cpu_gemm_uk.cpp 16.4 KB
Newer Older
1
2
3
4
5
6
7
8
#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <string>
#include <sstream>
#include <tuple>
#include <memory>
carlushuang's avatar
carlushuang committed
9
#include <half.hpp>
carlushuang's avatar
carlushuang committed
10
#include <omp.h>
11
12
#include "host_tensor.hpp"
#include "device.hpp"
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include "config.hpp"
#include "print.hpp"
#include "cpuid.hpp"
#include "threadwise_gemm_avx2.hpp"

#define ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(FA, FB, FC, TA, TB, NT)   \
    ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 6, 16, TA, TB, NT>,     \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 5, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 4, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 3, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 2, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 1, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 6, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 5, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 4, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 3, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 2, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 1, 8, TA, TB, NT>

carlushuang's avatar
carlushuang committed
32
//#define ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(FA, FB, FC, TA, TB, NT)  \
33
34
//     ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC,  6, 16,  TA,  TB,  NT>

carlushuang's avatar
carlushuang committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#define ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE(FA, FB, FC, TA, TB, NT)   \
    ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 4, 24, TA, TB, NT>,     \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 3, 24, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 2, 24, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 1, 24, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 4, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 3, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 2, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 1, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 4, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 3, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 2, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 1, 8, TA, TB, NT>

49
50
51
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

carlushuang's avatar
carlushuang committed
52
53
54
55
56
// using AType = half_float::half;
// using BType = half_float::half;
using AType = float;
using BType = float;
using CType = float;
carlushuang's avatar
carlushuang committed
57
#define NTStore false
carlushuang's avatar
carlushuang committed
58

59
template <typename ALayout, typename BLayout>
60
61
using thread_gemm_avx2_mxn_6x16_instances = std::tuple<
    // clang-format off
62
    //                                        FloatA FloatB FloatC  ALayout  BLayout NTStore
carlushuang's avatar
carlushuang committed
63
64
65
66
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE( AType, BType, CType, ALayout, BLayout, NTStore),
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE( AType, BType, CType, ALayout, BLayout, NTStore),
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE( AType, BType, CType, ALayout, BLayout, NTStore),
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE( AType, BType, CType, ALayout, BLayout, NTStore)
67

carlushuang's avatar
carlushuang committed
68
    // ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(AType, BType, CType,    ALayout,    BLayout, NTStore)
69
70
71
    // clang-format on
    >;

carlushuang's avatar
carlushuang committed
72
73
74
75
template <typename ALayout, typename BLayout>
using thread_gemm_avx2_mxn_4x24_instances = std::tuple<
    // clang-format off
    //                                        FloatA FloatB FloatC  ALayout  BLayout NTStore
carlushuang's avatar
carlushuang committed
76
77
78
79
    ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE( AType, BType, CType, ALayout, BLayout, NTStore),
    ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE( AType, BType, CType, ALayout, BLayout, NTStore),
    ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE( AType, BType, CType, ALayout, BLayout, NTStore),
    ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE( AType, BType, CType, ALayout, BLayout, NTStore)
carlushuang's avatar
carlushuang committed
80
81
82
    // clang-format on
    >;

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
void dump_cache_hierarchy()
{
    auto dump_cache_type = [&](const ck::cpu::cpuid_cache_type& type) {
        if(type == ck::cpu::cpuid_cache_type_dcache)
            printf("data cache");
        else if(type == ck::cpu::cpuid_cache_type_icache)
            printf("inst cache");
        else if(type == ck::cpu::cpuid_cache_type_unified)
            printf("unif cache");
    };
    auto dump_cache_detail = [&](const ck::cpu::cpuid_cache_detail& detail) {
        dump_cache_type(static_cast<const ck::cpu::cpuid_cache_type>(detail.type));
        printf(" size:%u, cache_line:%u, associativity:%u, sets:%u, partitions:%u, shared by "
               "procs:%u(%u)\n",
               detail.size,
               detail.cache_line_size,
               detail.associativity,
               detail.sets,
               detail.partitions,
               detail.shared_by_procs,
               detail.cores_per_socket);
    };

    ck::cpu::cpuid_cache_hierarchy cache = ck::cpu::cpuid_query_cache();
    if(cache.l1d.size != 0)
    {
        printf("l1 ");
        dump_cache_detail(cache.l1d);
    }
    if(cache.l1i.size != 0)
    {
        printf("l1 ");
        dump_cache_detail(cache.l1i);
    }
    if(cache.l2.size != 0)
    {
        printf("l2 ");
        dump_cache_detail(cache.l2);
    }
    if(cache.l3.size != 0)
    {
        printf("l3 ");
        dump_cache_detail(cache.l3);
    }
    if(cache.l4.size != 0)
    {
        printf("l4 ");
        dump_cache_detail(cache.l4);
    }
}

template <typename T>
void rand_vector(T* v, int elem)
{
    int i;

    static int flag = 0;
    if(!flag)
    {
        srand(time(nullptr));
        flag = 1;
    }

    for(i = 0; i < elem; i++)
    {
        v[i] = (static_cast<T>(rand() % 100)) / 100.0f;
    }
}

bool valid_vector(const float* ref, const float* rhs, uint32_t elem)
{
    float rtol   = 1e-5;
    float atol   = 1e-8;
    uint32_t err = 0;
    for(uint32_t i = 0; i < elem; i++)
    {
        float diff = std::abs(ref[i] - rhs[i]);
        if(diff > atol + rtol * std::abs(ref[i]))
        {
            printf("diff at %u, ref:%f, rhs:%f\n", i, ref[i], rhs[i]);
            err++;
        }
    }

    return err == 0;
}

carlushuang's avatar
carlushuang committed
170
171
172
template <typename FloatA, typename FloatB, typename ALayout, typename BLayout>
void ref_cpu_gemm_uk(
    const FloatA* a, const FloatB* b, float* c, float alpha, uint32_t m, uint32_t n, uint32_t k)
173
{
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    auto f_host_2d_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), Row>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    auto f_host_vectored_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t vec, std::size_t stride) {
            // only valid in row major. stride is for each row, contains vector size
            return HostTensorDescriptor(std::vector<std::size_t>({row, col, vec}),
                                        std::vector<std::size_t>({stride, vec, 1}));
        };

    std::size_t lda = std::is_same<Row, ALayout>::value ? k : m;     // in unit of element
    std::size_t ldb = std::is_same<Row, BLayout>::value ? n : k * 8; // in unit of element
    std::size_t ldc = n;
    HostTensorDescriptor a_m_k = f_host_2d_tensor_descriptor(m, n, lda, ALayout{});
    HostTensorDescriptor b_k_n = std::is_same<Row, BLayout>::value
                                     ? f_host_2d_tensor_descriptor(k, n, ldb, BLayout{})
                                     : f_host_vectored_tensor_descriptor(n / 8, k, 8, ldb);
    HostTensorDescriptor c_m_n = f_host_2d_tensor_descriptor(m, n, ldc, Row{});
203
204
205
206
207
208
209
210

    for(uint32_t im = 0; im < m; im++)
    {
        for(uint32_t in = 0; in < n; in++)
        {
            float acc = .0f;
            for(uint32_t ik = 0; ik < k; ik++)
            {
211
212
213
214
215
                acc += static_cast<float>(a[a_m_k.GetOffsetFromMultiIndex(im, ik)]) *
                       (std::is_same<Row, BLayout>::value
                            ? static_cast<float>(b[b_k_n.GetOffsetFromMultiIndex(ik, in)])
                            : static_cast<float>(
                                  b[b_k_n.GetOffsetFromMultiIndex(in / 8, ik, in % 8)]));
216
217
            }
            acc *= alpha;
218
            c[c_m_n.GetOffsetFromMultiIndex(im, in)] = acc;
219
220
221
222
        }
    }
}

carlushuang's avatar
carlushuang committed
223
template <typename FloatA, typename FloatB, typename ALayout, typename BLayout, typename ukenrel_t>
224
void test_ukernel(ukenrel_t uk,
carlushuang's avatar
carlushuang committed
225
226
                  FloatA* mat_a,
                  FloatB* mat_b,
227
228
229
230
231
232
                  float* mat_c,
                  float alpha,
                  uint32_t m,
                  uint32_t n,
                  uint32_t k)
{
carlushuang's avatar
carlushuang committed
233
234
235
    int max_threads = omp_get_max_threads();

    auto invoke_uk = [&](ck::cpu::ThreadwiseGemmParam& param, float* current_mat_c) {
236
237
        if constexpr(std::is_same<Row, ALayout>::value && std::is_same<Row, BLayout>::value)
        {
238
            assert(m % uk.ThreadMr == 0 && n == uk.ThreadNr);
carlushuang's avatar
carlushuang committed
239
            FloatA* p_a = mat_a;
carlushuang's avatar
carlushuang committed
240
            float* p_c  = current_mat_c;
carlushuang's avatar
carlushuang committed
241
242
            param.p_a   = p_a;
            param.p_c   = p_c;
243
            for(uint32_t i_m = 0; i_m < m; i_m += uk.ThreadMr)
244
245
            {
                uk.Run(&param);
246
247
                p_a += uk.ThreadMr * k;
                p_c += uk.ThreadMr * n;
248
249
250
251
252
253
                param.p_a = p_a;
                param.p_c = p_c;
            }
        }
        else if constexpr(std::is_same<Row, ALayout>::value && std::is_same<Col, BLayout>::value)
        {
254
            assert(m % uk.ThreadMr == 0 && n % uk.ThreadNr == 0);
carlushuang's avatar
carlushuang committed
255
            FloatA* p_a = mat_a;
carlushuang's avatar
carlushuang committed
256
            float* p_c  = current_mat_c;
carlushuang's avatar
carlushuang committed
257
258
259
            param.p_a   = p_a;
            param.p_b   = mat_b;
            param.p_c   = p_c;
260
            for(uint32_t i_m = 0; i_m < m; i_m += uk.ThreadMr)
261
            {
carlushuang's avatar
carlushuang committed
262
263
                float* p_c_n  = p_c;
                FloatB* p_b_n = mat_b;
264
                for(uint32_t i_n = 0; i_n < n; i_n += uk.ThreadNr)
265
266
                {
                    uk.Run(&param);
267
268
                    p_b_n += uk.ThreadNr * k; // ThreadNr/8*k*8
                    p_c_n += uk.ThreadNr;
269
270
271
                    param.p_b = p_b_n;
                    param.p_c = p_c_n;
                }
272
273
                p_a += uk.ThreadMr * k;
                p_c += uk.ThreadMr * n;
274
275
276
277
278
279
280
                param.p_a = p_a;
                param.p_b = mat_b;
                param.p_c = p_c;
            }
        }
        else if constexpr(std::is_same<Col, ALayout>::value && std::is_same<Row, BLayout>::value)
        {
281
            assert(m == uk.ThreadMr && n == uk.ThreadNr);
282
283
284
285
            uk.Run(&param);
        }
        else
        {
286
            assert(m % uk.ThreadMr == 0 && n % uk.ThreadNr == 0);
carlushuang's avatar
carlushuang committed
287
            FloatB* p_b = mat_b;
carlushuang's avatar
carlushuang committed
288
            float* p_c  = current_mat_c;
carlushuang's avatar
carlushuang committed
289
290
            param.p_b   = p_b;
            param.p_c   = p_c;
291
            for(uint32_t i_n = 0; i_n < n; i_n += uk.ThreadNr)
292
293
            {
                uk.Run(&param);
294
295
                p_b += uk.ThreadNr * k; // ThreadNr/8*k*8
                p_c += uk.ThreadNr;
296
297
298
299
300
301
                param.p_b = p_b;
                param.p_c = p_c;
            }
        }
    };

302
    printf("gemm_uk_%dx%d_%c%c: ", uk.ThreadMr, uk.ThreadNr, ALayout::name[0], BLayout::name[0]);
303
304
305
    fflush(stdout);
    // printf("%s: ", typeid(uk).name());fflush(stdout);

carlushuang's avatar
carlushuang committed
306
    float us = .0f;
307

carlushuang's avatar
carlushuang committed
308
#pragma omp parallel reduction(+ : us)
309
    {
carlushuang's avatar
carlushuang committed
310
311
        int tid = omp_get_thread_num();
        DeviceAlignedMemCPU private_c_mem(m * n * sizeof(float), 32);
312
313
        // float* private_c = reinterpret_cast<float*>(private_c_mem.mpDeviceBuf);
        float* private_c = mat_c + tid * m * n;
314

carlushuang's avatar
carlushuang committed
315
        ck::cpu::ThreadwiseGemmParam param;
316
317
318
319
320
321
322
323
324
        param.p_a         = mat_a;
        param.p_b         = mat_b;
        param.p_c         = private_c;
        param.Kr          = k;
        param.lda         = (std::is_same<Row, ALayout>::value ? k : m) * sizeof(FloatA);
        param.ldb         = (std::is_same<Row, BLayout>::value ? n : k * 8) * sizeof(FloatB);
        param.ldc         = n * sizeof(float);
        param.alpha       = alpha;
        param.accmulate_c = 0;
325

carlushuang's avatar
carlushuang committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
        memset(private_c, 0, m * n * sizeof(float));

        int repeat = 7e10 / (2 * m * n * k);

        for(int i = 0; i < (repeat / 5); i++)
        {
            invoke_uk(param, private_c);
        }

        WallTimer timer;

        timer.Start();
        for(int i = 0; i < repeat; i++)
        {
            invoke_uk(param, private_c);
        }
        timer.End();

        us += timer.GetElapsedTime() * 1e3 / repeat;

        memset(private_c, 0, m * n * sizeof(float));
        invoke_uk(param, private_c);

        memcpy(mat_c + tid * m * n, private_c, m * n * sizeof(float));
350
351
    }

carlushuang's avatar
carlushuang committed
352
    us = us / max_threads;
353

carlushuang's avatar
carlushuang committed
354
    float gflops = static_cast<float>(2 * m * n * k * max_threads) * 1e-3 / us;
355
356
357
358
359
360

    printf("m:%u, n:%u, k:%u, alpha:%f, cost:%lfus, GFLOPS:%lf, ", m, n, k, alpha, us, gflops);
    fflush(stdout);
}

// implement small ukernel on L1
carlushuang's avatar
carlushuang committed
361
template <typename FloatA, typename FloatB, typename ALayout, typename BLayout>
362
363
void test_cpu_ukernel(float alpha, uint32_t m, uint32_t n, uint32_t k)
{
carlushuang's avatar
carlushuang committed
364
    int max_threads = omp_get_max_threads();
365

366
367
    DeviceAlignedMemCPU a_mem(m * k * sizeof(FloatA), 32);
    DeviceAlignedMemCPU b_mem(k * n * sizeof(FloatB), 32);
carlushuang's avatar
carlushuang committed
368
    DeviceAlignedMemCPU c_mem(m * n * sizeof(float) * max_threads, 32);
369
    DeviceAlignedMemCPU c_mem_ref(m * n * sizeof(float), 32);
370

371
372
373
    c_mem_ref.SetZero();
    rand_vector(reinterpret_cast<FloatA*>(a_mem.mpDeviceBuf), m * k);
    rand_vector(reinterpret_cast<FloatB*>(b_mem.mpDeviceBuf), k * n);
374

375
376
377
378
379
380
381
382
    ref_cpu_gemm_uk<FloatA, FloatB, ALayout, BLayout>(
        reinterpret_cast<FloatA*>(a_mem.mpDeviceBuf),
        reinterpret_cast<FloatB*>(b_mem.mpDeviceBuf),
        reinterpret_cast<float*>(c_mem_ref.mpDeviceBuf),
        alpha,
        m,
        n,
        k);
383

384
385
386
    // using thread_gemm_instance = thread_gemm_avx2_mxn_6x16_instances<ALayout, BLayout>;
    using thread_gemm_instance = thread_gemm_avx2_mxn_4x24_instances<ALayout, BLayout>;
    bool found                 = false;
387
388
389

    ck::static_for<0, std::tuple_size_v<thread_gemm_instance>, 1>{}([&](auto i) {
        using uk_type = std::tuple_element_t<i, thread_gemm_instance>;
390
        if(m % uk_type::ThreadMr != 0 || n % uk_type::ThreadNr != 0)
391
            return;
392
393
        if((m != uk_type::ThreadMr && std::is_same<typename uk_type::MatrixALayout, Col>::value) ||
           (n != uk_type::ThreadNr && std::is_same<typename uk_type::MatrixBLayout, Row>::value))
394
395
396
            // only k is the fast changing dim of A/B can we do muldiplt m, n
            return;

397
398
399
        if(found)
            return;

400
401
402
403
404
405
406
407
408
409
410
411
        test_ukernel<FloatA, FloatB, ALayout, BLayout>(uk_type{},
                                                       reinterpret_cast<FloatA*>(a_mem.mpDeviceBuf),
                                                       reinterpret_cast<FloatB*>(b_mem.mpDeviceBuf),
                                                       reinterpret_cast<float*>(c_mem.mpDeviceBuf),
                                                       alpha,
                                                       m,
                                                       n,
                                                       k);

        bool is_valid = valid_vector(reinterpret_cast<float*>(c_mem_ref.mpDeviceBuf),
                                     reinterpret_cast<float*>(c_mem.mpDeviceBuf),
                                     m * n);
412
        printf("vald:%s\n", is_valid ? "y" : "n");
413
        found = true;
414
415
416
417
418
    });
}

int main(int argc, char** argv)
{
419
420
    int m       = 4;
    int n       = 24;
421
422
423
424
425
426
427
428
429
430
431
432
433
    int k       = 64;
    float alpha = 1.0f;
    if(argc > 3)
    {
        m = std::atoi(argv[1]);
        n = std::atoi(argv[2]);
        k = std::atoi(argv[3]);
    }
    if(argc > 4)
    {
        alpha = std::atof(argv[4]);
    }
    dump_cache_hierarchy();
carlushuang's avatar
carlushuang committed
434
435
436
437
    if(std::getenv("OMP_NUM_THREADS") == nullptr)
        omp_set_num_threads(1);
    printf("max threads:%d\n", omp_get_max_threads());

carlushuang's avatar
carlushuang committed
438
439
440
441
    test_cpu_ukernel<AType, BType, Row, Row>(alpha, m, n, k);
    test_cpu_ukernel<AType, BType, Row, Col>(alpha, m, n, k);
    test_cpu_ukernel<AType, BType, Col, Row>(alpha, m, n, k);
    test_cpu_ukernel<AType, BType, Col, Col>(alpha, m, n, k);
442
}