Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
e7c36fea
Unverified
Commit
e7c36fea
authored
Oct 12, 2022
by
rocking5566
Committed by
GitHub
Oct 12, 2022
Browse files
Merge branch 'develop' into conv_quant_int8
parents
fc964357
d8b41e1c
Changes
12
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
3454 additions
and
101 deletions
+3454
-101
Jenkinsfile
Jenkinsfile
+4
-2
example/42_groupnorm/groupnorm_sigmoid_fp16.cpp
example/42_groupnorm/groupnorm_sigmoid_fp16.cpp
+16
-16
example/43_splitk_gemm_bias_e_permute/CMakeLists.txt
example/43_splitk_gemm_bias_e_permute/CMakeLists.txt
+2
-0
example/43_splitk_gemm_bias_e_permute/splitk_gemm_bias_e_permute_xdl_fp16.cpp
...mm_bias_e_permute/splitk_gemm_bias_e_permute_xdl_fp16.cpp
+407
-0
example/43_splitk_gemm_bias_e_permute/splitk_gemm_bias_e_permute_xdl_fp32.cpp
...mm_bias_e_permute/splitk_gemm_bias_e_permute_xdl_fp32.cpp
+407
-0
include/ck/tensor_operation/gpu/device/device_splitk_contraction_multiple_d.hpp
...ation/gpu/device/device_splitk_contraction_multiple_d.hpp
+65
-0
include/ck/tensor_operation/gpu/device/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp
...ice/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp
+1147
-0
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
+2
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_split_k_multiple_d_xdl_cshuffle.hpp
...pu/grid/gridwise_gemm_split_k_multiple_d_xdl_cshuffle.hpp
+1263
-0
include/ck/tensor_operation/gpu/grid/gridwise_layernorm_welford_variance.hpp
...peration/gpu/grid/gridwise_layernorm_welford_variance.hpp
+136
-82
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f16_instance.cpp
...tance/gpu/normalization/device_layernorm_f16_instance.cpp
+3
-1
test/layernorm/test_groupnorm_fp16.cpp
test/layernorm/test_groupnorm_fp16.cpp
+2
-0
No files found.
Jenkinsfile
View file @
e7c36fea
...
@@ -233,6 +233,7 @@ def buildHipClangJob(Map conf=[:]){
...
@@ -233,6 +233,7 @@ def buildHipClangJob(Map conf=[:]){
def
variant
=
env
.
STAGE_NAME
def
variant
=
env
.
STAGE_NAME
def
retimage
def
retimage
(
retimage
,
image
)
=
getDockerImage
(
conf
)
gitStatusWrapper
(
credentialsId:
"${status_wrapper_creds}"
,
gitHubContext:
"Jenkins - ${variant}"
,
account:
'ROCmSoftwarePlatform'
,
repo:
'composable_kernel'
)
{
gitStatusWrapper
(
credentialsId:
"${status_wrapper_creds}"
,
gitHubContext:
"Jenkins - ${variant}"
,
account:
'ROCmSoftwarePlatform'
,
repo:
'composable_kernel'
)
{
withDockerContainer
(
image:
image
,
args:
dockerOpts
+
' -v=/var/jenkins/:/var/jenkins'
)
{
withDockerContainer
(
image:
image
,
args:
dockerOpts
+
' -v=/var/jenkins/:/var/jenkins'
)
{
...
@@ -548,8 +549,9 @@ def process_results(Map conf=[:]){
...
@@ -548,8 +549,9 @@ def process_results(Map conf=[:]){
}
}
}
}
//launch develop branch daily at 23:00 in FULL_QA mode
//launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version
CRON_SETTINGS
=
BRANCH_NAME
==
"develop"
?
'''0 23 * * * % RUN_FULL_QA=true'''
:
""
CRON_SETTINGS
=
BRANCH_NAME
==
"develop"
?
'''0 23 * * * % RUN_FULL_QA=true;COMPILER_VERSION=release
0 19 * * * % BUILD_DOCKER=true;COMPILER_VERSION=amd-stg-open'''
:
""
pipeline
{
pipeline
{
agent
none
agent
none
...
...
example/42_groupnorm/groupnorm_sigmoid_fp16.cpp
View file @
e7c36fea
...
@@ -55,26 +55,26 @@ using DeviceInstance =
...
@@ -55,26 +55,26 @@ using DeviceInstance =
YElementOp
,
YElementOp
,
Rank
,
Rank
,
NumReduceDim
,
NumReduceDim
,
256
,
// BlockSize
1024
,
// BlockSize
8
,
// ClusterM
1
,
// ClusterM
32
,
// ClusterK
1024
,
// ClusterK
1
,
// SliceM
1
,
// SliceM
8
,
// SliceK
32
,
// SliceK
1
,
// SrcVecDim (0=M, 1=K)
1
,
// SrcVecDim (0=M, 1=K)
8
,
// SrcScalarPerVector
2
,
// SrcScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
1
,
// GammaVecDim (0=M, 1=K)
8
,
// GammaScalarPerVector
2
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
1
,
// BetaVecDim (0=M, 1=K)
8
,
// BetaScalarPerVector
2
,
// BetaScalarPerVector
8
>
;
// OutScalarPerVector
2
>
;
// OutScalarPerVector
int
main
(
int
argc
,
char
*
argv
[])
int
main
(
int
argc
,
char
*
argv
[])
{
{
ck
::
index_t
N
=
128
;
ck
::
index_t
N
=
2
;
ck
::
index_t
H
=
16
;
ck
::
index_t
H
=
32
;
ck
::
index_t
W
=
16
;
ck
::
index_t
W
=
32
;
ck
::
index_t
G
=
32
;
ck
::
index_t
G
=
32
;
ck
::
index_t
C
=
4
0
;
ck
::
index_t
C
=
3
0
;
if
(
argc
==
1
)
if
(
argc
==
1
)
{
{
...
...
example/43_splitk_gemm_bias_e_permute/CMakeLists.txt
0 → 100644
View file @
e7c36fea
add_example_executable
(
example_splitk_gemm_bias_e_permute_xdl_fp16 splitk_gemm_bias_e_permute_xdl_fp16.cpp
)
add_example_executable
(
example_splitk_gemm_bias_e_permute_xdl_fp32 splitk_gemm_bias_e_permute_xdl_fp32.cpp
)
example/43_splitk_gemm_bias_e_permute/splitk_gemm_bias_e_permute_xdl_fp16.cpp
0 → 100644
View file @
e7c36fea
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
DDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F16
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
ABSpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Packed
;
static
constexpr
auto
DESpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstanceKKNN
=
ck
::
tensor_operation
::
device
::
//############################################| NumDimG| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| Gemm| A| B| DE| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle|CBlockTransferClusterLengths| CBlockTransfer|
//############################################| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Spacialization| Spacialization| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################################| | | | | | | | | | | Operation| Operation| Operation| | | | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceSplitKContractionMultipleD_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
F16
,
F16
,
F32
,
F16
,
DsDataType
,
F16
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
ABSpec
,
ABSpec
,
DESpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
;
// clang-format on
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template
<
ck
::
index_t
NumDimG
,
ck
::
index_t
NumDimM
,
ck
::
index_t
NumDimN
,
ck
::
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ck
::
enable_if_t
<
NumDimG
==
2
&&
NumDimM
==
2
&&
NumDimN
==
2
&&
NumDimK
==
1
,
bool
>
=
false
>
struct
ReferenceContraction_G2_M2_N2_K1
:
public
ck
::
tensor_operation
::
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
a_gs_ms_ks_
{
a_gs_ms_ks
},
b_gs_ns_ks_
{
b_gs_ns_ks
},
e_gs_ms_ns_
{
e_gs_ms_ns
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_gs_ms_ks_
;
const
Tensor
<
BDataType
>&
b_gs_ns_ks_
;
Tensor
<
EDataType
>&
e_gs_ms_ns_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
ck
::
tensor_operation
::
device
::
BaseInvoker
{
using
Argument
=
ReferenceContraction_G2_M2_N2_K1
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_ms_ns
=
[
&
](
auto
g0
,
auto
g1
,
auto
m0
,
auto
m1
,
auto
n0
,
auto
n1
)
{
const
int
K0
=
arg
.
a_gs_ms_ks_
.
mDesc
.
GetLengths
()[
4
];
AccDataType
v_acc
=
0
;
for
(
int
k0
=
0
;
k0
<
K0
;
++
k0
)
{
AccDataType
v_a
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
a_gs_ms_ks_
(
g0
,
g1
,
m0
,
m1
,
k0
)));
arg
.
b_element_op_
(
v_b
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
b_gs_ns_ks_
(
g0
,
g1
,
n0
,
n1
,
k0
)));
v_acc
+=
v_a
*
v_b
;
}
AccDataType
v_c
;
arg
.
cde_element_op_
(
v_c
,
v_acc
);
arg
.
e_gs_ms_ns_
(
g0
,
g1
,
m0
,
m1
,
n0
,
n1
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_ms_ns
,
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
0
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
1
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
2
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
3
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
4
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
5
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
a_gs_ms_ks
,
b_gs_ns_ks
,
e_gs_ms_ns
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceContraction_G2_M2_N2_K1"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
split_k
=
1
;
ck
::
index_t
G0
=
1
;
ck
::
index_t
G1
=
2
;
ck
::
index_t
M0
=
4
;
ck
::
index_t
M1
=
256
;
ck
::
index_t
N0
=
16
;
ck
::
index_t
N1
=
128
;
ck
::
index_t
K0
=
64
*
2
;
// A[G0, G1, M0, M1, K0]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M0
,
M1
,
K0
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
G1
*
M0
*
M1
*
K0
,
M0
*
M1
*
K0
,
M1
*
K0
,
K0
,
1
};
// B[G0, G1, N0, N1, K0]
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_lengths
{
G0
,
G1
,
N0
,
N1
,
K0
};
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_strides
{
G1
*
N0
*
N1
*
K0
,
N0
*
N1
*
K0
,
N1
*
K0
,
K0
,
1
};
// D[G0, G1, M0, N0, M1, N1]
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_lengths
{
G0
,
G1
,
M0
,
M1
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_strides
{
G1
*
N0
*
N1
,
N0
*
N1
,
0
,
0
,
N1
,
1
};
// E[G0, G1, M0, N0, M1, N1]
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_lengths
{
G0
,
G1
,
M0
,
M1
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_strides
{
G1
*
M0
*
N0
*
M1
*
N1
,
M0
*
N0
*
M1
*
N1
,
N0
*
M1
*
N1
,
N1
,
M1
*
N1
,
1
};
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
5
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
split_k
=
std
::
stoi
(
argv
[
4
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
exit
(
0
);
}
Tensor
<
ADataType
>
a_gs_ms_ks
(
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_lengths
.
begin
(),
a_gs_ms_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_strides
.
begin
(),
a_gs_ms_ks_strides
.
end
()));
Tensor
<
BDataType
>
b_gs_ns_ks
(
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_lengths
.
begin
(),
b_gs_ns_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_strides
.
begin
(),
b_gs_ns_ks_strides
.
end
()));
Tensor
<
DDataType
>
d_gs_ms_ns
(
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_lengths
.
begin
(),
d_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_strides
.
begin
(),
d_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_device_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_gs_ns_ks: "
<<
b_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_gs_ms_ns: "
<<
d_gs_ms_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_gs_ms_ns: "
<<
e_gs_ms_ns_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_gs_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_gs_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_gs_ms_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_gs_ms_ns_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_gs_ms_ks
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_gs_ns_ks
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_gs_ms_ns
.
mData
.
data
());
// set zero
e_device_buf
.
SetZero
();
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
// device operation
auto
op
=
DeviceOpInstance
{};
auto
invoker
=
op
.
MakeInvoker
();
auto
argument
=
op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_strides
},
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
,
split_k
);
if
(
!
op
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
op
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
G
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
M
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
+
NumDimN
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K
=
std
::
accumulate
(
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
+
NumDimK
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
G
*
M
*
K
+
sizeof
(
BDataType
)
*
G
*
K
*
N
+
sizeof
(
DDataType
)
*
G
*
M
*
N
+
sizeof
(
EDataType
)
*
G
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op
.
GetTypeString
()
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_gs_ms_ns_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
using
ReferenceOpInstance
=
ReferenceContraction_G2_M2_N2_K1
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_gs_ms_ks
,
b_gs_ns_ks
,
c_ms_ns_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
e_gs_ms_ns_host_result
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
cde_element_op
(
e_gs_ms_ns_host_result
(
idx
),
c_ms_ns_host_result
(
idx
),
d_gs_ms_ns
(
idx
));
});
return
ck
::
utils
::
check_err
(
e_gs_ms_ns_device_result
.
mData
,
e_gs_ms_ns_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
}
example/43_splitk_gemm_bias_e_permute/splitk_gemm_bias_e_permute_xdl_fp32.cpp
0 → 100644
View file @
e7c36fea
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F32
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
ABSpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Packed
;
static
constexpr
auto
DESpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstanceKKNN
=
ck
::
tensor_operation
::
device
::
//############################################| NumDimG| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| Gemm| A| B| DE| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle|CBlockTransferClusterLengths| CBlockTransfer|
//############################################| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Spacialization| Spacialization| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################################| | | | | | | | | | | Operation| Operation| Operation| | | | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceSplitKContractionMultipleD_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
ABSpec
,
ABSpec
,
DESpec
,
1
,
256
,
256
,
128
,
32
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
4
,
4
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
;
// clang-format on
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template
<
ck
::
index_t
NumDimG
,
ck
::
index_t
NumDimM
,
ck
::
index_t
NumDimN
,
ck
::
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ck
::
enable_if_t
<
NumDimG
==
2
&&
NumDimM
==
2
&&
NumDimN
==
2
&&
NumDimK
==
1
,
bool
>
=
false
>
struct
ReferenceContraction_G2_M2_N2_K1
:
public
ck
::
tensor_operation
::
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
a_gs_ms_ks_
{
a_gs_ms_ks
},
b_gs_ns_ks_
{
b_gs_ns_ks
},
e_gs_ms_ns_
{
e_gs_ms_ns
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_gs_ms_ks_
;
const
Tensor
<
BDataType
>&
b_gs_ns_ks_
;
Tensor
<
EDataType
>&
e_gs_ms_ns_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
ck
::
tensor_operation
::
device
::
BaseInvoker
{
using
Argument
=
ReferenceContraction_G2_M2_N2_K1
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_ms_ns
=
[
&
](
auto
g0
,
auto
g1
,
auto
m0
,
auto
m1
,
auto
n0
,
auto
n1
)
{
const
int
K0
=
arg
.
a_gs_ms_ks_
.
mDesc
.
GetLengths
()[
4
];
AccDataType
v_acc
=
0
;
for
(
int
k0
=
0
;
k0
<
K0
;
++
k0
)
{
AccDataType
v_a
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
a_gs_ms_ks_
(
g0
,
g1
,
m0
,
m1
,
k0
)));
arg
.
b_element_op_
(
v_b
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
b_gs_ns_ks_
(
g0
,
g1
,
n0
,
n1
,
k0
)));
v_acc
+=
v_a
*
v_b
;
}
AccDataType
v_c
;
arg
.
cde_element_op_
(
v_c
,
v_acc
);
arg
.
e_gs_ms_ns_
(
g0
,
g1
,
m0
,
m1
,
n0
,
n1
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_ms_ns
,
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
0
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
1
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
2
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
3
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
4
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
5
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
a_gs_ms_ks
,
b_gs_ns_ks
,
e_gs_ms_ns
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceContraction_G2_M2_N2_K1"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
split_k
=
1
;
ck
::
index_t
G0
=
1
;
ck
::
index_t
G1
=
2
;
ck
::
index_t
M0
=
4
;
ck
::
index_t
M1
=
256
;
ck
::
index_t
N0
=
16
;
ck
::
index_t
N1
=
128
;
ck
::
index_t
K0
=
64
*
2
;
// A[G0, G1, M0, M1, K0]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M0
,
M1
,
K0
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
G1
*
M0
*
M1
*
K0
,
M0
*
M1
*
K0
,
M1
*
K0
,
K0
,
1
};
// B[G0, G1, N0, N1, K0]
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_lengths
{
G0
,
G1
,
N0
,
N1
,
K0
};
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_strides
{
G1
*
N0
*
N1
*
K0
,
N0
*
N1
*
K0
,
N1
*
K0
,
K0
,
1
};
// D[G0, G1, M0, N0, M1, N1]
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_lengths
{
G0
,
G1
,
M0
,
M1
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_strides
{
G1
*
N0
*
N1
,
N0
*
N1
,
0
,
0
,
N1
,
1
};
// E[G0, G1, M0, N0, M1, N1]
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_lengths
{
G0
,
G1
,
M0
,
M1
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_strides
{
G1
*
M0
*
N0
*
M1
*
N1
,
M0
*
N0
*
M1
*
N1
,
N0
*
M1
*
N1
,
N1
,
M1
*
N1
,
1
};
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
5
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
split_k
=
std
::
stoi
(
argv
[
4
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
exit
(
0
);
}
Tensor
<
ADataType
>
a_gs_ms_ks
(
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_lengths
.
begin
(),
a_gs_ms_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_strides
.
begin
(),
a_gs_ms_ks_strides
.
end
()));
Tensor
<
BDataType
>
b_gs_ns_ks
(
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_lengths
.
begin
(),
b_gs_ns_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_strides
.
begin
(),
b_gs_ns_ks_strides
.
end
()));
Tensor
<
DDataType
>
d_gs_ms_ns
(
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_lengths
.
begin
(),
d_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_strides
.
begin
(),
d_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_device_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_gs_ns_ks: "
<<
b_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_gs_ms_ns: "
<<
d_gs_ms_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_gs_ms_ns: "
<<
e_gs_ms_ns_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_gs_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_gs_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_gs_ms_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_gs_ms_ns_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_gs_ms_ks
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_gs_ns_ks
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_gs_ms_ns
.
mData
.
data
());
// set zero
e_device_buf
.
SetZero
();
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
// device operation
auto
op
=
DeviceOpInstance
{};
auto
invoker
=
op
.
MakeInvoker
();
auto
argument
=
op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_strides
},
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
,
split_k
);
if
(
!
op
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
op
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
G
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
M
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
+
NumDimN
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K
=
std
::
accumulate
(
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
+
NumDimK
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
G
*
M
*
K
+
sizeof
(
BDataType
)
*
G
*
K
*
N
+
sizeof
(
DDataType
)
*
G
*
M
*
N
+
sizeof
(
EDataType
)
*
G
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op
.
GetTypeString
()
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_gs_ms_ns_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
using
ReferenceOpInstance
=
ReferenceContraction_G2_M2_N2_K1
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_gs_ms_ks
,
b_gs_ns_ks
,
c_ms_ns_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
e_gs_ms_ns_host_result
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
cde_element_op
(
e_gs_ms_ns_host_result
(
idx
),
c_ms_ns_host_result
(
idx
),
d_gs_ms_ns
(
idx
));
});
return
ck
::
utils
::
check_err
(
e_gs_ms_ns_device_result
.
mData
,
e_gs_ms_ns_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
}
include/ck/tensor_operation/gpu/device/device_splitk_contraction_multiple_d.hpp
0 → 100644
View file @
e7c36fea
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// Tensor Contraction:
// input : A
// input : B
// input : D0, D1, ...
// output : E
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// A[G0, G1, ..., M0, M1, M2, ..., K0, K1, K2, ...]
// B[G0, G1, ..., N0, N1, N2, ..., K0, K1, K2, ...]
// D[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
// E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
template
<
index_t
NumDimG
,
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceSplitKContractionMultipleD
:
public
BaseOperator
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_strides
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_strides
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
,
index_t
split_k
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp
0 → 100644
View file @
e7c36fea
This diff is collapsed.
Click to expand it.
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
View file @
e7c36fea
...
@@ -209,6 +209,8 @@ struct BlockToCTileMap_KSplit_M00_N0_M01Adapt
...
@@ -209,6 +209,8 @@ struct BlockToCTileMap_KSplit_M00_N0_M01Adapt
const
auto
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n_
.
GetLength
(
I0
),
MPerBlock
);
const
auto
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n_
.
GetLength
(
I0
),
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n_
.
GetLength
(
I1
),
NPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n_
.
GetLength
(
I1
),
NPerBlock
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
*
KSplit_
);
// hide groups
const
index_t
idx_ksplit
=
block_1d_id
/
(
M0
*
N0
);
const
index_t
idx_ksplit
=
block_1d_id
/
(
M0
*
N0
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
);
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_split_k_multiple_d_xdl_cshuffle.hpp
0 → 100644
View file @
e7c36fea
This diff is collapsed.
Click to expand it.
include/ck/tensor_operation/gpu/grid/gridwise_layernorm_welford_variance.hpp
View file @
e7c36fea
...
@@ -57,7 +57,7 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
...
@@ -57,7 +57,7 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
make_cluster_descriptor
(
ThreadClusterLengths_M_K
{},
ThreadClusterArrangeOrder
{});
make_cluster_descriptor
(
ThreadClusterLengths_M_K
{},
ThreadClusterArrangeOrder
{});
using
ThreadReduceSrcDesc_M_K
=
decltype
(
make_naive_tensor_descriptor_packed
(
using
ThreadReduceSrcDesc_M_K
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSlice
Size
>
{})));
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
XSrcVector
Size
>
{})));
using
ThreadReduceDstDesc_M
=
using
ThreadReduceDstDesc_M
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{})));
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{})));
...
@@ -73,8 +73,14 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
...
@@ -73,8 +73,14 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
constexpr
index_t
K_BlockTileStepSize
=
KThreadClusterSize
*
XSrcVectorSize
;
static
constexpr
auto
XThreadBufferNumber
=
Number
<
KThreadSliceSize
/
XSrcVectorSize
>
{};
static
constexpr
auto
GammaThreadBufferNumber
=
Number
<
KThreadSliceSize
/
XSrcVectorSize
>
{};
static
constexpr
auto
BetaThreadBufferNumber
=
Number
<
KThreadSliceSize
/
XSrcVectorSize
>
{};
static
constexpr
auto
YThreadBufferNumber
=
Number
<
KThreadSliceSize
/
XSrcVectorSize
>
{};
__device__
static
int
GetKPerThread
(
const
GridDesc_M_K
&
x_grid_desc_m_k
,
__device__
static
int
GetKPerThread
(
const
GridDesc_M_K
&
x_grid_desc_m_k
,
int
thread_k_cluster_id
)
int
thread_k_cluster_id
)
...
@@ -87,10 +93,13 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
...
@@ -87,10 +93,13 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
if
(
kPerBlockTail
>
0
)
if
(
kPerBlockTail
>
0
)
{
{
int
thread_max_len
=
(
thread_k_cluster_id
+
1
)
*
KThreadSliceSize
;
static_for
<
0
,
XThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
int
delta
=
thread_max_len
-
kPerBlockTail
;
int
thread_max_len
=
delta
=
math
::
clamp
(
thread_max_len
-
kPerBlockTail
,
0
,
KThreadSliceSize
);
(
thread_k_cluster_id
+
1
)
*
XSrcVectorSize
+
K_BlockTileStepSize
*
i
;
kPerThread
+=
KThreadSliceSize
-
delta
;
int
delta
=
thread_max_len
-
kPerBlockTail
;
delta
=
math
::
clamp
(
thread_max_len
-
kPerBlockTail
,
0
,
XSrcVectorSize
);
kPerThread
+=
XSrcVectorSize
-
delta
;
});
}
}
return
kPerThread
;
return
kPerThread
;
...
@@ -116,19 +125,41 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
...
@@ -116,19 +125,41 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
auto
y_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
auto
y_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_y_global
,
y_grid_desc_m_k
.
GetElementSpaceSize
());
p_y_global
,
y_grid_desc_m_k
.
GetElementSpaceSize
());
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
auto
x_thread_buf
=
generate_tuple
(
x_thread_buf
;
[
&
](
auto
)
{
return
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
AccDataType
,
gamma_thread_buf
;
MThreadSliceSize
*
XSrcVectorSize
,
true
>
{};
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
},
AccDataType
,
Number
<
XThreadBufferNumber
>
{});
MThreadSliceSize
*
KThreadSliceSize
,
true
>&
beta_thread_buf
=
gamma_thread_buf
;
auto
gamma_thread_buf
=
generate_tuple
(
[
&
](
auto
)
{
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
return
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
y_thread_buf
;
AccDataType
,
MThreadSliceSize
*
GammaSrcVectorSize
,
true
>
{};
},
Number
<
GammaThreadBufferNumber
>
{});
auto
beta_thread_buf
=
generate_tuple
(
[
&
](
auto
)
{
return
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
BetaSrcVectorSize
,
true
>
{};
},
Number
<
BetaThreadBufferNumber
>
{});
auto
y_thread_buf
=
generate_tuple
(
[
&
](
auto
)
{
return
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
YDstVectorSize
,
true
>
{};
},
Number
<
YThreadBufferNumber
>
{});
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
mean_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
mean_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
var_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
var_thread_buf
;
...
@@ -142,9 +173,9 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
...
@@ -142,9 +173,9 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
const
auto
thread_m_cluster_id
=
thread_cluster_idx
[
I0
];
const
auto
thread_m_cluster_id
=
thread_cluster_idx
[
I0
];
const
auto
thread_k_cluster_id
=
thread_cluster_idx
[
I1
];
const
auto
thread_k_cluster_id
=
thread_cluster_idx
[
I1
];
using
ThreadBufferLengths_M_K
=
Sequence
<
MThreadSliceSize
,
KThreadSlice
Size
>
;
using
ThreadBufferLengths_M_K
=
Sequence
<
MThreadSliceSize
,
XSrcVector
Size
>
;
constexpr
auto
thread_buffer_desc_m_k
=
make_naive_tensor_descriptor_packed
(
constexpr
auto
thread_buffer_desc_m_k
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSlice
Size
>
{}));
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
XSrcVector
Size
>
{}));
auto
threadwise_x_load
=
ThreadwiseTensorSliceTransfer_v2
<
XDataType
,
auto
threadwise_x_load
=
ThreadwiseTensorSliceTransfer_v2
<
XDataType
,
AccDataType
,
AccDataType
,
...
@@ -159,7 +190,7 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
...
@@ -159,7 +190,7 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
x_grid_desc_m_k
,
x_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSlice
Size
));
thread_k_cluster_id
*
XSrcVector
Size
));
auto
threadwise_gamma_load
=
auto
threadwise_gamma_load
=
ThreadwiseTensorSliceTransfer_v2
<
GammaDataType
,
ThreadwiseTensorSliceTransfer_v2
<
GammaDataType
,
...
@@ -175,7 +206,7 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
...
@@ -175,7 +206,7 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
gamma_grid_desc_m_k
,
gamma_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSlice
Size
));
thread_k_cluster_id
*
GammaSrcVector
Size
));
auto
threadwise_beta_load
=
auto
threadwise_beta_load
=
ThreadwiseTensorSliceTransfer_v2
<
BetaDataType
,
ThreadwiseTensorSliceTransfer_v2
<
BetaDataType
,
...
@@ -191,7 +222,7 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
...
@@ -191,7 +222,7 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
beta_grid_desc_m_k
,
beta_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSlice
Size
));
thread_k_cluster_id
*
BetaSrcVector
Size
));
auto
threadwise_y_store
=
auto
threadwise_y_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
...
@@ -209,13 +240,10 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
...
@@ -209,13 +240,10 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
y_grid_desc_m_k
,
y_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSlice
Size
),
thread_k_cluster_id
*
YDstVector
Size
),
acc_elementwise_op
);
acc_elementwise_op
);
// Copy x from Cache
constexpr
auto
thread_copy_fwd_step_m_k
=
make_multi_index
(
0
,
K_BlockTileStepSize
);
// one pass: fwd, second pass: bwd
constexpr
auto
thread_copy_fwd_step_m_k
=
make_multi_index
(
0
,
SweepOnce
?
0
:
K_BlockTileSize
);
constexpr
auto
thread_copy_bwd_step_m_k
=
constexpr
auto
thread_copy_bwd_step_m_k
=
make_multi_index
(
0
,
SweepOnce
?
0
:
-
K_BlockTileSize
);
make_multi_index
(
0
,
SweepOnce
?
0
:
-
K_BlockTileSize
);
...
@@ -238,14 +266,15 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
...
@@ -238,14 +266,15 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
for
(
index_t
reducedTiles
=
0
;
reducedTiles
<
num_k_block_tile_iteration
;
++
reducedTiles
)
for
(
index_t
reducedTiles
=
0
;
reducedTiles
<
num_k_block_tile_iteration
;
++
reducedTiles
)
{
{
static_for
<
0
,
XThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
make_tuple
(
I0
,
I0
),
x_thread_buf
);
x_thread_buf
(
i
));
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
threadwise_welford
.
Run
(
x_thread_buf
,
mean_thread_buf
,
var_thread_buf
);
threadwise_welford
.
Run
(
x_thread_buf
[
i
],
mean_thread_buf
,
var_thread_buf
);
});
}
}
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
...
@@ -256,7 +285,8 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
...
@@ -256,7 +285,8 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
BlockwiseWelford
::
Run
(
mean_thread_buf
(
I
),
var_thread_buf
(
I
),
count
);
BlockwiseWelford
::
Run
(
mean_thread_buf
(
I
),
var_thread_buf
(
I
),
count
);
});
});
auto
thread_copy_tail_m_k
=
(
num_k_block_tile_iteration
-
1
)
*
thread_copy_fwd_step_m_k
;
auto
thread_copy_tail_m_k
=
(
num_k_block_tile_iteration
-
1
)
*
XThreadBufferNumber
*
thread_copy_fwd_step_m_k
;
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
thread_copy_tail_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
thread_copy_tail_m_k
);
...
@@ -267,62 +297,86 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
...
@@ -267,62 +297,86 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
{
{
if
constexpr
(
!
SweepOnce
)
if
constexpr
(
!
SweepOnce
)
{
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
static_for
<
0
,
XThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
x_global_val_buf
,
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
thread_buffer_desc_m_k
,
x_global_val_buf
,
make_tuple
(
I0
,
I0
),
thread_buffer_desc_m_k
,
x_thread_buf
);
make_tuple
(
I0
,
I0
),
x_thread_buf
(
i
));
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
}
}
threadwise_gamma_load
.
Run
(
gamma_grid_desc_m_k
,
static_for
<
0
,
GammaThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
gamma_global_val_buf
,
threadwise_gamma_load
.
Run
(
gamma_grid_desc_m_k
,
thread_buffer_desc_m_k
,
gamma_global_val_buf
,
make_tuple
(
I0
,
I0
),
thread_buffer_desc_m_k
,
gamma_thread_buf
);
make_tuple
(
I0
,
I0
),
gamma_thread_buf
(
i
));
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
auto
divisor
=
1
/
__builtin_amdgcn_sqrtf
(
var_thread_buf
(
iM
)
+
epsilon
);
constexpr
auto
offset_m_k
=
static_for
<
0
,
XThreadBufferNumber
,
1
>
{}([
&
](
auto
iK0
)
{
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
static_for
<
0
,
XSrcVectorSize
,
1
>
{}([
&
](
auto
iK1
)
{
constexpr
auto
offset_m_k
=
// normalize
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK1
));
y_thread_buf
(
Number
<
offset_m_k
>
{})
=
(
x_thread_buf
(
Number
<
offset_m_k
>
{})
-
mean_thread_buf
(
iM
))
/
// normalize
sqrt
(
var_thread_buf
(
iM
)
+
epsilon
);
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
=
(
x_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
-
mean_thread_buf
(
iM
))
*
// gamma
divisor
;
y_thread_buf
(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
Number
<
offset_m_k
>
{})
*
gamma_thread_buf
(
Number
<
offset_m_k
>
{});
// gamma
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
*
gamma_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{});
});
});
});
});
});
threadwise_beta_load
.
Run
(
beta_grid_desc_m_k
,
static_for
<
0
,
BetaThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
beta_global_val_buf
,
threadwise_beta_load
.
Run
(
beta_grid_desc_m_k
,
thread_buffer_desc_m_k
,
beta_global_val_buf
,
make_tuple
(
I0
,
I0
),
thread_buffer_desc_m_k
,
beta_thread_buf
);
make_tuple
(
I0
,
I0
),
beta_thread_buf
(
i
));
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
static_for
<
0
,
XThreadBufferNumber
,
1
>
{}([
&
](
auto
iK0
)
{
constexpr
auto
offset_m_k
=
static_for
<
0
,
XSrcVectorSize
,
1
>
{}([
&
](
auto
iK1
)
{
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK1
));
// beta
y_thread_buf
(
Number
<
offset_m_k
>
{})
=
// beta
y_thread_buf
(
Number
<
offset_m_k
>
{})
+
beta_thread_buf
(
Number
<
offset_m_k
>
{});
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
+
beta_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{});
});
});
});
});
});
threadwise_y_store
.
Run
(
thread_buffer_desc_m_k
,
static_for
<
0
,
YThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
make_tuple
(
I0
,
I0
),
threadwise_y_store
.
Run
(
thread_buffer_desc_m_k
,
y_thread_buf
,
make_tuple
(
I0
,
I0
),
y_grid_desc_m_k
,
y_thread_buf
(
i
),
y_global_val_buf
);
y_grid_desc_m_k
,
y_global_val_buf
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
2
*
thread_copy_bwd_step_m_k
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
}
}
}
}
};
};
...
...
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f16_instance.cpp
View file @
e7c36fea
...
@@ -31,7 +31,9 @@ using device_layernorm_f16_instances = std::tuple<
...
@@ -31,7 +31,9 @@ using device_layernorm_f16_instances = std::tuple<
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
8
,
1
,
2
,
1
,
2
,
1
,
2
,
2
>
// clang-format on
// clang-format on
>
;
>
;
...
...
test/layernorm/test_groupnorm_fp16.cpp
View file @
e7c36fea
...
@@ -26,6 +26,8 @@ class TestGroupnorm : public ::testing::Test
...
@@ -26,6 +26,8 @@ class TestGroupnorm : public ::testing::Test
{
256
,
9
,
9
,
9
,
9
},
{
256
,
9
,
9
,
9
,
9
},
{
1
,
64
,
64
,
32
,
10
},
{
1
,
64
,
64
,
32
,
10
},
{
1
,
32
,
32
,
32
,
20
},
{
1
,
32
,
32
,
32
,
20
},
{
2
,
32
,
32
,
32
,
30
},
{
2
,
32
,
32
,
32
,
40
},
{
1
,
16
,
16
,
32
,
40
}};
{
1
,
16
,
16
,
32
,
40
}};
for
(
auto
length
:
lengths
)
for
(
auto
length
:
lengths
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment