flash_fwd_kernel.h 74.1 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
/******************************************************************************
2
 * Copyright (c) 2024, Tri Dao.
Tri Dao's avatar
Tri Dao committed
3
4
5
6
 ******************************************************************************/

#pragma once

Tri Dao's avatar
Tri Dao committed
7
#include <cute/tensor.hpp>
Tri Dao's avatar
Tri Dao committed
8
9
10
11
12
13
14
15
16

#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>

#include "block_info.h"
#include "kernel_traits.h"
#include "utils.h"
#include "softmax.h"
17
#include "mask.h"
18
#include "dropout.h"
19
#include "rotary.h"
20

Tri Dao's avatar
Tri Dao committed
21
22
23
24
namespace flash {

using namespace cute;

Nicolas Patry's avatar
Nicolas Patry committed
25
26
27
template <typename Engine, typename Layout>
__forceinline__ __device__ void apply_softcap(Tensor<Engine, Layout> &tensor, const float softcap){
    #pragma unroll
Tri Dao's avatar
Tri Dao committed
28
29
    for (int i = 0; i < size(tensor); ++i) {
        tensor(i) = cutlass::fast_tanh(tensor(i) * softcap);
Nicolas Patry's avatar
Nicolas Patry committed
30
31
32
    }
}

Tri Dao's avatar
Tri Dao committed
33
34
////////////////////////////////////////////////////////////////////////////////////////////////////

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
template<typename ElementAccum, typename Params, int kBlockM, bool Is_even_MN>
__forceinline__ __device__ auto get_lse_tile(const Params &params, const int bidb, const int bidh, const int m_block, const BlockInfo</*Varlen=*/!Is_even_MN> &binfo) {
        // When params.unpadded_lse is false, LSE is written as (b, h, seqlen_q) - this is non-variable seqlen path.
        // Otherwise, when params.seqlenq_ngroups_swapped is true, it is written as (h, seqlen_q, b) to account for seqlen_q <-> h swapping trick.
        // Otherwise, it's written as (h, b, seqlen_q).
        const bool varlen_q = params.unpadded_lse && !params.seqlenq_ngroups_swapped;
        auto lse_offset = varlen_q ? binfo.q_offset(params.seqlen_q, 1, bidb) : 0;
        auto gmem_ptr_lse = make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.softmax_lse_ptr) + lse_offset);

        auto lse_shape = varlen_q ? make_shape(1, params.h, params.total_q) : make_shape(params.b, params.h, params.seqlen_q);
        auto lse_stride = params.seqlenq_ngroups_swapped ? make_stride(1, params.seqlen_q * params.b, params.b) : (
            params.unpadded_lse ? make_stride(params.h * params.total_q, params.total_q, 1) :  make_stride(params.h * params.seqlen_q, params.seqlen_q, 1)
            );

        auto lse_layout = make_layout(lse_shape, lse_stride);
        Tensor mLSE = make_tensor(gmem_ptr_lse, lse_layout);
        auto mLSE_slice = varlen_q ? mLSE(0, bidh, _) : mLSE(bidb, bidh, _);
        return local_tile(mLSE_slice, Shape<Int<kBlockM>>{}, make_coord(m_block));
}


Nicolas Patry's avatar
Nicolas Patry committed
56
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, bool Return_softmax, typename Params>
Tri Dao's avatar
Tri Dao committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
inline __device__ void compute_attn_1rowblock(const Params &params, const int bidb, const int bidh, const int m_block) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    constexpr int kNWarps = Kernel_traits::kNWarps;

74
75
76
    auto seed_offset = at::cuda::philox::unpack(params.philox_args);
    flash::Dropout dropout(std::get<0>(seed_offset), std::get<1>(seed_offset), params.p_dropout_in_uint8_t,
                           bidb, bidh, tidx, params.h);
Tri Dao's avatar
Tri Dao committed
77
78
79
80

    // Save seed and offset for backward, before any early exiting. Otherwise the 0-th thread block might
    // exit early and no one saves the rng states.
    if (Is_dropout && blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx == 0) {
81
82
        params.rng_state[0] = std::get<0>(seed_offset);
        params.rng_state[1] = std::get<1>(seed_offset);
Tri Dao's avatar
Tri Dao committed
83
84
    }

85
    const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
86
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
Tri Dao's avatar
Tri Dao committed
87

Tri Dao's avatar
Tri Dao committed
88
    const int n_block_min = !Is_local ? 0 : std::max(0, (m_block * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q - params.window_size_left) / kBlockN);
Tri Dao's avatar
Tri Dao committed
89
    int n_block_max = cute::ceil_div(binfo.actual_seqlen_k, kBlockN);
Tri Dao's avatar
Tri Dao committed
90
    if (Is_causal || Is_local) {
91
        n_block_max = std::min(n_block_max,
Tri Dao's avatar
Tri Dao committed
92
                               cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right, kBlockN));
Tri Dao's avatar
Tri Dao committed
93
94
95
        // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) {
        //     printf("m_block = %d, n_block_max = %d\n", m_block, n_block_max);
        // }
96
97
98
99
    }
    // We exit early and write 0 to gO and gLSE. This also covers the case where actual_seqlen_k == 0.
    // Otherwise we might read OOB elements from gK and gV.
    if ((Is_causal || Is_local || !Is_even_MN) && n_block_max <= n_block_min) {
100
101
102
103
104
105
        Tensor mO = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.o_ptr)
                                              + binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)),
                                make_shape(binfo.actual_seqlen_q, params.h, params.d),
                                make_stride(params.o_row_stride, params.o_head_stride, _1{}));
        Tensor gO = local_tile(mO(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
                              make_coord(m_block, 0));  // (kBlockM, kHeadDim)
106
107

        Tensor gLSE = get_lse_tile<ElementAccum, Params, kBlockM, Is_even_MN>(params, bidb, bidh, m_block, binfo);
108
109
110
111
112
113
114
115
116
117
118
119

        typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
        auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
        Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
        Tensor tOrO = make_tensor<Element>(shape(tOgO));
        clear(tOrO);
        // Construct identity layout for sO
        Tensor cO = make_identity_tensor(make_shape(size<0>(gO), size<1>(gO)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
        // Repeat the partitioning with identity layouts
        Tensor tOcO = gmem_thr_copy_O.partition_D(cO);
        Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
        if (!Is_even_K) {
120
            #pragma unroll
121
122
123
124
125
126
127
128
129
130
            for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
        }
        // Clear_OOB_K must be false since we don't want to write zeros to gmem
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
        );
        #pragma unroll
        for (int m = 0; m < size<1>(tOgO); ++m) {
            const int row = get<0>(tOcO(0, m, 0));
            if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSE(row) = INFINITY; }
131
        }
132
        return;
Tri Dao's avatar
Tri Dao committed
133
    }
Tri Dao's avatar
Tri Dao committed
134
    // if (tidx == 0) { printf("m_block = %d, n_block_min = %d, n_block_max = %d\n", m_block, n_block_min, n_block_max); }
Tri Dao's avatar
Tri Dao committed
135
136
137
138
139
140
141
142

    // We iterate over the blocks in reverse order. This is because the last block is the only one
    // that needs masking when we read K and V from global memory. Moreover, iterating in reverse
    // might save us 1 register (we just need n_block instead of both n_block and n_block_max).

    const index_t row_offset_p = ((bidb * params.h + bidh) * params.seqlen_q_rounded
        + m_block * kBlockM) * params.seqlen_k_rounded + (n_block_max - 1) * kBlockN;

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    Tensor mQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.q_ptr)
                                          + binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)),
                            make_shape(binfo.actual_seqlen_q, params.h, params.d),
                            make_stride(params.q_row_stride, params.q_head_stride, _1{}));
    Tensor gQ = local_tile(mQ(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
                           make_coord(m_block, 0));  // (kBlockM, kHeadDim)
    Tensor mK = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.k_ptr)
                                          + binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)),
                            make_shape(binfo.actual_seqlen_k, params.h_k, params.d),
                            make_stride(params.k_row_stride, params.k_head_stride, _1{}));
    Tensor gK = local_tile(mK(_, bidh / params.h_h_k_ratio, _), Shape<Int<kBlockN>, Int<kHeadDim>>{},
                           make_coord(_, 0));  // (kBlockN, kHeadDim, nblocksN)
    Tensor mV = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.v_ptr)
                                          + binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)),
                            make_shape(binfo.actual_seqlen_k, params.h_k, params.d),
                            make_stride(params.v_row_stride, params.v_head_stride, _1{}));
    Tensor gV = local_tile(mV(_, bidh / params.h_h_k_ratio, _), Shape<Int<kBlockN>, Int<kHeadDim>>{},
                           make_coord(_, 0));  // (kBlockN, kHeadDim, nblocksN)
Tri Dao's avatar
Tri Dao committed
161
162
163
164
165
166
167
168
169
170
171
    Tensor gP = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.p_ptr) + row_offset_p),
                            Shape<Int<kBlockM>, Int<kBlockN>>{},
                            make_stride(params.seqlen_k_rounded, _1{}));

    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQ{});
    // Careful we're using the same smem for sQ and sK | sV if Share_Q_K_smem;
    Tensor sK = make_tensor(sQ.data() + (Kernel_traits::Share_Q_K_smem ? 0 : size(sQ)),
                            typename Kernel_traits::SmemLayoutKV{});
    Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
172
    Tensor sVtNoSwizzle = make_tensor(sV.data().get(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});
Tri Dao's avatar
Tri Dao committed
173

Tri Dao's avatar
Tri Dao committed
174
175
    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
    auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
176
177
178

    Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
179
    Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K, nblocksN)
Tri Dao's avatar
Tri Dao committed
180
    Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
181
    Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K, nblocksN)
Tri Dao's avatar
Tri Dao committed
182
183
184
185
186
187
188
189
    Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);

    typename Kernel_traits::TiledMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tidx);
    Tensor tSrQ  = thr_mma.partition_fragment_A(sQ);                           // (MMA,MMA_M,MMA_K)
    Tensor tSrK  = thr_mma.partition_fragment_B(sK);                           // (MMA,MMA_N,MMA_K)
    Tensor tOrVt  = thr_mma.partition_fragment_B(sVtNoSwizzle);                // (MMA, MMA_K,MMA_N)

Tri Dao's avatar
Tri Dao committed
190
191
    Tensor tSgS  = thr_mma.partition_C(gP);

Tri Dao's avatar
Tri Dao committed
192
193
194
195
196
197
    Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_M, MMA_K

    //
    // Copy Atom retiling
    //

Tri Dao's avatar
Tri Dao committed
198
199
    auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
200
201
202
203
    // if (cute::thread0()) {smem_thr_copy_Q.print_all();}
    Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);
    // if (cute::thread0()) {print(tSsQ.layout()); printf("\n");}

Tri Dao's avatar
Tri Dao committed
204
205
    auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
206
207
    Tensor tSsK = smem_thr_copy_K.partition_S(sK);

Tri Dao's avatar
Tri Dao committed
208
209
    auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
    auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);

    //
    // PREDICATES
    //

    // // Allocate predicate tensors for m and n
    // Tensor tQpQ = make_tensor<bool>(make_shape(size<1>(tQsQ), size<2>(tQsQ)), Stride<_1,_0>{});
    // Tensor tKVpKV = make_tensor<bool>(make_shape(size<1>(tKsK), size<2>(tKsK)), Stride<_1,_0>{});

    // Construct identity layout for sQ and sK
    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    // Tensor tScQ = thr_mma.partition_A(cQ);                           // (MMA,MMA_M,MMA_K)
    // if (cute::thread0()) {
    //     print(tScQ.layout()); printf("\n");
    //     for (int i = 0; i < size(tScQ); ++i) {
    //         printf("%d ", get<0>(tScQ(i)));
    //     }
    //     printf("\n");
    //     for (int i = 0; i < size(tScQ); ++i) {
    //         printf("%d ", get<1>(tScQ(i)));
    //     }
    //     printf("\n");
    // }

    // Repeat the partitioning with identity layouts
    Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ);       // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV);   // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

    // We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
255
256
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ,
                                       binfo.actual_seqlen_q - m_block * kBlockM);
Tri Dao's avatar
Tri Dao committed
257
258
259
260
261
262
263
264
265
266
267
    if (Kernel_traits::Is_Q_in_regs) { cute::cp_async_fence(); }

    // // if (cute::thread(1, 0)) { print(tQsQ); }
    // // Tensor sQNoSwizzle = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)), typename Kernel_traits::SmemLayoutQNoSwizzle{});
    // // if (cute::thread0()) { print(sQNoSwizzle); }

    if (Kernel_traits::Share_Q_K_smem) {
        flash::cp_async_wait<0>();
        __syncthreads();
        Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
        CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view));            // M
Tri Dao's avatar
Tri Dao committed
268
        cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
Tri Dao's avatar
Tri Dao committed
269
270
271
272
273
        __syncthreads();
    }

    int n_block = n_block_max - 1;
    // We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
274
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tKgK(_, _, _, n_block), tKsK, tKVcKV, tKVpKV,
275
                                       binfo.actual_seqlen_k - n_block * kBlockN);
Tri Dao's avatar
Tri Dao committed
276
277
278
279
280
281
282
283
284
    cute::cp_async_fence();
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z < 2) { print(tKgK); }
    // __syncthreads();

    if (Kernel_traits::Is_Q_in_regs && !Kernel_traits::Share_Q_K_smem) {
        flash::cp_async_wait<1>();
        __syncthreads();
        Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
        CUTE_STATIC_ASSERT_V(size<1>(tSsQ) == size<1>(tSrQ_copy_view));            // M
Tri Dao's avatar
Tri Dao committed
285
        cute::copy(smem_tiled_copy_Q, tSsQ, tSrQ_copy_view);
Tri Dao's avatar
Tri Dao committed
286
287
288
289
    }

    clear(acc_o);

Tri Dao's avatar
Tri Dao committed
290
291
    flash::Softmax<2 * size<1>(acc_o)> softmax;

292
293
    const float alibi_slope = !Has_alibi || params.alibi_slopes_ptr == nullptr ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
    flash::Mask<Is_causal, Is_local, Has_alibi> mask(binfo.actual_seqlen_k, binfo.actual_seqlen_q, params.window_size_left, params.window_size_right, alibi_slope);
294

Tri Dao's avatar
Tri Dao committed
295
296
297
298
299
300
    // For performance reason, we separate out two kinds of iterations:
    // those that need masking on S, and those that don't.
    // We need masking on S for the very last block when K and V has length not multiple of kBlockN.
    // We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
    // We will have at least 1 "masking" iteration.

301
302
    // If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
    // mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
Tri Dao's avatar
Tri Dao committed
303
    constexpr int n_masking_steps = (!Is_causal && !Is_local)
304
        ? 1
Tri Dao's avatar
Tri Dao committed
305
        : ((Is_even_MN && Is_causal) ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
Tri Dao's avatar
Tri Dao committed
306
307
308
309
310
311
312
313
314
    #pragma unroll
    for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();

        // Advance gV
        if (masking_step > 0) {
315
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV(_, _, _, n_block), tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
316
317
        } else {
            // Clear the smem tiles to account for predicated off loads
318
            flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
319
                gmem_tiled_copy_QKV, tVgV(_, _, _, n_block), tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
320
321
322
323
324
            );
        }
        cute::cp_async_fence();

        flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
Tri Dao's avatar
Tri Dao committed
325
326
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
Tri Dao's avatar
Tri Dao committed
327
328
        );
        // if (cute::thread0()) { print(acc_s); }
Nicolas Patry's avatar
Nicolas Patry committed
329
330
331
        if constexpr (Is_softcap){
            apply_softcap(acc_s, params.softcap);
        }
Tri Dao's avatar
Tri Dao committed
332

333
334
335
        mask.template apply_mask<Is_causal, Is_even_MN>(
            acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
        );
Tri Dao's avatar
Tri Dao committed
336
337
338

        flash::cp_async_wait<0>();
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
339
        if (n_block > n_block_min) {
340
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK(_, _, _, n_block - 1), tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
341
342
343
344
345
346
347
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

        // TODO: when we have key_padding_mask we'll need to Check_inf
        masking_step == 0
Tri Dao's avatar
Tri Dao committed
348
349
            ? softmax.template softmax_rescale_o</*Is_first=*/true,  /*Check_inf=*/Is_causal || Is_local>(acc_s, acc_o, params.scale_softmax_log2)
            : softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal || Is_local>(acc_s, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
350

351
352
        // Convert acc_s from fp32 to fp16/bf16
        Tensor rP = flash::convert_type<Element>(acc_s);
353
354
        int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
        int block_col_idx = n_block * (kBlockN / 32);
Tri Dao's avatar
Tri Dao committed
355
        if (Return_softmax) {
356
357
            Tensor rP_drop = make_fragment_like(rP);
            cute::copy(rP, rP_drop);
358
            dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
359
                rP_drop, block_row_idx, block_col_idx, kNWarps
Tri Dao's avatar
Tri Dao committed
360
            );
361
            cute::copy(rP_drop, tSgS);
Tri Dao's avatar
Tri Dao committed
362
            tSgS.data() = tSgS.data() + (-kBlockN);
Tri Dao's avatar
Tri Dao committed
363
364
        }
        if (Is_dropout) {
365
            dropout.apply_dropout(rP, block_row_idx, block_col_idx, kNWarps);
Tri Dao's avatar
Tri Dao committed
366
367
        }

368
369
370
        // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
371
        // if (cute::thread0()) { print(tOrP); }
372
        flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
373
374
375
        // if (cute::thread0()) { print(scores); }

        // This check is at the end of the loop since we always have at least 1 iteration
Tri Dao's avatar
Tri Dao committed
376
        if (n_masking_steps > 1 && n_block <= n_block_min) {
Tri Dao's avatar
Tri Dao committed
377
378
379
380
381
382
            --n_block;
            break;
        }
    }

    // These are the iterations where we don't need masking on S
Tri Dao's avatar
Tri Dao committed
383
    for (; n_block >= n_block_min; --n_block) {
Tri Dao's avatar
Tri Dao committed
384
385
386
387
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();
388
        flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV(_, _, _, n_block), tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
389
390
391
        cute::cp_async_fence();

        flash::gemm</*A_in_regs=*/Kernel_traits::Is_Q_in_regs>(
Tri Dao's avatar
Tri Dao committed
392
393
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
Tri Dao's avatar
Tri Dao committed
394
        );
Nicolas Patry's avatar
Nicolas Patry committed
395
396
397
        if constexpr (Is_softcap){
            apply_softcap(acc_s, params.softcap);
        }
Tri Dao's avatar
Tri Dao committed
398
399
400

        flash::cp_async_wait<0>();
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
401
        if (n_block > n_block_min) {
402
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK(_, _, _, n_block - 1), tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
403
404
405
406
407
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

408
409
410
        mask.template apply_mask</*Causal_mask=*/false>(
            acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
        );
411

Tri Dao's avatar
Tri Dao committed
412
        softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_local>(acc_s, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
413

414
        Tensor rP = flash::convert_type<Element>(acc_s);
415
416
        int block_row_idx = m_block * (kBlockM / 16) + tidx / 32;
        int block_col_idx = n_block * (kBlockN / 32);
Tri Dao's avatar
Tri Dao committed
417
        if (Return_softmax) {
418
419
            Tensor rP_drop = make_fragment_like(rP);
            cute::copy(rP, rP_drop);
420
            dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
421
                rP_drop, block_row_idx, block_col_idx, kNWarps
Tri Dao's avatar
Tri Dao committed
422
            );
423
            cute::copy(rP_drop, tSgS);
Tri Dao's avatar
Tri Dao committed
424
            tSgS.data() = tSgS.data() + (-kBlockN);
Tri Dao's avatar
Tri Dao committed
425
426
        }
        if (Is_dropout) {
427
            dropout.apply_dropout(rP, block_row_idx, block_col_idx, kNWarps);
Tri Dao's avatar
Tri Dao committed
428
429
        }

430
431
432
        // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
433
        flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
434
435
436
437
    }

    // Epilogue

Tri Dao's avatar
Tri Dao committed
438
    Tensor lse = softmax.template normalize_softmax_lse<Is_dropout>(acc_o, params.scale_softmax, params.rp_dropout);
Tri Dao's avatar
Tri Dao committed
439
440
441
442
443

    // Convert acc_o from fp32 to fp16/bf16
    Tensor rO = flash::convert_type<Element>(acc_o);
    Tensor sO = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutO{});    // (SMEM_M,SMEM_N)
    // Partition sO to match the accumulator partitioning
Tri Dao's avatar
Tri Dao committed
444
445
    auto smem_tiled_copy_O = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomO{}, tiled_mma);
    auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
446
447
448
449
450
451
    Tensor taccOrO = smem_thr_copy_O.retile_S(rO);        // ((Atom,AtomNum), MMA_M, MMA_N)
    Tensor taccOsO = smem_thr_copy_O.partition_D(sO);     // ((Atom,AtomNum),PIPE_M,PIPE_N)

    // sO has the same size as sQ, so we don't need to sync here.
    if (Kernel_traits::Share_Q_K_smem) { __syncthreads(); }

Tri Dao's avatar
Tri Dao committed
452
    cute::copy(smem_tiled_copy_O, taccOrO, taccOsO);
Tri Dao's avatar
Tri Dao committed
453

454
455
456
457
458
459
    Tensor mO = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.o_ptr)
                                          + binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)),
                            make_shape(binfo.actual_seqlen_q, params.h, params.d),
                            make_stride(params.o_row_stride, params.o_head_stride, _1{}));
    Tensor gO = local_tile(mO(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
                           make_coord(m_block, 0));  // (kBlockM, kHeadDim)
460
    Tensor gLSE = get_lse_tile<ElementAccum, Params, kBlockM, Is_even_MN>(params, bidb, bidh, m_block, binfo);
Tri Dao's avatar
Tri Dao committed
461

Tri Dao's avatar
Tri Dao committed
462
463
    typename Kernel_traits::GmemTiledCopyO gmem_tiled_copy_O;
    auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
464
465
466
467
468
469
    Tensor tOsO = gmem_thr_copy_O.partition_S(sO);        // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tOgO = gmem_thr_copy_O.partition_D(gO);

    __syncthreads();

    Tensor tOrO = make_tensor<Element>(shape(tOgO));
Tri Dao's avatar
Tri Dao committed
470
    cute::copy(gmem_tiled_copy_O, tOsO, tOrO);
Tri Dao's avatar
Tri Dao committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

    Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor taccOcO = thr_mma.partition_C(caccO);                           // (MMA,MMA_M,MMA_K)
    static_assert(decltype(size<0>(taccOcO))::value == 4);
    // Convert to ((2, 2), MMA_M, MMA_K) then take only the row indices.
    Tensor taccOcO_row = logical_divide(taccOcO, Shape<_2>{})(make_coord(0, _), _, 0);
    CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row));                     // MMA_M
    if (get<1>(taccOcO_row(0)) == 0) {
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) {
            const int row = get<0>(taccOcO_row(mi));
            if (row < binfo.actual_seqlen_q - m_block * kBlockM) { gLSE(row) = lse(mi); }
        }
    }

    // Construct identity layout for sO
    Tensor cO = make_identity_tensor(make_shape(size<0>(sO), size<1>(sO)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    // Repeat the partitioning with identity layouts
    Tensor tOcO = gmem_thr_copy_O.partition_D(cO);                           // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
    }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
496
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
497
        gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
498
499
500
501
502
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

Nicolas Patry's avatar
Nicolas Patry committed
503
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, bool Split, bool Append_KV, typename Params>
Tri Dao's avatar
Tri Dao committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
inline __device__ void compute_attn_1rowblock_splitkv(const Params &params, const int bidb, const int bidh, const int m_block, const int n_split_idx, const int num_n_splits) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    constexpr int kNWarps = Kernel_traits::kNWarps;

Tri Dao's avatar
Tri Dao committed
521
522
    using GmemTiledCopyO = std::conditional_t<
        !Split,
523
524
        typename Kernel_traits::GmemTiledCopyO,
        typename Kernel_traits::GmemTiledCopyOaccum
Tri Dao's avatar
Tri Dao committed
525
526
527
    >;
    using ElementO = std::conditional_t<!Split, Element, ElementAccum>;

Tri Dao's avatar
Tri Dao committed
528
    const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
Tri Dao's avatar
Tri Dao committed
529
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("Is_even_MN = %d, is_cumulativ = %d, seqlen_k_cache = %d, actual_seqlen_k = %d\n", Is_even_MN, params.is_seqlens_k_cumulative, binfo.seqlen_k_cache, binfo.actual_seqlen_k); }
530
    // if (threadIdx.x == 0 && blockIdx.y == 1 && blockIdx.z == 0) { printf("params.knew_ptr = %p, seqlen_k_cache + seqlen_knew = %d\n", params.knew_ptr, binfo.seqlen_k_cache + (params.knew_ptr == nullptr ? 0 : params.seqlen_knew)); }
Tri Dao's avatar
Tri Dao committed
531
532
533
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;

    const int n_blocks_per_split = ((params.seqlen_k + kBlockN - 1) / kBlockN + num_n_splits - 1) / num_n_splits;
Tri Dao's avatar
Tri Dao committed
534
535
536
    const int n_block_min = !Is_local
        ? n_split_idx * n_blocks_per_split
        : std::max(n_split_idx * n_blocks_per_split, (m_block * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q - params.window_size_left) / kBlockN);
Tri Dao's avatar
Tri Dao committed
537
    int n_block_max = std::min(cute::ceil_div(binfo.actual_seqlen_k, kBlockN), (n_split_idx + 1) * n_blocks_per_split);
Tri Dao's avatar
Tri Dao committed
538
    if (Is_causal || Is_local) {
Tri Dao's avatar
Tri Dao committed
539
        n_block_max = std::min(n_block_max,
Tri Dao's avatar
Tri Dao committed
540
                               cute::ceil_div((m_block + 1) * kBlockM + binfo.actual_seqlen_k - binfo.actual_seqlen_q + params.window_size_right, kBlockN));
Tri Dao's avatar
Tri Dao committed
541
542
543
544
545
    }
    if (n_block_min >= n_block_max) {  // This also covers the case where n_block_max <= 0
        // We exit early and write 0 to gOaccum and -inf to gLSEaccum.
        // Otherwise we might read OOB elements from gK and gV,
        // or get wrong results when we combine gOaccum from different blocks.
Tri Dao's avatar
Tri Dao committed
546
547
        const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
            + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
Tri Dao's avatar
Tri Dao committed
548
549
550
        const index_t row_offset_oaccum = (((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q
            + m_block * kBlockM) * params.d_rounded;
        const index_t row_offset_lseaccum = ((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
Tri Dao's avatar
Tri Dao committed
551
552
553
554
        Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
                                      Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                     make_stride(Split ? kHeadDim : params.o_row_stride, _1{}));
        Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + row_offset_lseaccum),
Tri Dao's avatar
Tri Dao committed
555
556
                                      Shape<Int<kBlockM>>{}, Stride<_1>{});

Tri Dao's avatar
Tri Dao committed
557
        GmemTiledCopyO gmem_tiled_copy_Oaccum;
Tri Dao's avatar
Tri Dao committed
558
559
        auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
        Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);
Tri Dao's avatar
Tri Dao committed
560
        Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
Tri Dao's avatar
Tri Dao committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
        clear(tOrOaccum);
        // Construct identity layout for sO
        Tensor cO = make_identity_tensor(make_shape(size<0>(gOaccum), size<1>(gOaccum)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
        // Repeat the partitioning with identity layouts
        Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO);
        Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
        if (!Is_even_K) {
            #pragma unroll
            for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
        }
        // Clear_OOB_K must be false since we don't want to write zeros to gmem
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
        );
        #pragma unroll
        for (int m = 0; m < size<1>(tOgOaccum); ++m) {
            const int row = get<0>(tOcO(0, m, 0));
Tri Dao's avatar
Tri Dao committed
578
            if (row < binfo.actual_seqlen_q - m_block * kBlockM && get<1>(tOcO(0, m, 0)) == 0) { gLSEaccum(row) = Split ? -INFINITY : INFINITY; }
Tri Dao's avatar
Tri Dao committed
579
580
581
582
583
584
585
586
587
        }
        return;
    }

    // We iterate over the blocks in reverse order. This is because the last block is the only one
    // that needs masking when we read K and V from global memory. Moreover, iterating in reverse
    // might save us 1 register (we just need n_block instead of both n_block and n_block_max).

    // We move K and V to the last block.
588
    const int bidb_cache = params.cache_batch_idx == nullptr ? bidb : params.cache_batch_idx[bidb];
Tri Dao's avatar
Tri Dao committed
589
590
591
592
593
594
595
596
597
598
599
    const int *block_table = params.block_table == nullptr ? nullptr : params.block_table + bidb * params.block_table_batch_stride;
    const int block_table_idx = block_table == nullptr ? 0 : (n_block_max - 1) * kBlockN / params.page_block_size;
    const int block_table_offset = block_table == nullptr ? 0 : (n_block_max - 1) * kBlockN - block_table_idx * params.page_block_size;
    const index_t row_offset_k = block_table == nullptr
        ? binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb_cache)
          + (n_block_max - 1) * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride
        : block_table[block_table_idx] * params.k_batch_stride + block_table_offset * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
    const index_t row_offset_v = block_table == nullptr
        ? binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb_cache)
          + (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride
        : block_table[block_table_idx] * params.v_batch_stride + block_table_offset * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
Tri Dao's avatar
Tri Dao committed
600

601
602
603
604
605
    Tensor mQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.q_ptr) + binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)),
                            make_shape(binfo.actual_seqlen_q, params.h, params.d),
                            make_stride(params.q_row_stride, params.q_head_stride, _1{}));
    Tensor gQ = local_tile(mQ(_, bidh, _), Shape<Int<kBlockM>, Int<kHeadDim>>{},
                           make_coord(m_block, 0));  // (kBlockM, kHeadDim)
Tri Dao's avatar
Tri Dao committed
606
607
608
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
Tri Dao's avatar
Tri Dao committed
609
    // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("k_ptr = %p, row_offset_k = %d, gK_ptr = %p\n", params.k_ptr, row_offset_k, gK.data()); }
Tri Dao's avatar
Tri Dao committed
610
611
612
613
614
615
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));

    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQ{});
Tri Dao's avatar
Tri Dao committed
616
    Tensor sK = make_tensor(sQ.data() + size(sQ), typename Kernel_traits::SmemLayoutKV{});
Tri Dao's avatar
Tri Dao committed
617
618
    Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sVt = make_tensor(sV.data(), typename Kernel_traits::SmemLayoutVtransposed{});
619
    Tensor sVtNoSwizzle = make_tensor(sV.data().get(), typename Kernel_traits::SmemLayoutVtransposedNoSwizzle{});
Tri Dao's avatar
Tri Dao committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
    auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);

    Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
    Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
    Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);

    typename Kernel_traits::TiledMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tidx);
    Tensor tSrQ  = thr_mma.partition_fragment_A(sQ);                           // (MMA,MMA_M,MMA_K)
    Tensor tSrK  = thr_mma.partition_fragment_B(sK);                           // (MMA,MMA_N,MMA_K)
    Tensor tOrVt  = thr_mma.partition_fragment_B(sVtNoSwizzle);                // (MMA, MMA_K,MMA_N)

    Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_M, MMA_K

    //
    // Copy Atom retiling
    //

    auto smem_tiled_copy_Q = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(tidx);
    Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);

    auto smem_tiled_copy_K = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma);
    auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(tidx);
    Tensor tSsK = smem_thr_copy_K.partition_S(sK);

    auto smem_tiled_copy_V = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma);
    auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(tidx);
    Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);

    // PREDICATES
    //

    // // Allocate predicate tensors for m and n
    // Tensor tQpQ = make_tensor<bool>(make_shape(size<1>(tQsQ), size<2>(tQsQ)), Stride<_1,_0>{});
    // Tensor tKVpKV = make_tensor<bool>(make_shape(size<1>(tKsK), size<2>(tKsK)), Stride<_1,_0>{});

    // Construct identity layout for sQ and sK
    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)

    // Repeat the partitioning with identity layouts
    Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ);       // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV);   // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

684
685
686
687
688
    // Copy from Knew to K, optionally apply rotary embedding.
    typename Kernel_traits::GmemTiledCopyRotcossin gmem_tiled_copy_rotary;
    auto gmem_thr_copy_rotary = gmem_tiled_copy_rotary.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopyRotcossinCont gmem_tiled_copy_rotary_cont;
    auto gmem_thr_copy_rotary_cont = gmem_tiled_copy_rotary_cont.get_thread_slice(tidx);
689
690
691
692
    if constexpr (Append_KV) {
        // Even if we have MQA / GQA, all threadblocks responsible for the same KV head are writing to
        // gmem. Technically it's a race condition, but they all write the same content anyway, and it's safe.
        // We want to do this so that all threadblocks can proceed right after they finish writing the KV cache.
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
        const index_t row_offset_cossin = ((n_block_max - 1) * kBlockN) * (params.rotary_dim / 2);
        Tensor gCos = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockN>, Int<kHeadDim / 2>>{},
                                  make_stride(params.rotary_dim / 2, _1{}));
        Tensor gSin = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockN>, Int<kHeadDim / 2>>{},
                                  make_stride(params.rotary_dim / 2, _1{}));
        Tensor gCosCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                      Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                      make_stride(params.rotary_dim / 2, _1{}));
        Tensor gSinCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                      Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                      make_stride(params.rotary_dim / 2, _1{}));
        Tensor tRgCos = gmem_thr_copy_rotary.partition_S(gCos);
        Tensor tRgSin = gmem_thr_copy_rotary.partition_S(gSin);
        Tensor tRgCosCont = gmem_thr_copy_rotary_cont.partition_S(gCosCont);
        Tensor tRgSinCont = gmem_thr_copy_rotary_cont.partition_S(gSinCont);
        // if (cute::thread(0, 0)) { printf("rotary_cos_ptr = %p, gCos.data() = %p, tRgCos.data() = %p, rotary_dim = %d\n", params.rotary_cos_ptr, gCos.data(), tRgCos.data(), params.rotary_dim); }
        // if (cute::thread(8, 0)) { print_tensor(gCos); }
        // if (cute::thread(0, 0)) { print_tensor(tRgCos); }

714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
        const index_t row_offset_knew = binfo.k_offset(params.knew_batch_stride, params.knew_row_stride, bidb)
            + ((n_block_max - 1) * kBlockN) * params.knew_row_stride + (bidh / params.h_h_k_ratio) * params.knew_head_stride;
        const index_t row_offset_vnew = binfo.k_offset(params.vnew_batch_stride, params.vnew_row_stride, bidb)
            + ((n_block_max - 1) * kBlockN) * params.vnew_row_stride + (bidh / params.h_h_k_ratio) * params.vnew_head_stride;
        // Subtract seqlen_k_cache * row stride so that conceptually gK and gKnew "line up". When we access them,
        // e.g. if gK has 128 rows and gKnew has 64 rows, we access gK[:128] and gKNew[128:128 + 64].
        // This maps to accessing the first 64 rows of knew_ptr.
        Tensor gKnew = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.knew_ptr)
                                                + row_offset_knew - binfo.seqlen_k_cache * params.knew_row_stride),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  make_stride(params.knew_row_stride, _1{}));
        // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { printf("knew_ptr = %p, row_offset_knew = %d, gKnew_ptr = %p\n", params.knew_ptr, row_offset_knew, gKnew.data()); }
        Tensor gVnew = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.vnew_ptr)
                                                + row_offset_vnew - binfo.seqlen_k_cache * params.vnew_row_stride),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  make_stride(params.vnew_row_stride, _1{}));
        Tensor tKgKnew = gmem_thr_copy_QKV.partition_S(gKnew);  // (KCPY, KCPY_N, KCPY_K)
        Tensor tVgVnew = gmem_thr_copy_QKV.partition_S(gVnew);  // (VCPY, VCPY_N, VCPY_K)

        const int n_block_copy_min = std::max(n_block_min, binfo.seqlen_k_cache / kBlockN);
Tri Dao's avatar
Tri Dao committed
734
735
        auto tKgK_data = tKgK.data();
        auto tVgV_data = tVgV.data();
736
737
738
739
740
        for (int n_block = n_block_max - 1; n_block >= n_block_copy_min; n_block--) {
            flash::copy_w_min_idx<Is_even_K>(
                tVgVnew, tVgV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN, binfo.seqlen_k_cache - n_block * kBlockN
            );
            tVgVnew.data() = tVgVnew.data() + (-int(kBlockN * params.vnew_row_stride));
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
            if (params.rotary_dim == 0) {
                flash::copy_w_min_idx<Is_even_K>(
                    tKgKnew, tKgK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN, binfo.seqlen_k_cache - n_block * kBlockN
                );
            } else {
                if (params.is_rotary_interleaved) {
                    // Don't clear OOB_K because we're writing to global memory
                    flash::copy_rotary_interleaved<Is_even_K, /*Clear_OOB_K=*/false>(
                        tKgKnew, tKgK, tRgCos, tRgSin, tKVcKV, binfo.actual_seqlen_k - n_block * kBlockN,
                        binfo.seqlen_k_cache - n_block * kBlockN, params.d, params.rotary_dim
                    );
                    tRgCos.data() = tRgCos.data() + (-int(kBlockN * params.rotary_dim / 2));
                    tRgSin.data() = tRgSin.data() + (-int(kBlockN * params.rotary_dim / 2));
                } else {
                    // Don't clear OOB_K because we're writing to global memory
                    flash::copy_rotary_contiguous<Is_even_K, /*Clear_OOB_K=*/false>(
                        tKgKnew, tKgK, tRgCosCont, tRgSinCont, tKVcKV, binfo.actual_seqlen_k - n_block * kBlockN,
                        binfo.seqlen_k_cache - n_block * kBlockN, params.d, params.rotary_dim
                    );
                    tRgCosCont.data() = tRgCosCont.data() + (-int(kBlockN * params.rotary_dim / 2));
                    tRgSinCont.data() = tRgSinCont.data() + (-int(kBlockN * params.rotary_dim / 2));

                }
            }
            tKgKnew.data() = tKgKnew.data() + (-int(kBlockN * params.knew_row_stride));
Tri Dao's avatar
Tri Dao committed
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
            if (block_table == nullptr) {
                tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
                tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
            } else {
                if (n_block > n_block_copy_min) {
                    const int block_table_idx_cur = n_block * kBlockN / params.page_block_size;
                    const int block_table_offset_cur = n_block * kBlockN - block_table_idx_cur * params.page_block_size;
                    const int block_table_idx_next = (n_block - 1) * kBlockN / params.page_block_size;
                    const int block_table_offset_next = (n_block - 1) * kBlockN - block_table_idx_next * params.page_block_size;
                    const int table_diff = block_table[block_table_idx_next] - block_table[block_table_idx_cur];
                    const int offset_diff = block_table_offset_next - block_table_offset_cur;
                    tVgV.data() = tVgV.data() + table_diff * params.v_batch_stride + offset_diff * params.v_row_stride;
                    tKgK.data() = tKgK.data() + table_diff * params.k_batch_stride + offset_diff * params.k_row_stride;
                }
            }
781
        }
782
        // Need this before we can read in K again, so that we'll see the updated K values.
783
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
784
785
        tKgK.data() = tKgK_data;
        tVgV.data() = tVgV_data;
786
787
    }

788
789
790
791
792
793
    // Read Q from gmem to smem, optionally apply rotary embedding.
    if (!Append_KV || params.rotary_dim == 0) {
        // We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
        flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ,
                                           binfo.actual_seqlen_q - m_block * kBlockM);
    } else {
Tri Dao's avatar
Tri Dao committed
794
        const index_t row_offset_cossin = (binfo.seqlen_k_cache + (Is_causal || Is_local ? m_block * kBlockM : 0)) * (params.rotary_dim / 2);
795
796
797
798
        // If not causal, all the queries get the same the cos/sin, taken at location seqlen_k_cache.
        // We do this by setting the row stride of gCos / gSin to 0.
        Tensor gCos = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim / 2>>{},
Tri Dao's avatar
Tri Dao committed
799
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
800
801
        Tensor gSin = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim / 2>>{},
Tri Dao's avatar
Tri Dao committed
802
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
803
804
        Tensor gCosCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_cos_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
Tri Dao's avatar
Tri Dao committed
805
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
806
807
        Tensor gSinCont = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.rotary_sin_ptr) + row_offset_cossin),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
Tri Dao's avatar
Tri Dao committed
808
                                  make_stride(Is_causal || Is_local ? params.rotary_dim / 2 : 0, _1{}));
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
        Tensor tRgCos = gmem_thr_copy_rotary.partition_S(gCos);
        Tensor tRgSin = gmem_thr_copy_rotary.partition_S(gSin);
        Tensor tRgCosCont = gmem_thr_copy_rotary_cont.partition_S(gCosCont);
        Tensor tRgSinCont = gmem_thr_copy_rotary_cont.partition_S(gSinCont);
        if (params.is_rotary_interleaved) {
            flash::copy_rotary_interleaved<Is_even_K>(
                tQgQ, tQsQ, tRgCos, tRgSin, tQcQ, binfo.actual_seqlen_q - m_block * kBlockM,
                0, params.d, params.rotary_dim
            );
        } else {
            flash::copy_rotary_contiguous<Is_even_K>(
                tQgQ, tQsQ, tRgCosCont, tRgSinCont, tQcQ, binfo.actual_seqlen_q - m_block * kBlockM,
                0, params.d, params.rotary_dim
            );
        }
    }
Tri Dao's avatar
Tri Dao committed
825
826
827

    int n_block = n_block_max - 1;
    // We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
828
829
    flash::copy<Is_even_MN, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV,
                                       binfo.actual_seqlen_k - n_block * kBlockN);
Tri Dao's avatar
Tri Dao committed
830
831
    cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
832
833
834
835
    // flash::cp_async_wait<0>();
    // __syncthreads();
    // if (tidx == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(tKsK); }
    // __syncthreads();
Tri Dao's avatar
Tri Dao committed
836
837
838

    clear(acc_o);

Tri Dao's avatar
Tri Dao committed
839
840
    flash::Softmax<2 * size<1>(acc_o)> softmax;

Tri Dao's avatar
Tri Dao committed
841
    const float alibi_slope = !Has_alibi ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
842
    flash::Mask<Is_causal, Is_local, Has_alibi> mask(binfo.actual_seqlen_k, binfo.actual_seqlen_q, params.window_size_left, params.window_size_right, alibi_slope);
843

Tri Dao's avatar
Tri Dao committed
844
845
846
847
848
849
850
851
    // For performance reason, we separate out two kinds of iterations:
    // those that need masking on S, and those that don't.
    // We need masking on S for the very last block when K and V has length not multiple of kBlockN.
    // We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
    // We will have at least 1 "masking" iteration.

    // If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
    // mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
Tri Dao's avatar
Tri Dao committed
852
    constexpr int n_masking_steps = (!Is_causal && !Is_local)
Tri Dao's avatar
Tri Dao committed
853
        ? 1
Tri Dao's avatar
Tri Dao committed
854
        : ((Is_even_MN && Is_causal) ? cute::ceil_div(kBlockM, kBlockN) : cute::ceil_div(kBlockM, kBlockN) + 1);
Tri Dao's avatar
Tri Dao committed
855
856
857
858
859
860
861
862
863
    #pragma unroll
    for (int masking_step = 0; masking_step < n_masking_steps; ++masking_step, --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();

        // Advance gV
        if (masking_step > 0) {
Tri Dao's avatar
Tri Dao committed
864
865
866
867
868
869
870
871
872
            if (block_table == nullptr) {
                tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
            } else {
                const int block_table_idx_cur = (n_block + 1) * kBlockN / params.page_block_size;
                const int block_table_offset_cur = (n_block + 1) * kBlockN - block_table_idx_cur * params.page_block_size;
                const int block_table_idx_next = n_block * kBlockN / params.page_block_size;
                const int block_table_offset_next = n_block * kBlockN - block_table_idx_next * params.page_block_size;
                tVgV.data() = tVgV.data() + (block_table[block_table_idx_next] - block_table[block_table_idx_cur]) * params.v_batch_stride + (block_table_offset_next - block_table_offset_cur) * params.v_row_stride;
            }
873
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
874
875
        } else {
            // Clear the smem tiles to account for predicated off loads
876
877
            flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
                gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
878
879
880
881
            );
        }
        cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
882
        flash::gemm(
Tri Dao's avatar
Tri Dao committed
883
884
885
886
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
        );
        // if (cute::thread0()) { print(acc_s); }
Nicolas Patry's avatar
Nicolas Patry committed
887
888
889
890
        if constexpr (Is_softcap){
            apply_softcap(acc_s, params.softcap);
        }

Tri Dao's avatar
Tri Dao committed
891

892
893
894
        mask.template apply_mask<Is_causal, Is_even_MN>(
            acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
        );
Tri Dao's avatar
Tri Dao committed
895
896
897

        flash::cp_async_wait<0>();
        __syncthreads();
Tri Dao's avatar
Tri Dao committed
898
899
900
        // if (tidx == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(tVsV); }
        // __syncthreads();

Tri Dao's avatar
Tri Dao committed
901
902
        if (n_block > n_block_min) {
            // Advance gK
Tri Dao's avatar
Tri Dao committed
903
904
905
906
907
908
909
910
911
            if (block_table == nullptr) {
                tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
            } else {
                const int block_table_idx_cur = n_block * kBlockN / params.page_block_size;
                const int block_table_offset_cur = n_block * kBlockN - block_table_idx_cur * params.page_block_size;
                const int block_table_idx_next = (n_block - 1) * kBlockN / params.page_block_size;
                const int block_table_offset_next =(n_block - 1) * kBlockN - block_table_idx_next * params.page_block_size;
                tKgK.data() = tKgK.data() + (block_table[block_table_idx_next] - block_table[block_table_idx_cur]) * params.k_batch_stride + (block_table_offset_next - block_table_offset_cur) * params.k_row_stride;
            }
912
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
913
914
915
916
917
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

Tri Dao's avatar
Tri Dao committed
918
        // We have key_padding_mask so we'll need to Check_inf
Tri Dao's avatar
Tri Dao committed
919
        masking_step == 0
Tri Dao's avatar
Tri Dao committed
920
921
            ? softmax.template softmax_rescale_o</*Is_first=*/true,  /*Check_inf=*/Is_causal || Is_local || !Is_even_MN>(acc_s, acc_o, params.scale_softmax_log2)
            : softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_causal || Is_local || !Is_even_MN>(acc_s, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
922
        // if (cute::thread0()) { print(scores_max); print(scores_sum); print(scores); }
Tri Dao's avatar
Tri Dao committed
923

924
925
926
927
928
        // Convert acc_s from fp32 to fp16/bf16
        Tensor rP = flash::convert_type<Element>(acc_s);
        // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
Tri Dao's avatar
Tri Dao committed
929

930
        flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945

        // This check is at the end of the loop since we always have at least 1 iteration
        if (n_masking_steps > 1 && n_block <= n_block_min) {
            --n_block;
            break;
        }
    }

    // These are the iterations where we don't need masking on S
    for (; n_block >= n_block_min; --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();
        // Advance gV
Tri Dao's avatar
Tri Dao committed
946
947
948
949
950
951
952
953
954
        if (block_table == nullptr) {
            tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
        } else {
            const int block_table_idx_cur = (n_block + 1) * kBlockN / params.page_block_size;
            const int block_table_offset_cur = (n_block + 1) * kBlockN - block_table_idx_cur * params.page_block_size;
            const int block_table_idx_next = n_block * kBlockN / params.page_block_size;
            const int block_table_offset_next = n_block * kBlockN - block_table_idx_next * params.page_block_size;
            tVgV.data() = tVgV.data() + (block_table[block_table_idx_next] - block_table[block_table_idx_cur]) * params.v_batch_stride + (block_table_offset_next - block_table_offset_cur) * params.v_row_stride;
        }
955
        flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
956
957
        cute::cp_async_fence();

Tri Dao's avatar
Tri Dao committed
958
        flash::gemm(
Tri Dao's avatar
Tri Dao committed
959
960
961
            acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K,
            smem_thr_copy_Q, smem_thr_copy_K
        );
Nicolas Patry's avatar
Nicolas Patry committed
962
963
964
        if constexpr (Is_softcap){
            apply_softcap(acc_s, params.softcap);
        }
Tri Dao's avatar
Tri Dao committed
965
966
967
968
969

        flash::cp_async_wait<0>();
        __syncthreads();
        if (n_block > n_block_min) {
            // Advance gK
Tri Dao's avatar
Tri Dao committed
970
971
972
973
974
975
976
977
978
            if (block_table == nullptr) {
                tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
            } else {
                const int block_table_idx_cur = n_block * kBlockN / params.page_block_size;
                const int block_table_offset_cur = n_block * kBlockN - block_table_idx_cur * params.page_block_size;
                const int block_table_idx_next = (n_block - 1) * kBlockN / params.page_block_size;
                const int block_table_offset_next = (n_block - 1) * kBlockN - block_table_idx_next * params.page_block_size;
                tKgK.data() = tKgK.data() + (block_table[block_table_idx_next] - block_table[block_table_idx_cur]) * params.k_batch_stride + (block_table_offset_next - block_table_offset_cur) * params.k_row_stride;
            }
979
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
980
981
982
983
984
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

985
986
987
        mask.template apply_mask</*Causal_mask=*/false>(
            acc_s, n_block * kBlockN, m_block * kBlockM + (tidx / 32) * 16 + (tidx % 32) / 4, kNWarps * 16
        );
Tri Dao's avatar
Tri Dao committed
988
        softmax.template softmax_rescale_o</*Is_first=*/false, /*Check_inf=*/Is_local>(acc_s, acc_o, params.scale_softmax_log2);
Tri Dao's avatar
Tri Dao committed
989

990
991
992
993
        Tensor rP = flash::convert_type<Element>(acc_s);
        // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
        // if using m16n8k16 or (4, MMA_M, MMA_N) if using m16n8k8.
        Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
Tri Dao's avatar
Tri Dao committed
994

995
        flash::gemm_rs(acc_o, tOrP, tOrVt, tOsVt, tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
Tri Dao's avatar
Tri Dao committed
996
997
998
999
    }

    // Epilogue

Tri Dao's avatar
Tri Dao committed
1000
    Tensor lse = softmax.template normalize_softmax_lse</*Is_dropout=*/false, Split>(acc_o, params.scale_softmax);
Tri Dao's avatar
Tri Dao committed
1001
    // if (cute::thread0()) { print(lse); }
Tri Dao's avatar
Tri Dao committed
1002

Tri Dao's avatar
Tri Dao committed
1003
    Tensor sOaccum = make_tensor(make_smem_ptr(reinterpret_cast<ElementO *>(smem_)), typename Kernel_traits::SmemLayoutO{}); // (SMEM_M,SMEM_N)
Tri Dao's avatar
Tri Dao committed
1004
    // Partition sO to match the accumulator partitioning
Tri Dao's avatar
Tri Dao committed
1005
1006
1007
1008
1009
1010
    using SmemTiledCopyO = std::conditional_t<
        !Split,
        typename Kernel_traits::SmemCopyAtomO,
        typename Kernel_traits::SmemCopyAtomOaccum
    >;
    auto smem_tiled_copy_Oaccum = make_tiled_copy_C(SmemTiledCopyO{}, tiled_mma);
Tri Dao's avatar
Tri Dao committed
1011
    auto smem_thr_copy_Oaccum = smem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1012
1013
    Tensor rO = flash::convert_type<ElementO>(acc_o);
    Tensor taccOrOaccum = smem_thr_copy_Oaccum.retile_S(rO);        // ((Atom,AtomNum), MMA_M, MMA_N)
Tri Dao's avatar
Tri Dao committed
1014
1015
    Tensor taccOsOaccum = smem_thr_copy_Oaccum.partition_D(sOaccum);     // ((Atom,AtomNum),PIPE_M,PIPE_N)

Tri Dao's avatar
Tri Dao committed
1016
1017
1018
    // sOaccum is larger than sQ, so we need to syncthreads here
    // TODO: allocate enough smem for sOaccum
    if constexpr (Split) { __syncthreads(); }
Tri Dao's avatar
Tri Dao committed
1019
1020
1021

    cute::copy(smem_tiled_copy_Oaccum, taccOrOaccum, taccOsOaccum);

Tri Dao's avatar
Tri Dao committed
1022
1023
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
Tri Dao's avatar
Tri Dao committed
1024
1025
    const index_t row_offset_oaccum = (((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q
                                         + m_block * kBlockM) * params.d_rounded;
1026
1027
1028
    const index_t row_offset_lseaccum = (Split || !params.unpadded_lse ?
            ((n_split_idx * params.b + bidb) * params.h + bidh) * params.seqlen_q : bidh * params.total_q + binfo.q_offset(params.seqlen_q, 1, bidb)
        ) + m_block * kBlockM;
Tri Dao's avatar
Tri Dao committed
1029

Tri Dao's avatar
Tri Dao committed
1030
    Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
Tri Dao's avatar
Tri Dao committed
1031
                                 Shape<Int<kBlockM>, Int<kHeadDim>>{},
Tri Dao's avatar
Tri Dao committed
1032
1033
                                 make_stride(Split ? kHeadDim : params.o_row_stride, _1{}));
    Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + row_offset_lseaccum),
Tri Dao's avatar
Tri Dao committed
1034
                                   Shape<Int<kBlockM>>{}, Stride<_1>{});
Tri Dao's avatar
Tri Dao committed
1035
    // if (tidx == 0) { printf("row_offset_o = %d, bidh = %d, gOaccum = %p\n", row_offset_o, bidh, gOaccum.data()); }
Tri Dao's avatar
Tri Dao committed
1036

Tri Dao's avatar
Tri Dao committed
1037
    GmemTiledCopyO gmem_tiled_copy_Oaccum;
Tri Dao's avatar
Tri Dao committed
1038
1039
1040
1041
1042
1043
    auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
    Tensor tOsOaccum = gmem_thr_copy_Oaccum.partition_S(sOaccum);        // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);

    __syncthreads();

Tri Dao's avatar
Tri Dao committed
1044
    Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
Tri Dao's avatar
Tri Dao committed
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
    cute::copy(gmem_tiled_copy_Oaccum, tOsOaccum, tOrOaccum);

    Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor taccOcO = thr_mma.partition_C(caccO);                           // (MMA,MMA_M,MMA_K)
    static_assert(decltype(size<0>(taccOcO))::value == 4);
    // Convert to ((2, 2), MMA_M, MMA_K) then take only the row indices.
    Tensor taccOcO_row = logical_divide(taccOcO, Shape<_2>{})(make_coord(0, _), _, 0);
    CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row));                     // MMA_M
    if (get<1>(taccOcO_row(0)) == 0) {
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) {
            const int row = get<0>(taccOcO_row(mi));
            if (row < binfo.actual_seqlen_q - m_block * kBlockM) { gLSEaccum(row) = lse(mi); }
        }
    }

    // Construct identity layout for sO
    Tensor cO = make_identity_tensor(make_shape(size<0>(sOaccum), size<1>(sOaccum)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    // Repeat the partitioning with identity layouts
    Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO);                           // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(0, 0, k)) < params.d; }
    }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
        gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, binfo.actual_seqlen_q - m_block * kBlockM
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

Nicolas Patry's avatar
Nicolas Patry committed
1078
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, bool Return_softmax, typename Params>
Tri Dao's avatar
Tri Dao committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
inline __device__ void compute_attn(const Params &params) {
    const int m_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;

    // We want the fwd and bwd to generate the same dropout pattern (RNG), without restricting
    // them to have the same number of threads or have to traverse the attention matrix
    // in the same order.
    // In the Philox RNG, we use the offset to store the batch, head, and the lane id
    // (within a warp). We use the subsequence to store the location of the 16 x 32 blocks within
    // the attention matrix. This way, as long as we have the batch, head, and the location of
    // the 16 x 32 block within the attention matrix, we can generate the exact same dropout pattern.

Nicolas Patry's avatar
Nicolas Patry committed
1094
    flash::compute_attn_1rowblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Is_softcap, Return_softmax>(params, bidb, bidh, m_block);
Tri Dao's avatar
Tri Dao committed
1095
1096
1097
1098
}

////////////////////////////////////////////////////////////////////////////////////////////////////

Nicolas Patry's avatar
Nicolas Patry committed
1099
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_softcap, bool Split, bool Append_KV, typename Params>
Tri Dao's avatar
Tri Dao committed
1100
1101
1102
inline __device__ void compute_attn_splitkv(const Params &params) {
    const int m_block = blockIdx.x;
    // The block index for the batch.
Tri Dao's avatar
Tri Dao committed
1103
    const int bidb = Split ? blockIdx.z / params.h : blockIdx.y;
Tri Dao's avatar
Tri Dao committed
1104
    // The block index for the head.
Tri Dao's avatar
Tri Dao committed
1105
1106
1107
    const int bidh = Split ? blockIdx.z - bidb * params.h : blockIdx.z;
    const int n_split_idx = Split ? blockIdx.y : 0;
    const int num_n_splits = Split ? gridDim.y : 1;
Nicolas Patry's avatar
Nicolas Patry committed
1108
    flash::compute_attn_1rowblock_splitkv<Kernel_traits, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Is_softcap, Split, Append_KV>(params, bidb, bidh, m_block, n_split_idx, num_n_splits);
Tri Dao's avatar
Tri Dao committed
1109
1110
1111
1112
}

////////////////////////////////////////////////////////////////////////////////////////////////////

1113
template<typename Kernel_traits, int kBlockM, int Log_max_splits, bool Is_even_K, typename Params>
Tri Dao's avatar
Tri Dao committed
1114
1115
1116
1117
1118
1119
inline __device__ void combine_attn_seqk_parallel(const Params &params) {
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;
    constexpr int kMaxSplits = 1 << Log_max_splits;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
1120
    constexpr int kNThreads = Kernel_traits::kNThreads;
Tri Dao's avatar
Tri Dao committed
1121
1122

    static_assert(kMaxSplits <= 128, "kMaxSplits must be <= 128");
1123
1124
    static_assert(kBlockM == 4 || kBlockM == 8 || kBlockM == 16 || kBlockM == 32, "kBlockM must be 4, 8, 16 or 32");
    static_assert(kNThreads == 128, "We assume that each block has 128 threads");
Tri Dao's avatar
Tri Dao committed
1125
1126
1127
1128
1129
1130
1131
1132
1133

    // Shared memory.
    // kBlockM + 1 instead of kBlockM to reduce bank conflicts.
    __shared__ ElementAccum sLSE[kMaxSplits][kBlockM + 1];

    // The thread and block index.
    const int tidx = threadIdx.x;
    const int bidx = blockIdx.x;

1134
1135
    const index_t lse_size = params.b * params.h * params.seqlen_q;

Tri Dao's avatar
Tri Dao committed
1136
1137
1138
    const index_t row_offset_lse = bidx * kBlockM;
    Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lseaccum_ptr) + row_offset_lse),
                                   Shape<Int<kMaxSplits>, Int<kBlockM>>{},
1139
1140
1141
1142
                                   make_stride(lse_size, _1{}));

    // LSE format is different depending on params.unpadded_lse and params.seqlenq_ngroups_swapped, see comment in get_lse_tile.
    // This tensor's layout maps row_offset_lse to {bidb, bidh, q_offset}.
Tri Dao's avatar
Tri Dao committed
1143
1144
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

    // This layout maps row_offset_lse to {bidh, q_offset, bidb} or {bidh, bidb, q_offset}.
    Layout flat_layout = make_layout(lse_size);
    Layout orig_layout = make_layout(make_shape(params.seqlen_q, params.h, params.b));
    auto transposed_stride = params.seqlenq_ngroups_swapped ? make_stride(params.b, params.seqlen_q * params.b, 1) : make_stride(1, params.seqlen_q * params.b, params.seqlen_q);
    Layout remapped_layout = make_layout(make_shape(params.seqlen_q, params.h, params.b), transposed_stride);
    Layout final_layout = cute::composition(remapped_layout, cute::composition(orig_layout, flat_layout));

    Tensor gLSE_unpadded = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr)), final_layout);

1155
    constexpr int kNLsePerThread = (kMaxSplits * kBlockM + kNThreads - 1) / kNThreads;
Tri Dao's avatar
Tri Dao committed
1156

1157
    // Read the LSE values from gmem and store them in shared memory, then transpose them.
1158
    constexpr int kRowsPerLoadLSE = kNThreads / kBlockM;
Tri Dao's avatar
Tri Dao committed
1159
1160
1161
1162
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadLSE + tidx / kBlockM;
        const int col = tidx % kBlockM;
1163
        ElementAccum lse = (row < params.num_splits && col < lse_size - bidx * kBlockM) ? gLSEaccum(row, col) : -INFINITY;
Tri Dao's avatar
Tri Dao committed
1164
        if (row < kMaxSplits) { sLSE[row][col] = lse; }
1165
        // if (bidx == 0 && tidx < 32) { printf("tidx = %d, row = %d, col = %d, lse = %f\n", tidx, row, col, lse); }
Tri Dao's avatar
Tri Dao committed
1166
1167
1168
1169
1170
1171
1172
    }
    // if (bidx == 1 && tidx < 32) { printf("tidx = %d, row_offset_lse = %d, lse = %f\n", tidx, row_offset_lse, lse_accum(0)); }
    __syncthreads();
    Tensor lse_accum = make_tensor<ElementAccum>(Shape<Int<kNLsePerThread>>{});
    constexpr int kRowsPerLoadTranspose = std::min(kRowsPerLoadLSE, kMaxSplits);
    // To make sure that kMaxSplits is within 1 warp: we decide how many elements within kMaxSplits
    // each thread should hold. If kMaxSplits = 16, then each thread holds 2 elements (128 threads,
1173
    // kBlockM rows, so each time we load we can load 128 / kBlockM rows).
Tri Dao's avatar
Tri Dao committed
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
    // constexpr int kThreadsPerSplit = kMaxSplits / kRowsPerLoadTranspose;
    // static_assert(kThreadsPerSplit <= 32);
    static_assert(kRowsPerLoadTranspose <= 32);
    static_assert(kNLsePerThread * kRowsPerLoadTranspose <= kMaxSplits);
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadTranspose + tidx % kRowsPerLoadTranspose;
        const int col = tidx / kRowsPerLoadTranspose;
        lse_accum(l) = (row < kMaxSplits && col < kBlockM) ? sLSE[row][col] : -INFINITY;
        // if (bidx == 0 && tidx < 32) { printf("tidx = %d, row = %d, col = %d, lse = %f\n", tidx, row, col, lse_accum(l)); }
    }

    // Compute the logsumexp of the LSE along the split dimension.
    ElementAccum lse_max = lse_accum(0);
    #pragma unroll
    for (int l = 1; l < kNLsePerThread; ++l) { lse_max = max(lse_max, lse_accum(l)); }
    MaxOp<float> max_op;
    lse_max = Allreduce<kRowsPerLoadTranspose>::run(lse_max, max_op);
Tri Dao's avatar
Tri Dao committed
1192
    lse_max = lse_max == -INFINITY ? 0.0f : lse_max;  // In case all local LSEs are -inf
Tri Dao's avatar
Tri Dao committed
1193
1194
1195
1196
1197
    float lse_sum = expf(lse_accum(0) - lse_max);
    #pragma unroll
    for (int l = 1; l < kNLsePerThread; ++l) { lse_sum += expf(lse_accum(l) - lse_max); }
    SumOp<float> sum_op;
    lse_sum = Allreduce<kRowsPerLoadTranspose>::run(lse_sum, sum_op);
1198
1199
1200
    // For the case where all local lse == -INFINITY, we want to set lse_logsum to INFINITY. Otherwise
    // lse_logsum is log(0.0) = -INFINITY and we get NaN when we do lse_accum(l) - lse_logsum.
    ElementAccum lse_logsum = (lse_sum == 0.f || lse_sum != lse_sum) ? INFINITY : logf(lse_sum) + lse_max;
Tri Dao's avatar
Tri Dao committed
1201
    // if (bidx == 0 && tidx < 32) { printf("tidx = %d, lse = %f, lse_max = %f, lse_logsum = %f\n", tidx, lse_accum(0), lse_max, lse_logsum); }
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
    if (tidx % kRowsPerLoadTranspose == 0 && tidx / kRowsPerLoadTranspose < kBlockM) {
        if (params.unpadded_lse) {
            const index_t lse_offset = row_offset_lse + tidx / kRowsPerLoadTranspose;
            if (lse_offset < lse_size) {
                gLSE_unpadded(lse_offset) = lse_logsum;
            }
        } else {
            gLSE(tidx / kRowsPerLoadTranspose) = lse_logsum;
        }
    }
Tri Dao's avatar
Tri Dao committed
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
    // Store the scales exp(lse - lse_logsum) in shared memory.
    #pragma unroll
    for (int l = 0; l < kNLsePerThread; ++l) {
        const int row = l * kRowsPerLoadTranspose + tidx % kRowsPerLoadTranspose;
        const int col = tidx / kRowsPerLoadTranspose;
        if (row < params.num_splits && col < kBlockM) { sLSE[row][col] = expf(lse_accum(l) - lse_logsum); }
    }
    __syncthreads();

    const index_t row_offset_oaccum = bidx * kBlockM * params.d_rounded;
    Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.oaccum_ptr) + row_offset_oaccum),
                                 Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                 Stride<Int<kHeadDim>, _1>{});
1225
1226
1227
1228
1229
1230
1231
    constexpr int kBlockN = kNThreads / kBlockM;
    using GmemLayoutAtomOaccum = Layout<Shape<Int<kBlockM>, Int<kBlockN>>, Stride<Int<kBlockN>, _1>>;
    using GmemTiledCopyOaccum = decltype(
        make_tiled_copy(Copy_Atom<DefaultCopy, ElementAccum>{},
                        GmemLayoutAtomOaccum{},
                        Layout<Shape < _1, _4>>{}));  // Val layout, 4 vals per store
    GmemTiledCopyOaccum gmem_tiled_copy_Oaccum;
Tri Dao's avatar
Tri Dao committed
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
    auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
    Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_S(gOaccum);
    Tensor tOrO = make_tensor<ElementAccum>(shape(tOgOaccum));
    Tensor tOrOaccum = make_tensor<ElementAccum>(shape(tOgOaccum));
    clear(tOrO);

    // Predicates
    Tensor cOaccum = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});
    // Repeat the partitioning with identity layouts
    Tensor tOcOaccum = gmem_thr_copy_Oaccum.partition_S(cOaccum);
    Tensor tOpOaccum = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tOpOaccum); ++k) { tOpOaccum(k) = get<1>(tOcOaccum(0, 0, k)) < params.d; }
    }
    // Load Oaccum in then scale and accumulate to O
    for (int split = 0; split < params.num_splits; ++split) {
        flash::copy</*Is_even_MN=*/false, Is_even_K>(
            gmem_tiled_copy_Oaccum, tOgOaccum, tOrOaccum, tOcOaccum, tOpOaccum, params.b * params.h * params.seqlen_q - bidx * kBlockM
        );
        #pragma unroll
        for (int m = 0; m < size<1>(tOrOaccum); ++m) {
            int row = get<0>(tOcOaccum(0, m, 0));
            ElementAccum lse_scale = sLSE[split][row];
            #pragma unroll
            for (int k = 0; k < size<2>(tOrOaccum); ++k) {
                #pragma unroll
                for (int i = 0; i < size<0>(tOrOaccum); ++i) {
                    tOrO(i, m, k) += lse_scale * tOrOaccum(i, m, k);
                }
            }
1263
        // if (cute::thread0()) { printf("lse_scale = %f, %f\n", sLSE[split][0], sLSE[split][1]); print(tOrOaccum); }
Tri Dao's avatar
Tri Dao committed
1264
1265
1266
        }
        tOgOaccum.data() = tOgOaccum.data() + params.b * params.h * params.seqlen_q * params.d_rounded;
    }
1267
    // if (cute::thread0()) { print_tensor(tOrO); }
Tri Dao's avatar
Tri Dao committed
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296

    Tensor rO = flash::convert_type<Element>(tOrO);
    // Write to gO
    #pragma unroll
    for (int m = 0; m < size<1>(rO); ++m) {
        const int idx = bidx * kBlockM + get<0>(tOcOaccum(0, m, 0));
        if (idx < params.b * params.h * params.seqlen_q) {
            const int batch_idx = idx / (params.h * params.seqlen_q);
            const int head_idx = (idx - batch_idx * (params.h * params.seqlen_q)) / params.seqlen_q;
            // The index to the rows of Q
            const int row = idx - batch_idx * (params.h * params.seqlen_q) - head_idx * params.seqlen_q;
            auto o_ptr = reinterpret_cast<Element *>(params.o_ptr) + batch_idx * params.o_batch_stride
                + head_idx * params.o_head_stride + row * params.o_row_stride;
            #pragma unroll
            for (int k = 0; k < size<2>(rO); ++k) {
                if (Is_even_K || tOpOaccum(k)) {
                    const int col = get<1>(tOcOaccum(0, m, k));
                    Tensor gO = make_tensor(make_gmem_ptr(o_ptr + col),
                                            Shape<Int<decltype(size<0>(rO))::value>>{}, Stride<_1>{});
                    // TODO: Should check if this is using vectorized store, but it seems pretty fast
                    copy(rO(_, m, k), gO);
                    // if (bidx == 0 && tidx == 0) { printf("tidx = %d, idx = %d, batch_idx = %d, head_idx = %d, row = %d, col = %d\n", tidx, idx, batch_idx, head_idx, row, col); print(rO(_, m, k)); print(gO); }
                    // reinterpret_cast<uint64_t *>(o_ptr)[col / 4] = recast<uint64_t>(rO)(0, m, k);
                }
            }
        }
    }
}

Tri Dao's avatar
Tri Dao committed
1297
} // namespace flash