bert.py 26.1 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright (c) 2022, Tri Dao.
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py

# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py

import re
import logging
from functools import partial

from collections.abc import Sequence
from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F

from transformers import BertConfig
20
21
from transformers.models.bert.modeling_bert import BaseModelOutputWithPoolingAndCrossAttentions
from transformers.models.bert.modeling_bert import BertForPreTrainingOutput
Tri Dao's avatar
Tri Dao committed
22
23
24
25
26
27
28

from einops import rearrange

from flash_attn.modules.mha import MHA
from flash_attn.modules.mlp import Mlp, FusedDenseGeluDense
from flash_attn.modules.block import Block
from flash_attn.modules.embedding import BertEmbeddings
29
30
from flash_attn.bert_padding import unpad_input, pad_input
from flash_attn.bert_padding import index_first_axis, index_first_axis_residual
Tri Dao's avatar
Tri Dao committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

try:
    from flash_attn.ops.fused_dense import FusedDenseTD
except ImportError:
    FusedDenseTD = None

try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm, layer_norm
except ImportError:
    dropout_add_layer_norm, layer_norm = None, None

try:
    from flash_attn.losses.cross_entropy_apex import CrossEntropyLossApex
except ImportError:
    CrossEntropyLossApex = None


logger = logging.getLogger(__name__)


51
def create_mixer_cls(config, cross_attn=False, return_residual=False):
Tri Dao's avatar
Tri Dao committed
52
53
    use_flash_attn = getattr(config, 'use_flash_attn', False)
    fused_bias_fc = getattr(config, 'fused_bias_fc', False)
54
    mixer_cls = partial(MHA, num_heads=config.num_attention_heads, cross_attn=cross_attn,
Tri Dao's avatar
Tri Dao committed
55
                        dropout=config.attention_probs_dropout_prob, causal=False,
56
57
                        fused_bias_fc=fused_bias_fc, use_flash_attn=use_flash_attn,
                        return_residual=return_residual)
Tri Dao's avatar
Tri Dao committed
58
59
60
    return mixer_cls


61
def create_mlp_cls(config, layer_idx=None, return_residual=False):
Tri Dao's avatar
Tri Dao committed
62
63
    inner_dim = config.intermediate_size
    fused_dense_gelu_dense = getattr(config, 'fused_dense_gelu_dense', False)
64
65
66
    if fused_dense_gelu_dense:
        assert config.hidden_act in ['gelu_new', 'gelu_fast'], ('fused_dense_gelu_dense only '
                                                                'supports approximate gelu')
Tri Dao's avatar
Tri Dao committed
67
    if not fused_dense_gelu_dense:
68
        approximate = 'tanh' if config.hidden_act in ['gelu_new', 'gelu_fast'] else 'none'
Tri Dao's avatar
Tri Dao committed
69
        mlp_cls = partial(Mlp, hidden_features=inner_dim,
70
71
                          activation=partial(F.gelu, approximate=approximate),
                          return_residual=return_residual)
Tri Dao's avatar
Tri Dao committed
72
73
74
75
76
77
78
    else:
        mlp_checkpoint_lvl = getattr(config, 'mlp_checkpoint_lvl', 0)
        # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
        if isinstance(mlp_checkpoint_lvl, Sequence):
            assert layer_idx is not None
            mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
        mlp_cls = partial(FusedDenseGeluDense, hidden_features=inner_dim,
79
                          checkpoint_lvl=mlp_checkpoint_lvl, return_residual=return_residual)
Tri Dao's avatar
Tri Dao committed
80
81
82
83
    return mlp_cls


def create_block(config, layer_idx=None):
84
85
86
87
88
89
90
91
    last_layer_subset = getattr(config, 'last_layer_subset', False)
    cross_attn=last_layer_subset and layer_idx == config.num_hidden_layers - 1
    # TD [2022-12-19]: For cross attention (last layer), we actually want to return the
    # residual x_kv, not residual x. But it's annoying to change the API (and it only affects
    # one layer) so we just choose not to return residual in this case.
    return_residual = not cross_attn
    mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual)
    mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual)
Tri Dao's avatar
Tri Dao committed
92
93
94
    norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps)
    block = Block(config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls,
                  prenorm=False, resid_dropout=config.hidden_dropout_prob,
95
96
                  fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False),
                  return_residual=return_residual)
Tri Dao's avatar
Tri Dao committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    return block


# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
def _init_weights(module, initializer_range=0.02):
    if isinstance(module, nn.Linear):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.padding_idx is not None:
            nn.init.zeros_(module.weight[module.padding_idx])


class BertEncoder(nn.Module):

    def __init__(self, config: BertConfig):
        super().__init__()
        self.use_flash_attn = getattr(config, 'use_flash_attn', False)
        self.layers = nn.ModuleList([create_block(config, layer_idx=i)
                                     for i in range(config.num_hidden_layers)])

120
121
122
123
124
    def forward(self, hidden_states, key_padding_mask=None, subset_mask=None):
        """If subset_mask is not None, we only want output for the subset of the sequence.
        This means that we only compute the last layer output for these tokens.
        subset_mask: (batch, seqlen), dtype=torch.bool
        """
Tri Dao's avatar
Tri Dao committed
125
126
127
128
129
        if key_padding_mask is None or not self.use_flash_attn:
            mixer_kwargs = ({'key_padding_mask': key_padding_mask}
                            if key_padding_mask is not None else None)
            for layer in self.layers:
                hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
130
131
            if subset_mask is not None:
                hidden_states = hidden_states[subset_mask]
Tri Dao's avatar
Tri Dao committed
132
133
134
135
136
137
        else:
            batch, seqlen = hidden_states.shape[:2]
            hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(
                hidden_states, key_padding_mask
            )
            mixer_kwargs = {'cu_seqlens': cu_seqlens, 'max_seqlen': max_seqlen_in_batch}
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
            if subset_mask is None:
                for layer in self.layers:
                    hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
                hidden_states = pad_input(hidden_states, indices, batch, seqlen)
            else:
                for layer in self.layers[:-1]:
                    hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
                if key_padding_mask is not None:
                    subset_idx = torch.nonzero(subset_mask[key_padding_mask], as_tuple=False).flatten()
                    subset_seqlens = (subset_mask & key_padding_mask).sum(dim=-1, dtype=torch.int32)
                    subset_cu_seqlens = F.pad(torch.cumsum(subset_seqlens, dim=0,
                                                           dtype=torch.torch.int32), (1, 0))
                else:
                    subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten()
                    subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32)
                    subset_cu_seqlens = F.pad(torch.cumsum(subset_seqlens, dim=0,
                                                           dtype=torch.torch.int32), (1, 0))
                hidden_states_subset, hidden_states = index_first_axis_residual(
                    hidden_states, subset_idx
                )
                # It's ok to set max_seqlen_q to be much larger
                mixer_kwargs = {'x_kv': hidden_states,
                                'cu_seqlens': subset_cu_seqlens, 'max_seqlen': max_seqlen_in_batch,
                                'cu_seqlens_k': cu_seqlens, 'max_seqlen_k': max_seqlen_in_batch}
                hidden_states = self.layers[-1](hidden_states_subset, mixer_kwargs=mixer_kwargs)
Tri Dao's avatar
Tri Dao committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        return hidden_states


class BertPooler(nn.Module):

    def __init__(self, config):
        super().__init__()
        fused_bias_fc = getattr(config, 'fused_bias_fc', False)
        if fused_bias_fc and FusedDenseTD is None:
            raise ImportError('fused_dense is not installed')
        linear_cls = nn.Linear if not fused_bias_fc else FusedDenseTD
        self.dense = linear_cls(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states, pool=True):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0] if pool else hidden_states
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):

    def __init__(self, config):
        super().__init__()
        fused_bias_fc = getattr(config, 'fused_bias_fc', False)
        if fused_bias_fc and FusedDenseTD is None:
            raise ImportError('fused_dense is not installed')
        self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False)
        if self.fused_dropout_add_ln and layer_norm is None:
            raise ImportError('dropout_add_layer_norm is not installed')
        linear_cls = nn.Linear if not fused_bias_fc else FusedDenseTD
        self.dense = linear_cls(config.hidden_size, config.hidden_size)
198
199
        approximate = 'tanh' if config.hidden_act in ['gelu_new', 'gelu_fast'] else 'none'
        self.transform_act_fn = nn.GELU(approximate=approximate)
Tri Dao's avatar
Tri Dao committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        if not self.fused_dropout_add_ln:
            hidden_states = self.layer_norm(hidden_states)
        else:
            hidden_states = layer_norm(hidden_states, self.layer_norm.weight, self.layer_norm.bias,
                                       self.layer_norm.eps)
        return hidden_states


class BertLMPredictionHead(nn.Module):

    def __init__(self, config):
        super().__init__()
        fused_bias_fc = getattr(config, 'fused_bias_fc', False)
        if fused_bias_fc and FusedDenseTD is None:
            raise ImportError('fused_dense is not installed')
        linear_cls = nn.Linear if not fused_bias_fc else FusedDenseTD

        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True)

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states)
        return hidden_states


class BertPreTrainingHeads(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.predictions = BertLMPredictionHead(config)
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


class BertPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
        super().__init__()
        if not isinstance(config, BertConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    @classmethod
    def from_pretrained(cls, model_name, config, *inputs, **kwargs):
        """
        Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name_or_path: either:
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a BertForPretraining instance
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `model.chkpt` a TensorFlow checkpoint
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
        load_return = model.load_state_dict(remap_state_dict(state_dict_from_pretrained(model_name),
                                                             config), strict=False)
        logger.info(load_return)
        return model


class BertModel(BertPreTrainedModel):

    def __init__(self, config: BertConfig, add_pooling_layer=True):
        super().__init__(config)
        self.pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
        if config.vocab_size % self.pad_vocab_size_multiple != 0:
            config.vocab_size += (self.pad_vocab_size_multiple
                                  - (config.vocab_size % self.pad_vocab_size_multiple))
        self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False)
        if self.fused_dropout_add_ln and dropout_add_layer_norm is None:
            raise ImportError('dropout_add_layer_norm is not installed')
        assert config.position_embedding_type == 'absolute'
        assert config.hidden_act in ['gelu', 'gelu_new', 'gelu_fast']

        self.embeddings = BertEmbeddings(config.hidden_size, config.vocab_size,
                                         config.max_position_embeddings, config.type_vocab_size,
                                         padding_idx=config.pad_token_id)
        self.emb_drop = nn.Dropout(config.hidden_dropout_prob)
        self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.encoder = BertEncoder(config)
        self.pooler = BertPooler(config) if add_pooling_layer else None

        self.apply(partial(_init_weights, initializer_range=config.initializer_range))

    def forward(self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None,
                masked_tokens_mask=None):
312
313
314
315
316
        """If masked_tokens_mask is not None (i.e. last_layer_subset == True in BertForPreTraining),
        we only want the output for the masked tokens. This means that we only compute the last
        layer output for these tokens.
        masked_tokens_mask: (batch, seqlen), dtype=torch.bool
        """
Tri Dao's avatar
Tri Dao committed
317
318
319
320
321
322
323
324
325
326
327
        hidden_states = self.embeddings(input_ids, position_ids=position_ids,
                                        token_type_ids=token_type_ids)
        # TD [2022-12:18]: Don't need to force residual in fp32
        if not self.fused_dropout_add_ln:
            hidden_states = self.emb_drop(hidden_states)
            hidden_states = self.emb_ln(hidden_states)
        else:
            hidden_states = dropout_add_layer_norm(
                hidden_states, None, self.emb_ln.weight, self.emb_ln.bias,
                self.emb_drop.p if self.training else 0.0, self.emb_ln.eps, prenorm=False,
            )
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

        if masked_tokens_mask is not None:
            batch_size, seqlen = input_ids.shape[:2]
            # We also need the first column for the CLS token
            first_col_mask = torch.zeros(batch_size, seqlen, dtype=torch.bool,
                                         device=input_ids.device)
            first_col_mask[:, 0] = True
            subset_mask = masked_tokens_mask | first_col_mask
        else:
            subset_mask = None

        sequence_output = self.encoder(hidden_states, key_padding_mask=attention_mask,
                                       subset_mask=subset_mask)

        if masked_tokens_mask is None:
            pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
        else:
            # TD [2022-03-01]: the indexing here is very tricky.
            if attention_mask is not None:
                subset_idx = subset_mask[attention_mask]
                pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]]
                sequence_output = sequence_output[masked_tokens_mask[attention_mask][subset_idx]]
            else:
                pool_input = sequence_output[first_col_mask[subset_mask]]
                sequence_output = sequence_output[masked_tokens_mask[subset_mask]]
            pooled_output = (self.pooler(pool_input, pool=False)
                             if self.pooler is not None else None)

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
        )
Tri Dao's avatar
Tri Dao committed
360
361
362
363
364
365
366
367
368
369
370
371


class BertForPreTraining(BertPreTrainedModel):

    def __init__(self, config: BertConfig):
        super().__init__(config)
        # If dense_seq_output, we only need to pass the hidden states for the masked out tokens
        # (around 15%) to the classifier heads.
        self.dense_seq_output = getattr(config, 'dense_seq_output', False)
        # If last_layer_subset, we only need the compute the last layer for a subset of tokens
        # (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction).
        self.last_layer_subset = getattr(config, 'last_layer_subset', False)
372
373
        if self.last_layer_subset:
            assert self.dense_seq_output, 'last_layer_subset requires dense_seq_output'
Tri Dao's avatar
Tri Dao committed
374
375
376
        use_xentropy = getattr(config, 'use_xentropy', False)
        if use_xentropy and CrossEntropyLossApex is None:
            raise ImportError('xentropy_cuda is not installed')
377
378
        loss_cls = (nn.CrossEntropyLoss if not use_xentropy
                    else partial(CrossEntropyLossApex, inplace_backward=True))
Tri Dao's avatar
Tri Dao committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

        self.bert = BertModel(config)
        self.cls = BertPreTrainingHeads(config)
        self.mlm_loss = loss_cls(ignore_index=0)
        self.nsp_loss = loss_cls(ignore_index=-1)

        # Initialize weights and apply final processing
        self.apply(partial(_init_weights, initializer_range=config.initializer_range))
        self.tie_weights()

    def tie_weights(self):
        self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight

    def forward(self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None,
                labels=None, next_sentence_label=None):
        """
395
396
        If labels are provided, they must be 0 for masked out tokens (as specified in the attention
        mask).
Tri Dao's avatar
Tri Dao committed
397
398
399
400
401
402
403
404
405
406
407
        Outputs:
            if `labels` and `next_sentence_label` are not `None`:
                Outputs the total_loss which is the sum of the masked language modeling loss and the next
                sentence classification loss.
            if `labels` or `next_sentence_label` is `None`:
                Outputs a tuple comprising
                - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
                - the next sentence classification logits of shape [batch_size, 2].

        """
        masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None
408
        outputs = self.bert(
Tri Dao's avatar
Tri Dao committed
409
            input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
410
411
            attention_mask=attention_mask.bool() if attention_mask is not None else None,
            masked_tokens_mask=masked_tokens_mask
Tri Dao's avatar
Tri Dao committed
412
        )
413
        sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output
Tri Dao's avatar
Tri Dao committed
414
415
416
417
418
419
420
        if self.dense_seq_output and labels is not None:
            masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten()
            if not self.last_layer_subset:
                sequence_output = index_first_axis(rearrange(sequence_output, 'b s d -> (b s) d'),
                                                   masked_token_idx)
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

421
        total_loss = None
Tri Dao's avatar
Tri Dao committed
422
        if labels is not None and next_sentence_label is not None:
423
            if self.dense_seq_output and labels is not None:  # prediction_scores are already flattened
Tri Dao's avatar
Tri Dao committed
424
425
426
427
428
429
430
                masked_lm_loss = self.mlm_loss(prediction_scores,
                                               labels.flatten()[masked_token_idx])
            else:
                masked_lm_loss = self.mlm_loss(rearrange(prediction_scores, '... v -> (...) v'),
                                               rearrange(labels, '... -> (...)'))
            next_sentence_loss = self.nsp_loss(rearrange(seq_relationship_score, '... t -> (...) t'),
                                               rearrange(next_sentence_label, '... -> (...)'))
431
            total_loss = masked_lm_loss.float() + next_sentence_loss.float()
Tri Dao's avatar
Tri Dao committed
432

433
434
435
436
437
        return BertForPreTrainingOutput(
            loss=total_loss,
            prediction_logits=prediction_scores,
            seq_relationship_logits=seq_relationship_score,
        )
Tri Dao's avatar
Tri Dao committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480


def state_dict_from_pretrained(model_name):
    from transformers.utils import WEIGHTS_NAME
    from transformers.utils.hub import cached_file
    return torch.load(cached_file(model_name, WEIGHTS_NAME))


def remap_state_dict(state_dict, config):
    # LayerNorm
    def key_mapping_ln_gamma_beta(key):
        key = re.sub(r'LayerNorm.gamma$', 'LayerNorm.weight', key)
        key = re.sub(r'LayerNorm.beta$', 'LayerNorm.bias', key)
        return key
    state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())

    # Layers
    def key_mapping_layers(key):
        return re.sub(r'^bert.encoder.layer.', 'bert.encoder.layers.', key)
    state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())

    # LayerNorm
    def key_mapping_ln(key):
        key = re.sub(r'^bert.embeddings.LayerNorm.', 'bert.emb_ln.', key)
        key = re.sub(r'^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)',
                     r'bert.encoder.layers.\1.norm1.\2', key)
        key = re.sub(r'^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)',
                     r'bert.encoder.layers.\1.norm2.\2', key)
        key = re.sub(r'^cls.predictions.transform.LayerNorm.(weight|bias)',
                     r'cls.predictions.transform.layer_norm.\1', key)
        return key
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())

    # MLP
    def key_mapping_mlp(key):
        key = re.sub(r'^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)',
                     r'bert.encoder.layers.\1.mlp.fc1.\2', key)
        key = re.sub(r'^bert.encoder.layers.(\d+).output.dense.(weight|bias)',
                     r'bert.encoder.layers.\1.mlp.fc2.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
481
    last_layer_subset = getattr(config, 'last_layer_subset', False)
Tri Dao's avatar
Tri Dao committed
482
483
484
485
486
487
488
    for d in range(config.num_hidden_layers):
        Wq = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.query.weight')
        Wk = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.key.weight')
        Wv = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.value.weight')
        bq = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.query.bias')
        bk = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.key.bias')
        bv = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.value.bias')
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
        if not (last_layer_subset and d == config.num_hidden_layers - 1):
            state_dict[f'bert.encoder.layers.{d}.mixer.Wqkv.weight'] = torch.cat(
                [Wq, Wk, Wv], dim=0
            )
            state_dict[f'bert.encoder.layers.{d}.mixer.Wqkv.bias'] = torch.cat(
                [bq, bk, bv], dim=0
            )
        else:
            state_dict[f'bert.encoder.layers.{d}.mixer.Wq.weight'] = Wq
            state_dict[f'bert.encoder.layers.{d}.mixer.Wkv.weight'] = torch.cat(
                [Wk, Wv], dim=0
            )
            state_dict[f'bert.encoder.layers.{d}.mixer.Wq.bias'] = bq
            state_dict[f'bert.encoder.layers.{d}.mixer.Wkv.bias'] = torch.cat(
                [bk, bv], dim=0
            )
Tri Dao's avatar
Tri Dao committed
505
506
507
508
509
510
511
512
513
    def key_mapping_attn(key):
        return re.sub(r'^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)',
                      r'bert.encoder.layers.\1.mixer.out_proj.\2', key)
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

    def key_mapping_decoder_bias(key):
        return re.sub(r'^cls.predictions.bias', 'cls.predictions.decoder.bias', key)
    state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())

514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
    # Word embedding
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    if pad_vocab_size_multiple > 1:
        word_embeddings = state_dict['bert.embeddings.word_embeddings.weight']
        state_dict['bert.embeddings.word_embeddings.weight'] = F.pad(
            word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
        )
        decoder_weight = state_dict['cls.predictions.decoder.weight']
        state_dict['cls.predictions.decoder.weight'] = F.pad(
            decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
        )
        # If the vocab was padded, we want to set the decoder bias for those padded indices to be
        # strongly negative (i.e. the decoder shouldn't predict those indices).
        # TD [2022-05-09]: I don't think it affects the MLPerf training.
        decoder_bias = state_dict['cls.predictions.decoder.bias']
        state_dict['cls.predictions.decoder.bias'] = F.pad(
            decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
        )

Tri Dao's avatar
Tri Dao committed
533
    return state_dict