setup.py 13.8 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
import sys
import warnings
import os
5
6
import re
import ast
Tri Dao's avatar
Tri Dao committed
7
from pathlib import Path
Tri Dao's avatar
Tri Dao committed
8
from packaging.version import parse, Version
9
import platform
Tri Dao's avatar
Tri Dao committed
10
11
12
13

from setuptools import setup, find_packages
import subprocess

Pierce Freeman's avatar
Pierce Freeman committed
14
15
import urllib.request
import urllib.error
Tri Dao's avatar
Tri Dao committed
16
17
from wheel.bdist_wheel import bdist_wheel as _bdist_wheel

Tri Dao's avatar
Tri Dao committed
18
import torch
19
20
21
22
23
24
from torch.utils.cpp_extension import (
    BuildExtension,
    CppExtension,
    CUDAExtension,
    CUDA_HOME,
)
Tri Dao's avatar
Tri Dao committed
25
26
27
28
29


with open("README.md", "r", encoding="utf-8") as fh:
    long_description = fh.read()

Tri Dao's avatar
Tri Dao committed
30
31
32
33

# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))

34
PACKAGE_NAME = "flash_attn"
Tri Dao's avatar
Tri Dao committed
35

36
37
38
BASE_WHEEL_URL = (
    "https://github.com/Dao-AILab/flash-attention/releases/download/{tag_name}/{wheel_name}"
)
39
40
41
42
43

# FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels
# SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation
FORCE_BUILD = os.getenv("FLASH_ATTENTION_FORCE_BUILD", "FALSE") == "TRUE"
SKIP_CUDA_BUILD = os.getenv("FLASH_ATTENTION_SKIP_CUDA_BUILD", "FALSE") == "TRUE"
Tri Dao's avatar
Tri Dao committed
44
45
# For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI
FORCE_CXX11_ABI = os.getenv("FLASH_ATTENTION_FORCE_CXX11_ABI", "FALSE") == "TRUE"
46
47
# For CI, we want the option to not add "--threads 4" to nvcc, since the runner can OOM
FORCE_SINGLE_THREAD = os.getenv("FLASH_ATTENTION_FORCE_SINGLE_THREAD", "FALSE") == "TRUE"
48
49


50
51
def get_platform():
    """
52
    Returns the platform name as used in wheel filenames.
53
    """
54
55
56
57
58
59
60
    if sys.platform.startswith("linux"):
        return "linux_x86_64"
    elif sys.platform == "darwin":
        mac_version = ".".join(platform.mac_ver()[0].split(".")[:2])
        return f"macosx_{mac_version}_x86_64"
    elif sys.platform == "win32":
        return "win_amd64"
61
    else:
62
        raise ValueError("Unsupported platform: {}".format(sys.platform))
63

Tri Dao's avatar
Tri Dao committed
64
65
66
67
68

def get_cuda_bare_metal_version(cuda_dir):
    raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
    output = raw_output.split()
    release_idx = output.index("release") + 1
Tri Dao's avatar
Tri Dao committed
69
    bare_metal_version = parse(output[release_idx].split(",")[0])
Tri Dao's avatar
Tri Dao committed
70

Tri Dao's avatar
Tri Dao committed
71
    return raw_output, bare_metal_version
Tri Dao's avatar
Tri Dao committed
72
73


74
def check_if_cuda_home_none(global_option: str) -> None:
Tri Dao's avatar
Tri Dao committed
75
76
    if CUDA_HOME is not None:
        return
77
78
79
    # warn instead of error because user could be downloading prebuilt wheels, so nvcc won't be necessary
    # in that case.
    warnings.warn(
Tri Dao's avatar
Tri Dao committed
80
81
82
83
84
85
86
        f"{global_option} was requested, but nvcc was not found.  Are you sure your environment has nvcc available?  "
        "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
        "only images whose names contain 'devel' will provide nvcc."
    )


def append_nvcc_threads(nvcc_extra_args):
87
    if not FORCE_SINGLE_THREAD:
Tri Dao's avatar
Tri Dao committed
88
89
90
91
92
93
94
        return nvcc_extra_args + ["--threads", "4"]
    return nvcc_extra_args


cmdclass = {}
ext_modules = []

Tri Dao's avatar
Tri Dao committed
95
96
97
98
# We want this even if SKIP_CUDA_BUILD because when we run python setup.py sdist we want the .hpp
# files included in the source distribution, in case the user compiles from source.
subprocess.run(["git", "submodule", "update", "--init", "csrc/cutlass"])

99
100
101
102
103
104
105
106
107
108
109
110
if not SKIP_CUDA_BUILD:
    print("\n\ntorch.__version__  = {}\n\n".format(torch.__version__))
    TORCH_MAJOR = int(torch.__version__.split(".")[0])
    TORCH_MINOR = int(torch.__version__.split(".")[1])

    # Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
    # See https://github.com/pytorch/pytorch/pull/70650
    generator_flag = []
    torch_dir = torch.__path__[0]
    if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
        generator_flag = ["-DOLD_GENERATOR_PATH"]

111
    check_if_cuda_home_none("flash_attn")
112
113
    # Check, if CUDA11 is installed for compute capability 8.0
    cc_flag = []
114
115
116
    if CUDA_HOME is not None:
        _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
        if bare_metal_version < Version("11.6"):
117
118
119
120
            raise RuntimeError(
                "FlashAttention is only supported on CUDA 11.6 and above.  "
                "Note: make sure nvcc has a supported version by running nvcc -V."
            )
121
122
    # cc_flag.append("-gencode")
    # cc_flag.append("arch=compute_75,code=sm_75")
Tri Dao's avatar
Tri Dao committed
123
    cc_flag.append("-gencode")
124
    cc_flag.append("arch=compute_80,code=sm_80")
125
126
127
128
    # if CUDA_HOME is not None:
    #     if bare_metal_version >= Version("11.8"):
    #         cc_flag.append("-gencode")
    #         cc_flag.append("arch=compute_90,code=sm_90")
129

Tri Dao's avatar
Tri Dao committed
130
131
132
133
134
    # HACK: The compiler flag -D_GLIBCXX_USE_CXX11_ABI is set to be the same as
    # torch._C._GLIBCXX_USE_CXX11_ABI
    # https://github.com/pytorch/pytorch/blob/8472c24e3b5b60150096486616d98b7bea01500b/torch/utils/cpp_extension.py#L920
    if FORCE_CXX11_ABI:
        torch._C._GLIBCXX_USE_CXX11_ABI = True
135
136
    ext_modules.append(
        CUDAExtension(
137
            name="flash_attn_2_cuda",
138
            sources=[
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
                "csrc/flash_attn/flash_api.cpp",
                "csrc/flash_attn/src/flash_fwd_hdim32_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim32_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim64_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim64_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim96_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim96_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim128_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim128_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim160_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim160_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim192_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim192_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim224_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim224_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim256_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_hdim256_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim32_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim32_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim64_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim64_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim96_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim96_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim128_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim128_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim160_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim160_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim192_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim192_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim224_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim224_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim256_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_bwd_hdim256_bf16_sm80.cu",
Tri Dao's avatar
Tri Dao committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
                "csrc/flash_attn/src/flash_fwd_split_hdim32_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim32_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim64_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim64_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim96_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim96_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim128_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim128_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim160_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim160_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim192_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim192_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim224_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim224_bf16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim256_fp16_sm80.cu",
                "csrc/flash_attn/src/flash_fwd_split_hdim256_bf16_sm80.cu",
188
189
190
191
192
193
194
195
196
197
198
199
200
201
            ],
            extra_compile_args={
                "cxx": ["-O3", "-std=c++17"] + generator_flag,
                "nvcc": append_nvcc_threads(
                    [
                        "-O3",
                        "-std=c++17",
                        "-U__CUDA_NO_HALF_OPERATORS__",
                        "-U__CUDA_NO_HALF_CONVERSIONS__",
                        "-U__CUDA_NO_HALF2_OPERATORS__",
                        "-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
                        "--expt-relaxed-constexpr",
                        "--expt-extended-lambda",
                        "--use_fast_math",
Tri Dao's avatar
Tri Dao committed
202
                        # "--ptxas-options=-v",
203
                        # "--ptxas-options=-O2",
204
                        "-lineinfo",
205
206
207
208
209
210
                    ]
                    + generator_flag
                    + cc_flag
                ),
            },
            include_dirs=[
211
212
213
                Path(this_dir) / "csrc" / "flash_attn",
                Path(this_dir) / "csrc" / "flash_attn" / "src",
                Path(this_dir) / "csrc" / "cutlass" / "include",
214
215
            ],
        )
Tri Dao's avatar
Tri Dao committed
216
    )
Tri Dao's avatar
Tri Dao committed
217

Tri Dao's avatar
Tri Dao committed
218

219
220
221
222
223
224
225
226
227
228
def get_package_version():
    with open(Path(this_dir) / "flash_attn" / "__init__.py", "r") as f:
        version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE)
    public_version = ast.literal_eval(version_match.group(1))
    local_version = os.environ.get("FLASH_ATTN_LOCAL_VERSION")
    if local_version:
        return f"{public_version}+{local_version}"
    else:
        return str(public_version)

Tri Dao's avatar
Tri Dao committed
229

230
231
232
233
234
235
def get_wheel_url():
    # Determine the version numbers that will be used to determine the correct wheel
    # We're using the CUDA version used to build torch, not the one currently installed
    # _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME)
    torch_cuda_version = parse(torch.version.cuda)
    torch_version_raw = parse(torch.__version__)
236
237
    if torch_version_raw.major == 2 and torch_version_raw.minor == 1:
        torch_cuda_version = parse("12.2")
238
239
240
241
242
243
244
245
246
    python_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
    platform_name = get_platform()
    flash_version = get_package_version()
    # cuda_version = f"{cuda_version_raw.major}{cuda_version_raw.minor}"
    cuda_version = f"{torch_cuda_version.major}{torch_cuda_version.minor}"
    torch_version = f"{torch_version_raw.major}.{torch_version_raw.minor}"
    cxx11_abi = str(torch._C._GLIBCXX_USE_CXX11_ABI).upper()

    # Determine wheel URL based on CUDA version, torch version, python version and OS
247
248
    wheel_filename = f"{PACKAGE_NAME}-{flash_version}+cu{cuda_version}torch{torch_version}cxx11abi{cxx11_abi}-{python_version}-{python_version}-{platform_name}.whl"
    wheel_url = BASE_WHEEL_URL.format(tag_name=f"v{flash_version}", wheel_name=wheel_filename)
249
250
251
    return wheel_url, wheel_filename


252
class CachedWheelsCommand(_bdist_wheel):
Tri Dao's avatar
Tri Dao committed
253
254
255
256
257
258
    """
    The CachedWheelsCommand plugs into the default bdist wheel, which is ran by pip when it cannot
    find an existing wheel (which is currently the case for all flash attention installs). We use
    the environment parameters to detect whether there is already a pre-built version of a compatible
    wheel available and short-circuits the standard full build pipeline.
    """
259

Tri Dao's avatar
Tri Dao committed
260
    def run(self):
261
        if FORCE_BUILD:
Pierce Freeman's avatar
Pierce Freeman committed
262
            return super().run()
263

264
        wheel_url, wheel_filename = get_wheel_url()
265
266
267
        print("Guessing wheel URL: ", wheel_url)
        try:
            urllib.request.urlretrieve(wheel_url, wheel_filename)
268
269
270
271
272
273
274
275
276

            # Make the archive
            # Lifted from the root wheel processing command
            # https://github.com/pypa/wheel/blob/cf71108ff9f6ffc36978069acb28824b44ae028e/src/wheel/bdist_wheel.py#LL381C9-L381C85
            if not os.path.exists(self.dist_dir):
                os.makedirs(self.dist_dir)

            impl_tag, abi_tag, plat_tag = self.get_tag()
            archive_basename = f"{self.wheel_dist_name}-{impl_tag}-{abi_tag}-{plat_tag}"
277

278
279
280
            wheel_path = os.path.join(self.dist_dir, archive_basename + ".whl")
            print("Raw wheel path", wheel_path)
            os.rename(wheel_filename, wheel_path)
281
282
283
        except urllib.error.HTTPError:
            print("Precompiled wheel not found. Building from source...")
            # If the wheel could not be downloaded, build from source
284
            super().run()
285
286


Tri Dao's avatar
Tri Dao committed
287
setup(
288
    name=PACKAGE_NAME,
289
    version=get_package_version(),
Tri Dao's avatar
Tri Dao committed
290
    packages=find_packages(
291
292
293
294
295
296
297
298
299
300
        exclude=(
            "build",
            "csrc",
            "include",
            "tests",
            "dist",
            "docs",
            "benchmarks",
            "flash_attn.egg-info",
        )
Tri Dao's avatar
Tri Dao committed
301
302
    ),
    author="Tri Dao",
Tri Dao's avatar
Tri Dao committed
303
    author_email="trid@cs.stanford.edu",
Tri Dao's avatar
Tri Dao committed
304
305
306
    description="Flash Attention: Fast and Memory-Efficient Exact Attention",
    long_description=long_description,
    long_description_content_type="text/markdown",
Tri Dao's avatar
Tri Dao committed
307
    url="https://github.com/Dao-AILab/flash-attention",
Tri Dao's avatar
Tri Dao committed
308
309
    classifiers=[
        "Programming Language :: Python :: 3",
310
        "License :: OSI Approved :: BSD License",
Phil Wang's avatar
Phil Wang committed
311
        "Operating System :: Unix",
Tri Dao's avatar
Tri Dao committed
312
    ],
Tri Dao's avatar
Tri Dao committed
313
    ext_modules=ext_modules,
314
315
316
317
    cmdclass={"bdist_wheel": CachedWheelsCommand, "build_ext": BuildExtension}
    if ext_modules
    else {
        "bdist_wheel": CachedWheelsCommand,
318
    },
Gustaf's avatar
Gustaf committed
319
320
321
322
    python_requires=">=3.7",
    install_requires=[
        "torch",
        "einops",
Pavel Shvets's avatar
Pavel Shvets committed
323
        "packaging",
324
        "ninja",
Gustaf's avatar
Gustaf committed
325
    ],
Tri Dao's avatar
Tri Dao committed
326
)