatar
Nicolas Patry committed
1090
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, bool Return_softmax, typename Params>
Tri Dao's avatar
Tri Dao committed
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
inline __device__ void compute_attn(const Params &params) {
    const int m_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;

    // We want the fwd and bwd to generate the same dropout pattern (RNG), without restricting
    // them to have the same number of threads or have to traverse the attention matrix
    // in the same order.
    // In the Philox RNG, we use the offset to store the batch, head, and the lane id
    // (within a warp). We use the subsequence to store the location of the 16 x 32 blocks within
    // the attention matrix. This way, as long as we have the batch, head, and the location of
    // the 16 x 32 block within the attention matrix, we can generate the exact same dropout pattern.

Nicolas Patry's avatar
Nicolas Patry committed
1106
    flash::compute_attn_1rowblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Is_softcap, Return_softmax>(params, bidb, bidh, m_block);
Tri Dao's avatar
Tri Dao committed
1107
1108
1109
1110
}

////////////////////////////////////////////////////////////////////////////////////////////////////

Nicolas Patry's avatar
Nicolas Patry committed
1111
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, bool Split, bool Append_KV, typename Params>
Tri Dao's avatar
Tri Dao committed
1112
1113
1114
inline __device__ void compute_attn_splitkv(const Params &params) {
    const int m_block = blockIdx.x;
    // The block index for the batch.
Tri Dao's avatar
Tri Dao committed
1115
    const int bidb = Split ? blockIdx.z / params.h : blockIdx.y;
Tri Dao's avatar
Tri Dao committed
1116
    // The block index for the head.
Tri Dao's avatar
Tri Dao committed
1117
1118
1119
    const int bidh = Split ? blockIdx.z - bidb * params.h : blockIdx.z;
    const int n_split_idx = Split ? blockIdx.y : 0;
    const int num_n_splits = Split ? gridDim.y : 1;
Nicolas Patry's avatar
Nicolas Patry committed
1120
    flash::compute_attn_1rowblock_splitkv<Kernel_traits, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Is_softcap, Split, Append_KV>(params, bidb, bidh, m_block, n_split_idx, num_n_splits);
Tri Dao's avatar
Tri Dao committed
1121
1122
1123
1124
}

////////////////////////////////////////////////////////////////////////////////////////////////////

1125
template<typename Kernel_traits, int kBlockM, int Log_max_splits, bool Is_even_K, typename Params>
Tri Dao's avatar
Tri Dao committed
1126
1127
1128
1129
1130
1131
inline __device__ void combine_attn_seqk_parallel(const Params &params) {
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;
    constexpr int kMaxSplits = 1 << Log_max_splits;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
1132
    constexpr int kNThreads = Kernel_traits::kNThreads;
Tri Dao's avatar
Tri Dao committed
1133
1134

    static_assert(kMaxSplits <= 128, "kMaxSplits must be <= 128");
1135
1136
    static_assert(kBlockM == 4 || kBlockM == 8 || kBlockM == 16 || kBlockM == 32, "kBlockM must be 4, 8, 16 or 32");
    static_assert(kNThreads == 128, "We assume that each block has 128 threads");
Tri Dao's avatar
Tri Dao committed
1137
1138
1139
1140
1141
1142
1143
1144
1145

    // Shared memory.
    // kBlockM + 1 instead of kBlockM to reduce bank conflicts.
    __shared__ ElementAccum sLSE[kMaxSplits][kBlockM + 1];

    // The thread and block index.
    const int tidx = threadIdx.x;
    const int bidx = blockIdx.x;

1146
1147
    const index_t lse_size = params.b * params.h * params.seqlen_q;

Tri Dao's avatar
Tri Dao committed
1148
1149
1150
    const index_t row_offset_lse = bidx * kBlockM;
    Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lseaccum_ptr) + row_offset_lse),
                                   Shape<Int<kMaxSplits>, Int<kBlockM>>{},
1151
1152
1153
1154
                                   make_stride(lse_size, _1{}));

    // LSE format is different depending on params.unpadded_lse and params.seqlenq_ngroups_swapped, see comment in get_lse_tile.
    // This tensor's layout maps row_offset_lse to {bidb, bidh, q_offset}.
Tri Dao's avatar
Tri Dao committed
1155
1156
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

    // This layout maps row_offset_lse to {bidh, q_offset, bidb} or {bidh, bidb, q_offset}.
    Layout flat_layout = make_layout(lse_size);
    Layout orig_layout = make_layout(make_shape(params.seqlen_q, params.h, params.b));
    auto transposed_stride = params.seqlenq_ngroups_swapped ? make_stride(params.b, params.seqlen_q * params.b, 1) : make_stride(1, params.seqlen_q * params.b, params.seqlen_q);
    Layout remapped_layout = make_layout(make_shape(params.seqlen_q, params.h, params.b), transposed_stride);
    Layout final_layout = cute::composition(remapped_layout, cute::composition(orig_layout, flat_layout));

    Tensor gLSE_unpadded = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr)), final_layout);

1167
    constexpr int kNLsePerThread = (kMaxSplits * kBlockM + kNThreads - 1) / kNThreads;
Tri Dao's avatar
Tri Dao committed
1168

1169
    // Read the LSE values from gmem and store them in shared memory, then transpose them.
1170
    constexpr int kRowsPerLoadLSE = kNThreads / kBlockM;
Tri Dao's avatar
Tri Dao committed
1171
1172
1173
1174
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadLSE + tidx / kBlockM;
        const int col = tidx % kBlockM;
1175
        ElementAccum lse = (row < params.num_splits && col < lse_size - bidx * kBlockM) ? gLSEaccum(row, col) : -INFINITY;
Tri Dao's avatar
Tri Dao committed
1176
        if (row < kMaxSplits) { sLSE[row][col] = lse; }
1177
        // if (bidx == 0 && tidx < 32) { printf("tidx = %d, row = %d, col = %d, lse = %f\n", tidx, row, col, lse); }
Tri Dao's avatar
Tri Dao committed
1178
1179
1180
1181
1182
1183
1184
    }
    // if (bidx == 1 && tidx < 32) { printf("tidx = %d, row_offset_lse = %d, lse = %f\n", tidx, row_offset_lse, lse_accum(0)); }
    __syncthreads();
    Tensor lse_accum = make_tensor<ElementAccum>(Shape<Int<kNLsePerThread>>{});
    constexpr int kRowsPerLoadTranspose = std::min(kRowsPerLoadLSE, kMaxSplits);
    // To make sure that kMaxSplits is within 1 warp: we decide how many elements within kMaxSplits
    // each thread should hold. If kMaxSplits = 16, then each thread holds 2 elements (128 threads,
1185
    // kBlockM rows, so each time we load we can load 128 / kBlockM rows).
Tri Dao's avatar
Tri Dao committed
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
    // constexpr int kThreadsPerSplit = kMaxSplits / kRowsPerLoadTranspose;
    // static_assert(kThreadsPerSplit <= 32);
    static_assert(kRowsPerLoadTranspose <= 32);
    static_assert(kNLsePerThread * kRowsPerLoadTranspose <= kMaxSplits);
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadTranspose + tidx % kRowsPerLoadTranspose;
        const int col = tidx / kRowsPerLoadTranspose;
        lse_accum(l) = (row < kMaxSplits && col < kBlockM) ? sLSE[row][col] : -INFINITY;
        // if (bidx == 0 && tidx < 32) { printf("tidx = %d, row = %d, col = %d, lse = %f\n", tidx, row, col, lse_accum(l)); }
    }

    // Compute the logsumexp of the LSE along the split dimension.
    ElementAccum lse_max = lse_accum(0);
    #pragma unroll
    for (int l = 1; l < kNLsePerThread; ++l) { lse_max = max(lse_max, lse_accum(l)); }
    MaxOp<float> max_op;
    lse_max = Allreduce<kRowsPerLoadTranspose>::run(lse_max, max_op);
Tri Dao's avatar
Tri Dao committed
1204
    lse_max = lse_max == -INFINITY ? 0.0f : lse_max;  // In case all local LSEs are -inf
Tri Dao's avatar
Tri Dao committed
1205
1206
1207
1208
1209
    float lse_sum = expf(lse_accum(0) - lse_max);
    #pragma unroll
    for (int l = 1; l < kNLsePerThread; ++l) { lse_sum += expf(lse_accum(l) - lse_max); }
    SumOp<float> sum_op;
    lse_sum = Allreduce<kRowsPerLoadTranspose>::run(lse_sum, sum_op);
1210
1211
1212
    // For the case where all local lse == -INFINITY, we want to set lse_logsum to INFINITY. Otherwise
    // lse_logsum is log(0.0) = -INFINITY and we get NaN when we do lse_accum(l) - lse_logsum.
    ElementAccum lse_logsum = (lse_sum == 0.f || lse_sum != lse_sum) ? INFINITY : logf(lse_sum) + lse_max;
Tri Dao's avatar
Tri Dao committed
1213
    // if (bidx == 0 && tidx < 32) { printf("tidx = %d, lse = %f, lse_max = %f, lse_logsum = %f\n", tidx, lse_accum(0), lse_max, lse_logsum); }
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
    if (tidx % kRowsPerLoadTranspose == 0 && tidx / kRowsPerLoadTranspose < kBlockM) {
        if (params.unpadded_lse) {
            const index_t lse_offset = row_offset_lse + tidx / kRowsPerLoadTranspose;
            if (lse_offset < lse_size) {
                gLSE_unpadded(lse_offset) = lse_logsum;
            }
        } else {
            gLSE(tidx / kRowsPerLoadTranspose) = lse_logsum;
        }
    }
Tri Dao's avatar
Tri Dao committed
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
    // Store the scales exp(lse - lse_logsum) in shared memory.
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadTranspose + tidx % kRowsPerLoadTranspose;
        const int col = tidx / kRowsPerLoadTranspose;
        if (row < params.num_splits && col < kBlockM) { sLSE[row][col] = expf(lse_accum(l) - lse_logsum); }
    }
    __syncthreads();

    const index_t row_offset_oaccum = bidx * kBlockM * params.d_rounded;
    Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.oaccum_ptr) + row_offset_oaccum),
                                 Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                 Stride<Int<kHeadDim>, _1>{});
1237
1238
1239
1240
1241
1242
1243
    constexpr int kBlockN = kNThreads / kBlockM;
    using GmemLayoutAtomOaccum = Layout<Shape<Int<kBlockM>, Int<kBlockN>>, Stride<Int<kBlockN>, _1>>;
    using GmemTiledCopyOaccum = decltype(
        make_tiled_copy(Copy_Atom<DefaultCopy, ElementAccum>{},
                        GmemLayoutAtomOaccum{},
                        Layout<Shape < _1, _4>>{}));  // Val layout, 4 vals per store
    GmemTiledCopyOaccum gmem_tiled_copy_Oaccum;
Tri Dao's avatar
Tri Dao committed
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
    auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
    Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_S(gOaccum);
    Tensor tOrO = make_tensor<ElementAccum>(shape(tOgOaccum));
    Tensor tOrOaccum = make_tensor<ElementAccum>(shape(tOgOaccum));
    clear(tOrO);

    // Predicates
    Tensor cOaccum = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});
    // Repeat the partitioning with identity layouts
    Tensor tOcOaccum = gmem_thr_copy_Oaccum.partition_S(cOaccum);
    Tensor tOpOaccum = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpOaccum); ++k) { tOpOaccum(k) = get<1>(tOcOaccum(0, 0, k)) < params.d; }
    }
    // Load Oaccum in then scale and accumulate to O
    for (int split = 0; split < params.num_splits; ++split) {
        flash::copy</*Is_even_MN=*/false, Is_even_K>(
            gmem_tiled_copy_Oaccum, tOgOaccum, tOrOaccum, tOcOaccum, tOpOaccum, params.b * params.h * params.seqlen_q - bidx * kBlockM
        );
        #pragma unroll
        for (int m = 0; m < size<1>(tOrOaccum); ++m) {
            int row = get<0>(tOcOaccum(0, m, 0));
            ElementAccum lse_scale = sLSE[split][row];
            #pragma unroll
            for (int k = 0; k < size<2>(tOrOaccum); ++k) {
                #pragma unroll
                for (int i = 0; i < size<0>(tOrOaccum); ++i) {
                    tOrO(i, m, k) += lse_scale * tOrOaccum(i, m, k);
                }
            }
1275
        // if (cute::thread0()) { printf("lse_scale = %f, %f\n", sLSE[split][0], sLSE[split][1]); print(tOrOaccum); }
Tri Dao's avatar
Tri Dao committed
1276
1277
1278
        }
        tOgOaccum.data() = tOgOaccum.data() + params.b * params.h * params.seqlen_q * params.d_rounded;
    }
1279
    // if (cute::thread0()) { print_tensor(tOrO); }
Tri Dao's avatar
Tri Dao committed
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308

    Tensor rO = flash::convert_type<Element>(tOrO);
    // Write to gO
    #pragma unroll
    for (int m = 0; m < size<1>(rO); ++m) {
        const int idx = bidx * kBlockM + get<0>(tOcOaccum(0, m, 0));
        if (idx < params.b * params.h * params.seqlen_q) {
            const int batch_idx = idx / (params.h * params.seqlen_q);
            const int head_idx = (idx - batch_idx * (params.h * params.seqlen_q)) / params.seqlen_q;
            // The index to the rows of Q
            const int row = idx - batch_idx * (params.h * params.seqlen_q) - head_idx * params.seqlen_q;
            auto o_ptr = reinterpret_cast<Element *>(params.o_ptr) + batch_idx * params.o_batch_stride
                + head_idx * params.o_head_stride + row * params.o_row_stride;
            #pragma unroll
            for (int k = 0; k < size<2>(rO); ++k) {
                if (Is_even_K || tOpOaccum(k)) {
                    const int col = get<1>(tOcOaccum(0, m, k));
                    Tensor gO = make_tensor(make_gmem_ptr(o_ptr + col),
                                            Shape<Int<decltype(size<0>(rO))::value>>{}, Stride<_1>{});
                    // TODO: Should check if this is using vectorized store, but it seems pretty fast
                    copy(rO(_, m, k), gO);
                    // if (bidx == 0 && tidx == 0) { printf("tidx = %d, idx = %d, batch_idx = %d, head_idx = %d, row = %d, col = %d\n", tidx, idx, batch_idx, head_idx, row, col); print(rO(_, m, k)); print(gO); }
                    // reinterpret_cast<uint64_t *>(o_ptr)[col / 4] = recast<uint64_t>(rO)(0, m, k);
                }
            }
        }
    }
}

Tri Dao's avatar
Tri Dao committed
1309
} // namespace flash