cpu_gemm_uk.cpp 16.1 KB
Newer Older
1
2
3
4
5
6
7
8
#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <string>
#include <sstream>
#include <tuple>
#include <memory>
carlushuang's avatar
carlushuang committed
9
#include <half.hpp>
carlushuang's avatar
carlushuang committed
10
#include <omp.h>
11
12
#include "host_tensor.hpp"
#include "device.hpp"
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include "config.hpp"
#include "print.hpp"
#include "cpuid.hpp"
#include "threadwise_gemm_avx2.hpp"

#define ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(FA, FB, FC, TA, TB, NT)   \
    ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 6, 16, TA, TB, NT>,     \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 5, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 4, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 3, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 2, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 1, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 6, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 5, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 4, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 3, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 2, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 1, 8, TA, TB, NT>

carlushuang's avatar
carlushuang committed
32
//#define ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(FA, FB, FC, TA, TB, NT)  \
33
34
//     ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC,  6, 16,  TA,  TB,  NT>

carlushuang's avatar
carlushuang committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#define ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE(FA, FB, FC, TA, TB, NT)   \
    ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 4, 24, TA, TB, NT>,     \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 3, 24, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 2, 24, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 1, 24, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 4, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 3, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 2, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 1, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 4, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 3, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 2, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 1, 8, TA, TB, NT>

49
50
51
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

carlushuang's avatar
carlushuang committed
52
53
54
55
56
57
// using AType = half_float::half;
// using BType = half_float::half;
using AType = float;
using BType = float;
using CType = float;

58
template <typename ALayout, typename BLayout>
59
60
using thread_gemm_avx2_mxn_6x16_instances = std::tuple<
    // clang-format off
61
    //                                        FloatA FloatB FloatC  ALayout  BLayout NTStore
carlushuang's avatar
carlushuang committed
62
63
64
65
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE( AType, BType, CType, ALayout, BLayout, false),
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE( AType, BType, CType, ALayout, BLayout, false),
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE( AType, BType, CType, ALayout, BLayout, false),
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE( AType, BType, CType, ALayout, BLayout, false)
66

carlushuang's avatar
carlushuang committed
67
    // ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(AType, BType, CType,    ALayout,    BLayout, false)
68
69
70
    // clang-format on
    >;

carlushuang's avatar
carlushuang committed
71
72
73
74
template <typename ALayout, typename BLayout>
using thread_gemm_avx2_mxn_4x24_instances = std::tuple<
    // clang-format off
    //                                        FloatA FloatB FloatC  ALayout  BLayout NTStore
carlushuang's avatar
carlushuang committed
75
76
77
78
    ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE( AType, BType, CType, ALayout, BLayout, false),
    ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE( AType, BType, CType, ALayout, BLayout, false),
    ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE( AType, BType, CType, ALayout, BLayout, false),
    ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE( AType, BType, CType, ALayout, BLayout, false)
carlushuang's avatar
carlushuang committed
79
80
81
    // clang-format on
    >;

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
void dump_cache_hierarchy()
{
    auto dump_cache_type = [&](const ck::cpu::cpuid_cache_type& type) {
        if(type == ck::cpu::cpuid_cache_type_dcache)
            printf("data cache");
        else if(type == ck::cpu::cpuid_cache_type_icache)
            printf("inst cache");
        else if(type == ck::cpu::cpuid_cache_type_unified)
            printf("unif cache");
    };
    auto dump_cache_detail = [&](const ck::cpu::cpuid_cache_detail& detail) {
        dump_cache_type(static_cast<const ck::cpu::cpuid_cache_type>(detail.type));
        printf(" size:%u, cache_line:%u, associativity:%u, sets:%u, partitions:%u, shared by "
               "procs:%u(%u)\n",
               detail.size,
               detail.cache_line_size,
               detail.associativity,
               detail.sets,
               detail.partitions,
               detail.shared_by_procs,
               detail.cores_per_socket);
    };

    ck::cpu::cpuid_cache_hierarchy cache = ck::cpu::cpuid_query_cache();
    if(cache.l1d.size != 0)
    {
        printf("l1 ");
        dump_cache_detail(cache.l1d);
    }
    if(cache.l1i.size != 0)
    {
        printf("l1 ");
        dump_cache_detail(cache.l1i);
    }
    if(cache.l2.size != 0)
    {
        printf("l2 ");
        dump_cache_detail(cache.l2);
    }
    if(cache.l3.size != 0)
    {
        printf("l3 ");
        dump_cache_detail(cache.l3);
    }
    if(cache.l4.size != 0)
    {
        printf("l4 ");
        dump_cache_detail(cache.l4);
    }
}

template <typename T>
void rand_vector(T* v, int elem)
{
    int i;

    static int flag = 0;
    if(!flag)
    {
        srand(time(nullptr));
        flag = 1;
    }

    for(i = 0; i < elem; i++)
    {
        v[i] = (static_cast<T>(rand() % 100)) / 100.0f;
    }
}

bool valid_vector(const float* ref, const float* rhs, uint32_t elem)
{
    float rtol   = 1e-5;
    float atol   = 1e-8;
    uint32_t err = 0;
    for(uint32_t i = 0; i < elem; i++)
    {
        float diff = std::abs(ref[i] - rhs[i]);
        if(diff > atol + rtol * std::abs(ref[i]))
        {
            printf("diff at %u, ref:%f, rhs:%f\n", i, ref[i], rhs[i]);
            err++;
        }
    }

    return err == 0;
}

carlushuang's avatar
carlushuang committed
169
170
171
template <typename FloatA, typename FloatB, typename ALayout, typename BLayout>
void ref_cpu_gemm_uk(
    const FloatA* a, const FloatB* b, float* c, float alpha, uint32_t m, uint32_t n, uint32_t k)
172
{
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    auto f_host_2d_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), Row>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    auto f_host_vectored_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t vec, std::size_t stride) {
            // only valid in row major. stride is for each row, contains vector size
            return HostTensorDescriptor(std::vector<std::size_t>({row, col, vec}),
                                        std::vector<std::size_t>({stride, vec, 1}));
        };

    std::size_t lda = std::is_same<Row, ALayout>::value ? k : m;     // in unit of element
    std::size_t ldb = std::is_same<Row, BLayout>::value ? n : k * 8; // in unit of element
    std::size_t ldc = n;
    HostTensorDescriptor a_m_k = f_host_2d_tensor_descriptor(m, n, lda, ALayout{});
    HostTensorDescriptor b_k_n = std::is_same<Row, BLayout>::value
                                     ? f_host_2d_tensor_descriptor(k, n, ldb, BLayout{})
                                     : f_host_vectored_tensor_descriptor(n / 8, k, 8, ldb);
    HostTensorDescriptor c_m_n = f_host_2d_tensor_descriptor(m, n, ldc, Row{});
202
203
204
205
206
207
208
209

    for(uint32_t im = 0; im < m; im++)
    {
        for(uint32_t in = 0; in < n; in++)
        {
            float acc = .0f;
            for(uint32_t ik = 0; ik < k; ik++)
            {
210
211
212
213
214
                acc += static_cast<float>(a[a_m_k.GetOffsetFromMultiIndex(im, ik)]) *
                       (std::is_same<Row, BLayout>::value
                            ? static_cast<float>(b[b_k_n.GetOffsetFromMultiIndex(ik, in)])
                            : static_cast<float>(
                                  b[b_k_n.GetOffsetFromMultiIndex(in / 8, ik, in % 8)]));
215
216
            }
            acc *= alpha;
217
            c[c_m_n.GetOffsetFromMultiIndex(im, in)] = acc;
218
219
220
221
        }
    }
}

carlushuang's avatar
carlushuang committed
222
template <typename FloatA, typename FloatB, typename ALayout, typename BLayout, typename ukenrel_t>
223
void test_ukernel(ukenrel_t uk,
carlushuang's avatar
carlushuang committed
224
225
                  FloatA* mat_a,
                  FloatB* mat_b,
226
227
228
229
230
231
                  float* mat_c,
                  float alpha,
                  uint32_t m,
                  uint32_t n,
                  uint32_t k)
{
carlushuang's avatar
carlushuang committed
232
233
234
    int max_threads = omp_get_max_threads();

    auto invoke_uk = [&](ck::cpu::ThreadwiseGemmParam& param, float* current_mat_c) {
235
236
237
        if constexpr(std::is_same<Row, ALayout>::value && std::is_same<Row, BLayout>::value)
        {
            assert(m % uk.Mr_ == 0 && n == uk.Nr_);
carlushuang's avatar
carlushuang committed
238
            FloatA* p_a = mat_a;
carlushuang's avatar
carlushuang committed
239
            float* p_c  = current_mat_c;
carlushuang's avatar
carlushuang committed
240
241
            param.p_a   = p_a;
            param.p_c   = p_c;
242
243
244
245
246
247
248
249
250
251
252
253
            for(uint32_t i_m = 0; i_m < m; i_m += uk.Mr_)
            {
                uk.Run(&param);
                p_a += uk.Mr_ * k;
                p_c += uk.Mr_ * n;
                param.p_a = p_a;
                param.p_c = p_c;
            }
        }
        else if constexpr(std::is_same<Row, ALayout>::value && std::is_same<Col, BLayout>::value)
        {
            assert(m % uk.Mr_ == 0 && n % uk.Nr_ == 0);
carlushuang's avatar
carlushuang committed
254
            FloatA* p_a = mat_a;
carlushuang's avatar
carlushuang committed
255
            float* p_c  = current_mat_c;
carlushuang's avatar
carlushuang committed
256
257
258
            param.p_a   = p_a;
            param.p_b   = mat_b;
            param.p_c   = p_c;
259
260
            for(uint32_t i_m = 0; i_m < m; i_m += uk.Mr_)
            {
carlushuang's avatar
carlushuang committed
261
262
                float* p_c_n  = p_c;
                FloatB* p_b_n = mat_b;
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
                for(uint32_t i_n = 0; i_n < n; i_n += uk.Nr_)
                {
                    uk.Run(&param);
                    p_b_n += uk.Nr_ * k; // Nr_/8*k*8
                    p_c_n += uk.Nr_;
                    param.p_b = p_b_n;
                    param.p_c = p_c_n;
                }
                p_a += uk.Mr_ * k;
                p_c += uk.Mr_ * n;
                param.p_a = p_a;
                param.p_b = mat_b;
                param.p_c = p_c;
            }
        }
        else if constexpr(std::is_same<Col, ALayout>::value && std::is_same<Row, BLayout>::value)
        {
            assert(m == uk.Mr_ && n == uk.Nr_);
            uk.Run(&param);
        }
        else
        {
            assert(m % uk.Mr_ == 0 && n % uk.Nr_ == 0);
carlushuang's avatar
carlushuang committed
286
            FloatB* p_b = mat_b;
carlushuang's avatar
carlushuang committed
287
            float* p_c  = current_mat_c;
carlushuang's avatar
carlushuang committed
288
289
            param.p_b   = p_b;
            param.p_c   = p_c;
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
            for(uint32_t i_n = 0; i_n < n; i_n += uk.Nr_)
            {
                uk.Run(&param);
                p_b += uk.Nr_ * k; // Nr_/8*k*8
                p_c += uk.Nr_;
                param.p_b = p_b;
                param.p_c = p_c;
            }
        }
    };

    printf("gemm_uk_%dx%d_%c%c: ", uk.Mr_, uk.Nr_, ALayout::name[0], BLayout::name[0]);
    fflush(stdout);
    // printf("%s: ", typeid(uk).name());fflush(stdout);

carlushuang's avatar
carlushuang committed
305
    float us = .0f;
306

carlushuang's avatar
carlushuang committed
307
#pragma omp parallel reduction(+ : us)
308
    {
carlushuang's avatar
carlushuang committed
309
310
        int tid          = omp_get_thread_num();
        float* private_c = reinterpret_cast<float*>(malloc(m * n * sizeof(float)));
311

carlushuang's avatar
carlushuang committed
312
313
314
315
316
317
318
319
320
        ck::cpu::ThreadwiseGemmParam param;
        param.p_a   = mat_a;
        param.p_b   = mat_b;
        param.p_c   = private_c;
        param.Kr    = k;
        param.lda   = (std::is_same<Row, ALayout>::value ? k : m) * sizeof(FloatA);
        param.ldb   = (std::is_same<Row, BLayout>::value ? n : k * 8) * sizeof(FloatB);
        param.ldc   = n * sizeof(float);
        param.alpha = alpha;
321

carlushuang's avatar
carlushuang committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
        memset(private_c, 0, m * n * sizeof(float));

        int repeat = 7e10 / (2 * m * n * k);

        for(int i = 0; i < (repeat / 5); i++)
        {
            invoke_uk(param, private_c);
        }

        WallTimer timer;

        timer.Start();
        for(int i = 0; i < repeat; i++)
        {
            invoke_uk(param, private_c);
        }
        timer.End();

        us += timer.GetElapsedTime() * 1e3 / repeat;

        memset(private_c, 0, m * n * sizeof(float));
        invoke_uk(param, private_c);

        memcpy(mat_c + tid * m * n, private_c, m * n * sizeof(float));
        free(private_c);
347
348
    }

carlushuang's avatar
carlushuang committed
349
    us = us / max_threads;
350

carlushuang's avatar
carlushuang committed
351
    float gflops = static_cast<float>(2 * m * n * k * max_threads) * 1e-3 / us;
352
353
354
355
356
357

    printf("m:%u, n:%u, k:%u, alpha:%f, cost:%lfus, GFLOPS:%lf, ", m, n, k, alpha, us, gflops);
    fflush(stdout);
}

// implement small ukernel on L1
carlushuang's avatar
carlushuang committed
358
template <typename FloatA, typename FloatB, typename ALayout, typename BLayout>
359
360
void test_cpu_ukernel(float alpha, uint32_t m, uint32_t n, uint32_t k)
{
carlushuang's avatar
carlushuang committed
361
    int max_threads = omp_get_max_threads();
362

363
364
    DeviceAlignedMemCPU a_mem(m * k * sizeof(FloatA), 32);
    DeviceAlignedMemCPU b_mem(k * n * sizeof(FloatB), 32);
carlushuang's avatar
carlushuang committed
365
    DeviceAlignedMemCPU c_mem(m * n * sizeof(float) * max_threads, 32);
366
    DeviceAlignedMemCPU c_mem_ref(m * n * sizeof(float), 32);
367

368
369
370
    c_mem_ref.SetZero();
    rand_vector(reinterpret_cast<FloatA*>(a_mem.mpDeviceBuf), m * k);
    rand_vector(reinterpret_cast<FloatB*>(b_mem.mpDeviceBuf), k * n);
371

372
373
374
375
376
377
378
379
    ref_cpu_gemm_uk<FloatA, FloatB, ALayout, BLayout>(
        reinterpret_cast<FloatA*>(a_mem.mpDeviceBuf),
        reinterpret_cast<FloatB*>(b_mem.mpDeviceBuf),
        reinterpret_cast<float*>(c_mem_ref.mpDeviceBuf),
        alpha,
        m,
        n,
        k);
380

381
382
383
    // using thread_gemm_instance = thread_gemm_avx2_mxn_6x16_instances<ALayout, BLayout>;
    using thread_gemm_instance = thread_gemm_avx2_mxn_4x24_instances<ALayout, BLayout>;
    bool found                 = false;
384
385
386

    ck::static_for<0, std::tuple_size_v<thread_gemm_instance>, 1>{}([&](auto i) {
        using uk_type = std::tuple_element_t<i, thread_gemm_instance>;
387
388
389
390
391
392
393
        if(m % uk_type::Mr_ != 0 || n % uk_type::Nr_ != 0)
            return;
        if((m != uk_type::Mr_ && std::is_same<typename uk_type::ALayout_, Col>::value) ||
           (n != uk_type::Nr_ && std::is_same<typename uk_type::BLayout_, Row>::value))
            // only k is the fast changing dim of A/B can we do muldiplt m, n
            return;

394
395
396
        if(found)
            return;

397
398
399
400
401
402
403
404
405
406
407
408
        test_ukernel<FloatA, FloatB, ALayout, BLayout>(uk_type{},
                                                       reinterpret_cast<FloatA*>(a_mem.mpDeviceBuf),
                                                       reinterpret_cast<FloatB*>(b_mem.mpDeviceBuf),
                                                       reinterpret_cast<float*>(c_mem.mpDeviceBuf),
                                                       alpha,
                                                       m,
                                                       n,
                                                       k);

        bool is_valid = valid_vector(reinterpret_cast<float*>(c_mem_ref.mpDeviceBuf),
                                     reinterpret_cast<float*>(c_mem.mpDeviceBuf),
                                     m * n);
409
        printf("vald:%s\n", is_valid ? "y" : "n");
410
        found = true;
411
412
413
414
415
    });
}

int main(int argc, char** argv)
{
416
417
    int m       = 4;
    int n       = 24;
418
419
420
421
422
423
424
425
426
427
428
429
430
    int k       = 64;
    float alpha = 1.0f;
    if(argc > 3)
    {
        m = std::atoi(argv[1]);
        n = std::atoi(argv[2]);
        k = std::atoi(argv[3]);
    }
    if(argc > 4)
    {
        alpha = std::atof(argv[4]);
    }
    dump_cache_hierarchy();
carlushuang's avatar
carlushuang committed
431
432
433
434
    if(std::getenv("OMP_NUM_THREADS") == nullptr)
        omp_set_num_threads(1);
    printf("max threads:%d\n", omp_get_max_threads());

carlushuang's avatar
carlushuang committed
435
436
437
438
    test_cpu_ukernel<AType, BType, Row, Row>(alpha, m, n, k);
    test_cpu_ukernel<AType, BType, Row, Col>(alpha, m, n, k);
    test_cpu_ukernel<AType, BType, Col, Row>(alpha, m, n, k);
    test_cpu_ukernel<AType, BType, Col, Col>(alpha, m, n, k);
439
}