Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
e7c36fea
Unverified
Commit
e7c36fea
authored
Oct 12, 2022
by
rocking5566
Committed by
GitHub
Oct 12, 2022
Browse files
Merge branch 'develop' into conv_quant_int8
parents
fc964357
d8b41e1c
Changes
12
Hide whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
3454 additions
and
101 deletions
+3454
-101
Jenkinsfile
Jenkinsfile
+4
-2
example/42_groupnorm/groupnorm_sigmoid_fp16.cpp
example/42_groupnorm/groupnorm_sigmoid_fp16.cpp
+16
-16
example/43_splitk_gemm_bias_e_permute/CMakeLists.txt
example/43_splitk_gemm_bias_e_permute/CMakeLists.txt
+2
-0
example/43_splitk_gemm_bias_e_permute/splitk_gemm_bias_e_permute_xdl_fp16.cpp
...mm_bias_e_permute/splitk_gemm_bias_e_permute_xdl_fp16.cpp
+407
-0
example/43_splitk_gemm_bias_e_permute/splitk_gemm_bias_e_permute_xdl_fp32.cpp
...mm_bias_e_permute/splitk_gemm_bias_e_permute_xdl_fp32.cpp
+407
-0
include/ck/tensor_operation/gpu/device/device_splitk_contraction_multiple_d.hpp
...ation/gpu/device/device_splitk_contraction_multiple_d.hpp
+65
-0
include/ck/tensor_operation/gpu/device/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp
...ice/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp
+1147
-0
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
+2
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_split_k_multiple_d_xdl_cshuffle.hpp
...pu/grid/gridwise_gemm_split_k_multiple_d_xdl_cshuffle.hpp
+1263
-0
include/ck/tensor_operation/gpu/grid/gridwise_layernorm_welford_variance.hpp
...peration/gpu/grid/gridwise_layernorm_welford_variance.hpp
+136
-82
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f16_instance.cpp
...tance/gpu/normalization/device_layernorm_f16_instance.cpp
+3
-1
test/layernorm/test_groupnorm_fp16.cpp
test/layernorm/test_groupnorm_fp16.cpp
+2
-0
No files found.
Jenkinsfile
View file @
e7c36fea
...
...
@@ -233,6 +233,7 @@ def buildHipClangJob(Map conf=[:]){
def
variant
=
env
.
STAGE_NAME
def
retimage
(
retimage
,
image
)
=
getDockerImage
(
conf
)
gitStatusWrapper
(
credentialsId:
"${status_wrapper_creds}"
,
gitHubContext:
"Jenkins - ${variant}"
,
account:
'ROCmSoftwarePlatform'
,
repo:
'composable_kernel'
)
{
withDockerContainer
(
image:
image
,
args:
dockerOpts
+
' -v=/var/jenkins/:/var/jenkins'
)
{
...
...
@@ -548,8 +549,9 @@ def process_results(Map conf=[:]){
}
}
//launch develop branch daily at 23:00 in FULL_QA mode
CRON_SETTINGS
=
BRANCH_NAME
==
"develop"
?
'''0 23 * * * % RUN_FULL_QA=true'''
:
""
//launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version
CRON_SETTINGS
=
BRANCH_NAME
==
"develop"
?
'''0 23 * * * % RUN_FULL_QA=true;COMPILER_VERSION=release
0 19 * * * % BUILD_DOCKER=true;COMPILER_VERSION=amd-stg-open'''
:
""
pipeline
{
agent
none
...
...
example/42_groupnorm/groupnorm_sigmoid_fp16.cpp
View file @
e7c36fea
...
...
@@ -55,26 +55,26 @@ using DeviceInstance =
YElementOp
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// ClusterM
32
,
// ClusterK
1
,
// SliceM
8
,
// SliceK
1
,
// SrcVecDim (0=M, 1=K)
8
,
// SrcScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
8
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
8
,
// BetaScalarPerVector
8
>
;
// OutScalarPerVector
1024
,
// BlockSize
1
,
// ClusterM
1024
,
// ClusterK
1
,
// SliceM
32
,
// SliceK
1
,
// SrcVecDim (0=M, 1=K)
2
,
// SrcScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
2
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
2
,
// BetaScalarPerVector
2
>
;
// OutScalarPerVector
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
index_t
N
=
128
;
ck
::
index_t
H
=
16
;
ck
::
index_t
W
=
16
;
ck
::
index_t
N
=
2
;
ck
::
index_t
H
=
32
;
ck
::
index_t
W
=
32
;
ck
::
index_t
G
=
32
;
ck
::
index_t
C
=
4
0
;
ck
::
index_t
C
=
3
0
;
if
(
argc
==
1
)
{
...
...
example/43_splitk_gemm_bias_e_permute/CMakeLists.txt
0 → 100644
View file @
e7c36fea
add_example_executable
(
example_splitk_gemm_bias_e_permute_xdl_fp16 splitk_gemm_bias_e_permute_xdl_fp16.cpp
)
add_example_executable
(
example_splitk_gemm_bias_e_permute_xdl_fp32 splitk_gemm_bias_e_permute_xdl_fp32.cpp
)
example/43_splitk_gemm_bias_e_permute/splitk_gemm_bias_e_permute_xdl_fp16.cpp
0 → 100644
View file @
e7c36fea
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
DDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F16
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
ABSpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Packed
;
static
constexpr
auto
DESpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstanceKKNN
=
ck
::
tensor_operation
::
device
::
//############################################| NumDimG| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| Gemm| A| B| DE| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle|CBlockTransferClusterLengths| CBlockTransfer|
//############################################| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Spacialization| Spacialization| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################################| | | | | | | | | | | Operation| Operation| Operation| | | | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceSplitKContractionMultipleD_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
F16
,
F16
,
F32
,
F16
,
DsDataType
,
F16
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
ABSpec
,
ABSpec
,
DESpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
;
// clang-format on
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template
<
ck
::
index_t
NumDimG
,
ck
::
index_t
NumDimM
,
ck
::
index_t
NumDimN
,
ck
::
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ck
::
enable_if_t
<
NumDimG
==
2
&&
NumDimM
==
2
&&
NumDimN
==
2
&&
NumDimK
==
1
,
bool
>
=
false
>
struct
ReferenceContraction_G2_M2_N2_K1
:
public
ck
::
tensor_operation
::
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
a_gs_ms_ks_
{
a_gs_ms_ks
},
b_gs_ns_ks_
{
b_gs_ns_ks
},
e_gs_ms_ns_
{
e_gs_ms_ns
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_gs_ms_ks_
;
const
Tensor
<
BDataType
>&
b_gs_ns_ks_
;
Tensor
<
EDataType
>&
e_gs_ms_ns_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
ck
::
tensor_operation
::
device
::
BaseInvoker
{
using
Argument
=
ReferenceContraction_G2_M2_N2_K1
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_ms_ns
=
[
&
](
auto
g0
,
auto
g1
,
auto
m0
,
auto
m1
,
auto
n0
,
auto
n1
)
{
const
int
K0
=
arg
.
a_gs_ms_ks_
.
mDesc
.
GetLengths
()[
4
];
AccDataType
v_acc
=
0
;
for
(
int
k0
=
0
;
k0
<
K0
;
++
k0
)
{
AccDataType
v_a
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
a_gs_ms_ks_
(
g0
,
g1
,
m0
,
m1
,
k0
)));
arg
.
b_element_op_
(
v_b
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
b_gs_ns_ks_
(
g0
,
g1
,
n0
,
n1
,
k0
)));
v_acc
+=
v_a
*
v_b
;
}
AccDataType
v_c
;
arg
.
cde_element_op_
(
v_c
,
v_acc
);
arg
.
e_gs_ms_ns_
(
g0
,
g1
,
m0
,
m1
,
n0
,
n1
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_ms_ns
,
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
0
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
1
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
2
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
3
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
4
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
5
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
a_gs_ms_ks
,
b_gs_ns_ks
,
e_gs_ms_ns
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceContraction_G2_M2_N2_K1"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
split_k
=
1
;
ck
::
index_t
G0
=
1
;
ck
::
index_t
G1
=
2
;
ck
::
index_t
M0
=
4
;
ck
::
index_t
M1
=
256
;
ck
::
index_t
N0
=
16
;
ck
::
index_t
N1
=
128
;
ck
::
index_t
K0
=
64
*
2
;
// A[G0, G1, M0, M1, K0]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M0
,
M1
,
K0
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
G1
*
M0
*
M1
*
K0
,
M0
*
M1
*
K0
,
M1
*
K0
,
K0
,
1
};
// B[G0, G1, N0, N1, K0]
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_lengths
{
G0
,
G1
,
N0
,
N1
,
K0
};
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_strides
{
G1
*
N0
*
N1
*
K0
,
N0
*
N1
*
K0
,
N1
*
K0
,
K0
,
1
};
// D[G0, G1, M0, N0, M1, N1]
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_lengths
{
G0
,
G1
,
M0
,
M1
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_strides
{
G1
*
N0
*
N1
,
N0
*
N1
,
0
,
0
,
N1
,
1
};
// E[G0, G1, M0, N0, M1, N1]
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_lengths
{
G0
,
G1
,
M0
,
M1
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_strides
{
G1
*
M0
*
N0
*
M1
*
N1
,
M0
*
N0
*
M1
*
N1
,
N0
*
M1
*
N1
,
N1
,
M1
*
N1
,
1
};
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
5
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
split_k
=
std
::
stoi
(
argv
[
4
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
exit
(
0
);
}
Tensor
<
ADataType
>
a_gs_ms_ks
(
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_lengths
.
begin
(),
a_gs_ms_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_strides
.
begin
(),
a_gs_ms_ks_strides
.
end
()));
Tensor
<
BDataType
>
b_gs_ns_ks
(
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_lengths
.
begin
(),
b_gs_ns_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_strides
.
begin
(),
b_gs_ns_ks_strides
.
end
()));
Tensor
<
DDataType
>
d_gs_ms_ns
(
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_lengths
.
begin
(),
d_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_strides
.
begin
(),
d_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_device_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_gs_ns_ks: "
<<
b_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_gs_ms_ns: "
<<
d_gs_ms_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_gs_ms_ns: "
<<
e_gs_ms_ns_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_gs_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_gs_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_gs_ms_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_gs_ms_ns_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_gs_ms_ks
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_gs_ns_ks
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_gs_ms_ns
.
mData
.
data
());
// set zero
e_device_buf
.
SetZero
();
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
// device operation
auto
op
=
DeviceOpInstance
{};
auto
invoker
=
op
.
MakeInvoker
();
auto
argument
=
op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_strides
},
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
,
split_k
);
if
(
!
op
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
op
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
G
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
M
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
+
NumDimN
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K
=
std
::
accumulate
(
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
+
NumDimK
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
G
*
M
*
K
+
sizeof
(
BDataType
)
*
G
*
K
*
N
+
sizeof
(
DDataType
)
*
G
*
M
*
N
+
sizeof
(
EDataType
)
*
G
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op
.
GetTypeString
()
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_gs_ms_ns_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
using
ReferenceOpInstance
=
ReferenceContraction_G2_M2_N2_K1
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_gs_ms_ks
,
b_gs_ns_ks
,
c_ms_ns_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
e_gs_ms_ns_host_result
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
cde_element_op
(
e_gs_ms_ns_host_result
(
idx
),
c_ms_ns_host_result
(
idx
),
d_gs_ms_ns
(
idx
));
});
return
ck
::
utils
::
check_err
(
e_gs_ms_ns_device_result
.
mData
,
e_gs_ms_ns_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
}
example/43_splitk_gemm_bias_e_permute/splitk_gemm_bias_e_permute_xdl_fp32.cpp
0 → 100644
View file @
e7c36fea
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F32
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
ABSpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Packed
;
static
constexpr
auto
DESpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstanceKKNN
=
ck
::
tensor_operation
::
device
::
//############################################| NumDimG| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| Gemm| A| B| DE| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle|CBlockTransferClusterLengths| CBlockTransfer|
//############################################| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Spacialization| Spacialization| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################################| | | | | | | | | | | Operation| Operation| Operation| | | | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceSplitKContractionMultipleD_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
ABSpec
,
ABSpec
,
DESpec
,
1
,
256
,
256
,
128
,
32
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
4
,
4
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
4
>
;
// clang-format on
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template
<
ck
::
index_t
NumDimG
,
ck
::
index_t
NumDimM
,
ck
::
index_t
NumDimN
,
ck
::
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ck
::
enable_if_t
<
NumDimG
==
2
&&
NumDimM
==
2
&&
NumDimN
==
2
&&
NumDimK
==
1
,
bool
>
=
false
>
struct
ReferenceContraction_G2_M2_N2_K1
:
public
ck
::
tensor_operation
::
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
a_gs_ms_ks_
{
a_gs_ms_ks
},
b_gs_ns_ks_
{
b_gs_ns_ks
},
e_gs_ms_ns_
{
e_gs_ms_ns
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_gs_ms_ks_
;
const
Tensor
<
BDataType
>&
b_gs_ns_ks_
;
Tensor
<
EDataType
>&
e_gs_ms_ns_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
ck
::
tensor_operation
::
device
::
BaseInvoker
{
using
Argument
=
ReferenceContraction_G2_M2_N2_K1
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_ms_ns
=
[
&
](
auto
g0
,
auto
g1
,
auto
m0
,
auto
m1
,
auto
n0
,
auto
n1
)
{
const
int
K0
=
arg
.
a_gs_ms_ks_
.
mDesc
.
GetLengths
()[
4
];
AccDataType
v_acc
=
0
;
for
(
int
k0
=
0
;
k0
<
K0
;
++
k0
)
{
AccDataType
v_a
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
a_gs_ms_ks_
(
g0
,
g1
,
m0
,
m1
,
k0
)));
arg
.
b_element_op_
(
v_b
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
b_gs_ns_ks_
(
g0
,
g1
,
n0
,
n1
,
k0
)));
v_acc
+=
v_a
*
v_b
;
}
AccDataType
v_c
;
arg
.
cde_element_op_
(
v_c
,
v_acc
);
arg
.
e_gs_ms_ns_
(
g0
,
g1
,
m0
,
m1
,
n0
,
n1
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_ms_ns
,
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
0
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
1
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
2
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
3
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
4
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
5
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
a_gs_ms_ks
,
b_gs_ns_ks
,
e_gs_ms_ns
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceContraction_G2_M2_N2_K1"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
split_k
=
1
;
ck
::
index_t
G0
=
1
;
ck
::
index_t
G1
=
2
;
ck
::
index_t
M0
=
4
;
ck
::
index_t
M1
=
256
;
ck
::
index_t
N0
=
16
;
ck
::
index_t
N1
=
128
;
ck
::
index_t
K0
=
64
*
2
;
// A[G0, G1, M0, M1, K0]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M0
,
M1
,
K0
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
G1
*
M0
*
M1
*
K0
,
M0
*
M1
*
K0
,
M1
*
K0
,
K0
,
1
};
// B[G0, G1, N0, N1, K0]
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_lengths
{
G0
,
G1
,
N0
,
N1
,
K0
};
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_strides
{
G1
*
N0
*
N1
*
K0
,
N0
*
N1
*
K0
,
N1
*
K0
,
K0
,
1
};
// D[G0, G1, M0, N0, M1, N1]
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_lengths
{
G0
,
G1
,
M0
,
M1
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_strides
{
G1
*
N0
*
N1
,
N0
*
N1
,
0
,
0
,
N1
,
1
};
// E[G0, G1, M0, N0, M1, N1]
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_lengths
{
G0
,
G1
,
M0
,
M1
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_strides
{
G1
*
M0
*
N0
*
M1
*
N1
,
M0
*
N0
*
M1
*
N1
,
N0
*
M1
*
N1
,
N1
,
M1
*
N1
,
1
};
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
5
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
split_k
=
std
::
stoi
(
argv
[
4
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
exit
(
0
);
}
Tensor
<
ADataType
>
a_gs_ms_ks
(
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_lengths
.
begin
(),
a_gs_ms_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_strides
.
begin
(),
a_gs_ms_ks_strides
.
end
()));
Tensor
<
BDataType
>
b_gs_ns_ks
(
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_lengths
.
begin
(),
b_gs_ns_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_strides
.
begin
(),
b_gs_ns_ks_strides
.
end
()));
Tensor
<
DDataType
>
d_gs_ms_ns
(
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_lengths
.
begin
(),
d_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_strides
.
begin
(),
d_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_device_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_gs_ns_ks: "
<<
b_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_gs_ms_ns: "
<<
d_gs_ms_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_gs_ms_ns: "
<<
e_gs_ms_ns_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_gs_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_gs_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_gs_ms_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_gs_ms_ns_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_gs_ms_ks
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_gs_ns_ks
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_gs_ms_ns
.
mData
.
data
());
// set zero
e_device_buf
.
SetZero
();
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
// device operation
auto
op
=
DeviceOpInstance
{};
auto
invoker
=
op
.
MakeInvoker
();
auto
argument
=
op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_strides
},
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
,
split_k
);
if
(
!
op
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
op
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
G
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
M
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
+
NumDimN
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K
=
std
::
accumulate
(
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
+
NumDimK
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
G
*
M
*
K
+
sizeof
(
BDataType
)
*
G
*
K
*
N
+
sizeof
(
DDataType
)
*
G
*
M
*
N
+
sizeof
(
EDataType
)
*
G
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op
.
GetTypeString
()
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_gs_ms_ns_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
using
ReferenceOpInstance
=
ReferenceContraction_G2_M2_N2_K1
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_gs_ms_ks
,
b_gs_ns_ks
,
c_ms_ns_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
e_gs_ms_ns_host_result
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
cde_element_op
(
e_gs_ms_ns_host_result
(
idx
),
c_ms_ns_host_result
(
idx
),
d_gs_ms_ns
(
idx
));
});
return
ck
::
utils
::
check_err
(
e_gs_ms_ns_device_result
.
mData
,
e_gs_ms_ns_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
}
include/ck/tensor_operation/gpu/device/device_splitk_contraction_multiple_d.hpp
0 → 100644
View file @
e7c36fea
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// Tensor Contraction:
// input : A
// input : B
// input : D0, D1, ...
// output : E
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// A[G0, G1, ..., M0, M1, M2, ..., K0, K1, K2, ...]
// B[G0, G1, ..., N0, N1, N2, ..., K0, K1, K2, ...]
// D[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
// E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
template
<
index_t
NumDimG
,
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceSplitKContractionMultipleD
:
public
BaseOperator
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_strides
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_strides
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
,
index_t
split_k
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp
0 → 100644
View file @
e7c36fea
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_splitk_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_split_k_multiple_d_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
template
<
typename
GridwiseGemm
,
typename
FloatAB
,
typename
FloatDsPointer
,
typename
FloatE
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
AGridDesc_AKB_AK0_M_AK1
,
typename
BGridDesc_BKB_BK0_N_BK1
,
typename
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
ComputePtrOffsetOfBatch
,
typename
Block2ETileMap
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_contraction_multiple_d_xdl_cshuffle
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatDsPointer
p_ds_grid
,
FloatE
*
__restrict__
p_e_grid
,
const
index_t
batch_count
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
,
const
AGridDesc_AKB_AK0_M_AK1
a_grid_desc_akb_ak0_m_ak1
,
const
BGridDesc_BKB_BK0_N_BK1
b_grid_desc_bkb_bk0_n_bk1
,
const
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
,
const
Block2ETileMap
block_2_etile_map
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
)));
const
long_index_t
e_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
)));
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
FloatDsPointer
p_ds_grid_grp
;
static
constexpr
index_t
NumDTensor
=
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
::
Size
();
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
p_ds_grid_grp
(
i
)
=
p_ds_grid
[
i
]
+
ds_batch_offset
[
i
];
});
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
+
a_batch_offset
,
p_b_grid
+
b_batch_offset
,
p_ds_grid_grp
,
p_e_grid
+
e_batch_offset
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
a_grid_desc_akb_ak0_m_ak1
,
b_grid_desc_bkb_bk0_n_bk1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_etile_map
);
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_ds_grid
;
ignore
=
p_e_grid
;
ignore
=
batch_count
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
cde_element_op
;
ignore
=
a_grid_desc_akb_ak0_m_ak1
;
ignore
=
b_grid_desc_bkb_bk0_n_bk1
;
ignore
=
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
e_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
block_2_etile_map
;
ignore
=
compute_ptr_offset_of_batch
;
#endif
}
}
// namespace ck
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// Tensor Contraction:
// input : A
// input : B
// input : D0, D1, ...
// output : E
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// A[G0, G1, ..., M0, M1, M2, ..., K0, K1, K2, ...]
// B[G0, G1, ..., N0, N1, N2, ..., K0, K1, K2, ...]
// D[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
// E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
template
<
index_t
NumDimG
,
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
TensorSpecialization
ASpec
,
TensorSpecialization
BSpec
,
TensorSpecialization
DESpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceSplitKContractionMultipleD_Xdl_CShuffle
:
public
DeviceSplitKContractionMultipleD
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceSplitKContractionMultipleD_Xdl_CShuffle
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
// Assume: A[G0, G1, ..., M0, M1, M2, ..., K0, K1, K2, ...]
static
auto
MakeAGridDescriptor_M_K
(
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides_vec
)
{
assert
(
a_gs_ms_ks_lengths_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimK
&&
a_gs_ms_ks_strides_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimK
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
start
,
auto
end
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
start
+
i
];
},
Number
<
end
-
start
>
{});
};
const
auto
a_ms_ks_lengths
=
to_tuple
(
a_gs_ms_ks_lengths_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimK
>
{});
const
auto
a_ms_ks_strides
=
to_tuple
(
a_gs_ms_ks_strides_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimK
>
{});
// dimension Ids for M0, M1, ...
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimM
,
1
>::
type
{};
// dimension Ids for K0, K1, ...
constexpr
auto
kDimIds
=
typename
arithmetic_sequence_gen
<
NumDimM
,
NumDimM
+
NumDimK
,
1
>::
type
{};
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
a_ms_ks_lengths
,
mDimIds
);
// lengths for K0, K1, ...
const
auto
kLengths
=
get_container_subset
(
a_ms_ks_lengths
,
kDimIds
);
if
constexpr
(
ASpec
==
TensorSpecialization
::
Packed
)
{
auto
M
=
container_reduce
(
mLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
auto
K
=
container_reduce
(
kLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
const
auto
a_grid_desc_mraw_kraw
=
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
a_ms_ks_strides
[
Number
<
NumDimM
-
1
>
{}],
a_ms_ks_strides
[
Number
<
NumDimM
+
NumDimK
-
1
>
{}]));
return
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
}
else
{
// naive tensor A[M0, M1, M2, ..., K0, K1, K2...]
const
auto
a_grid_desc_ms_ks
=
make_naive_tensor_descriptor
(
a_ms_ks_lengths
,
a_ms_ks_strides
);
// transformed tensor A[MRaw = M0 * M1 * M2 * ... , KRaw = K0 * K1 * K2 * ...]
const
auto
a_grid_desc_mraw_kraw
=
transform_tensor_descriptor
(
a_grid_desc_ms_ks
,
make_tuple
(
make_merge_transform
(
mLengths
),
make_merge_transform
(
kLengths
)),
make_tuple
(
mDimIds
,
kDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
}
}
// Assume: B[G0, G1, ..., N0, N1, N2, ..., K0, K1, K2, ...]
static
auto
MakeBGridDescriptor_N_K
(
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides_vec
)
{
assert
(
b_gs_ns_ks_lengths_vec
.
size
()
==
NumDimG
+
NumDimN
+
NumDimK
&&
b_gs_ns_ks_strides_vec
.
size
()
==
NumDimG
+
NumDimN
+
NumDimK
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
start
,
auto
end
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
start
+
i
];
},
Number
<
end
-
start
>
{});
};
const
auto
b_ns_ks_lengths
=
to_tuple
(
b_gs_ns_ks_lengths_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimN
+
NumDimK
>
{});
const
auto
b_ns_ks_strides
=
to_tuple
(
b_gs_ns_ks_strides_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimN
+
NumDimK
>
{});
// dimension Ids for N0, N1, ...
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimN
,
1
>::
type
{};
// dimension Ids for K0, K1, ...
constexpr
auto
kDimIds
=
typename
arithmetic_sequence_gen
<
NumDimN
,
NumDimN
+
NumDimK
,
1
>::
type
{};
// lengths for K0, K1, ...
const
auto
kLengths
=
get_container_subset
(
b_ns_ks_lengths
,
kDimIds
);
// lengths for N0, N1, ...
const
auto
nLengths
=
get_container_subset
(
b_ns_ks_lengths
,
nDimIds
);
if
constexpr
(
BSpec
==
TensorSpecialization
::
Packed
)
{
auto
N
=
container_reduce
(
nLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
auto
K
=
container_reduce
(
kLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
const
auto
b_grid_desc_nraw_kraw
=
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
b_ns_ks_strides
[
Number
<
NumDimN
-
1
>
{}],
b_ns_ks_strides
[
Number
<
NumDimN
+
NumDimK
-
1
>
{}]));
return
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
}
else
{
// naive tensor B[N0, N1, N2, ..., K0, K1, K2, ...]
const
auto
b_grid_desc_ns_ks
=
make_naive_tensor_descriptor
(
b_ns_ks_lengths
,
b_ns_ks_strides
);
// transformed tensor B[NRaw = N0 * N1 * N2 * ..., KRaw = K0 * K1 * K2 * ...]
const
auto
b_grid_desc_nraw_kraw
=
transform_tensor_descriptor
(
b_grid_desc_ns_ks
,
make_tuple
(
make_merge_transform
(
nLengths
),
make_merge_transform
(
kLengths
)),
make_tuple
(
nDimIds
,
kDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
}
}
// assume E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
static
auto
MakeEGridDescriptor_M_N
(
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_strides_vec
)
{
assert
(
e_gs_ms_ns_lengths_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
&&
e_gs_ms_ns_strides_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
start
,
auto
end
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
start
+
i
];
},
Number
<
end
-
start
>
{});
};
const
auto
e_ms_ns_lengths
=
to_tuple
(
e_gs_ms_ns_lengths_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
const
auto
e_ms_ns_strides
=
to_tuple
(
e_gs_ms_ns_strides_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
// dimension Ids for M0, M1, ...
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimM
,
1
>::
type
{};
// dimension Ids for N0, N1, ...
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDimM
,
NumDimM
+
NumDimN
,
1
>::
type
{};
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
e_ms_ns_lengths
,
mDimIds
);
// lengths for K0, K1, ...
const
auto
nLengths
=
get_container_subset
(
e_ms_ns_lengths
,
nDimIds
);
if
constexpr
(
DESpec
==
TensorSpecialization
::
Packed
)
{
auto
M
=
container_reduce
(
mLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
auto
N
=
container_reduce
(
nLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
const
auto
e_grid_desc_mraw_nraw
=
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
e_ms_ns_strides
[
Number
<
NumDimM
-
1
>
{}],
e_ms_ns_strides
[
Number
<
NumDimM
+
NumDimN
-
1
>
{}]));
return
matrix_padder
.
PadCDescriptor_M_N
(
e_grid_desc_mraw_nraw
);
}
else
{
// naive tensor E[M0, M1, M2, ..., N0, N1, N2...]
const
auto
e_grid_desc_ms_ns
=
make_naive_tensor_descriptor
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
// transformed tensor E[MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 * N2 * ...]
const
auto
e_grid_desc_mraw_nraw
=
transform_tensor_descriptor
(
e_grid_desc_ms_ns
,
make_tuple
(
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
mDimIds
,
nDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
matrix_padder
.
PadCDescriptor_M_N
(
e_grid_desc_mraw_nraw
);
}
}
// assume E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
static
auto
MakeEGridDescriptor_G_M_N
(
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_strides_vec
)
{
assert
(
e_gs_ms_ns_lengths_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
&&
e_gs_ms_ns_strides_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
start
,
auto
end
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
start
+
i
];
},
Number
<
end
-
start
>
{});
};
const
auto
e_gs_ms_ns_lengths
=
to_tuple
(
e_gs_ms_ns_lengths_vec
,
Number
<
0
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
const
auto
e_gs_ms_ns_strides
=
to_tuple
(
e_gs_ms_ns_strides_vec
,
Number
<
0
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
// dimension Ids for G0, G1, ...
constexpr
auto
gDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimG
,
1
>::
type
{};
// dimension Ids for M0, M1, ...
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
NumDimG
,
NumDimG
+
NumDimM
,
1
>::
type
{};
// dimension Ids for N0, N1, ...
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDimG
+
NumDimM
,
NumDimG
+
NumDimM
+
NumDimN
,
1
>::
type
{};
// lengths for G0, G1, ...
const
auto
gLengths
=
get_container_subset
(
e_gs_ms_ns_lengths
,
gDimIds
);
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
e_gs_ms_ns_lengths
,
mDimIds
);
// lengths for K0, K1, ...
const
auto
nLengths
=
get_container_subset
(
e_gs_ms_ns_lengths
,
nDimIds
);
if
constexpr
(
DESpec
==
TensorSpecialization
::
Packed
)
{
auto
G
=
container_reduce
(
gLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
auto
M
=
container_reduce
(
mLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
auto
N
=
container_reduce
(
nLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
const
auto
e_grid_desc_g_mraw_nraw
=
make_naive_tensor_descriptor
(
make_tuple
(
G
,
M
,
N
),
make_tuple
(
e_gs_ms_ns_strides
[
Number
<
NumDimG
-
1
>
{}],
e_gs_ms_ns_strides
[
Number
<
NumDimG
+
NumDimM
-
1
>
{}],
e_gs_ms_ns_strides
[
Number
<
NumDimG
+
NumDimM
+
NumDimN
-
1
>
{}]));
// return matrix_padder.PadCDescriptor_M_N(e_grid_desc_g_mraw_nraw);
return
e_grid_desc_g_mraw_nraw
;
}
else
{
// naive tensor E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
const
auto
e_grid_desc_gs_ms_ns
=
make_naive_tensor_descriptor
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
// transformed tensor E[G = G0 * G1 * ..., MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 *
// N2 * ...]
const
auto
e_grid_desc_g_mraw_nraw
=
transform_tensor_descriptor
(
e_grid_desc_gs_ms_ns
,
make_tuple
(
make_merge_transform
(
gLengths
),
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
gDimIds
,
mDimIds
,
nDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
// return matrix_padder.PadCDescriptor_M_N(e_grid_desc_g_mraw_nraw);
return
e_grid_desc_g_mraw_nraw
;
}
}
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_lengths_vec
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_strides_vec
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
DeviceOp
::
MakeEGridDescriptor_M_N
(
ds_gs_ms_ns_lengths_vec
[
i
],
ds_gs_ms_ns_strides_vec
[
i
]);
},
Number
<
NumDTensor
>
{});
}
static
auto
MakeDsGridDescriptor_G_M_N
(
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_lengths_vec
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_strides_vec
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
DeviceOp
::
MakeEGridDescriptor_G_M_N
(
ds_gs_ms_ns_lengths_vec
[
i
],
ds_gs_ms_ns_strides_vec
[
i
]);
},
Number
<
NumDTensor
>
{});
}
using
AGridDesc_M_K
=
decltype
(
MakeAGridDescriptor_M_K
({},
{}));
using
BGridDesc_N_K
=
decltype
(
MakeBGridDescriptor_N_K
({},
{}));
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({{}},
{{}}))
>
;
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
({},
{}));
using
DsGridDesc_G_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_G_M_N
({},
{}))
>
;
using
EGridDesc_G_M_N
=
decltype
(
MakeEGridDescriptor_G_M_N
({},
{}));
struct
ComputePtrOffsetOfStridedBatch
{
ComputePtrOffsetOfStridedBatch
(
index_t
batch_stride_A
,
index_t
batch_stride_B
,
DsGridDesc_G_M_N
ds_grid_desc_g_m_n
,
EGridDesc_G_M_N
e_grid_desc_g_m_n
)
:
batch_stride_A_
(
batch_stride_A
),
batch_stride_B_
(
batch_stride_B
),
ds_grid_desc_g_m_n_
(
ds_grid_desc_g_m_n
),
e_grid_desc_g_m_n_
(
e_grid_desc_g_m_n
)
{
}
__host__
__device__
constexpr
long_index_t
GetAPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
batch_stride_A_
);
}
__host__
__device__
constexpr
long_index_t
GetBPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
batch_stride_B_
);
}
__host__
__device__
constexpr
auto
GetDsPtrOffset
(
index_t
g_idx
)
const
{
std
::
array
<
long_index_t
,
NumDTensor
>
ds_offset
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
ds_offset
[
i
]
=
static_cast
<
long_index_t
>
(
g_idx
)
*
ds_grid_desc_g_m_n_
[
i
].
CalculateOffset
(
make_multi_index
(
1
,
0
,
0
));
});
return
ds_offset
;
}
__host__
__device__
constexpr
long_index_t
GetEPtrOffset
(
index_t
g_idx
)
const
{
return
static_cast
<
long_index_t
>
(
g_idx
)
*
e_grid_desc_g_m_n_
.
CalculateOffset
(
make_multi_index
(
1
,
0
,
0
));
}
private:
index_t
batch_stride_A_
;
index_t
batch_stride_B_
;
DsGridDesc_G_M_N
ds_grid_desc_g_m_n_
;
EGridDesc_G_M_N
e_grid_desc_g_m_n_
;
};
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmSplitKMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_M_K
,
BGridDesc_N_K
,
DsGridDesc_M_N
,
EGridDesc_M_N
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
// GridwiseGemm
using
GridwiseGemmAtomicAdd
=
GridwiseGemmSplitKMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
AtomicAdd
,
AGridDesc_M_K
,
BGridDesc_N_K
,
DsGridDesc_M_N
,
EGridDesc_M_N
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
using
AGridDesc_AKB_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultAGridDescriptor_AKB_AK0_M_AK1
(
AGridDesc_M_K
{},
1
))
>
;
using
BGridDesc_BKB_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBGridDescriptor_BKB_BK0_N_BK1
(
BGridDesc_N_K
{},
1
))
>
;
using
Block2ETileMap
=
typename
GridwiseGemm
::
DefaultBlock2ETileMap
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
void
*
p_a_grid
,
const
void
*
p_b_grid
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
,
void
*
p_e_grid
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_strides
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_strides
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
,
index_t
split_k
)
:
p_a_grid_
{
static_cast
<
const
ADataType
*>
(
p_a_grid
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b_grid
)},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e_grid
)},
a_grid_desc_m_k_
{
DeviceOp
::
MakeAGridDescriptor_M_K
(
a_gs_ms_ns_lengths
,
a_gs_ms_ks_strides
)},
b_grid_desc_n_k_
{
DeviceOp
::
MakeBGridDescriptor_N_K
(
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
)},
ds_grid_desc_m_n_
{},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
)},
ds_grid_desc_g_m_n_
{
DeviceOp
::
MakeDsGridDescriptor_G_M_N
(
ds_gs_ms_ns_lengths
,
ds_gs_ms_ns_strides
)},
e_grid_desc_g_m_n_
{
DeviceOp
::
MakeEGridDescriptor_G_M_N
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
)},
a_grid_desc_akb_ak0_m_ak1_
{
GridwiseGemm
::
MakeDefaultAGridDescriptor_AKB_AK0_M_AK1
(
a_grid_desc_m_k_
,
split_k
)},
b_grid_desc_bkb_bk0_n_bk1_
{
GridwiseGemm
::
MakeDefaultBGridDescriptor_BKB_BK0_N_BK1
(
b_grid_desc_n_k_
,
split_k
)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_
{},
e_grid_desc_mblock_mperblock_nblock_nperblock_
{},
block_2_etile_map_
{
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
e_grid_desc_m_n_
,
split_k
)},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
a_mz_stride_
{},
a_kz_stride_
{},
b_nz_stride_
{},
b_kz_stride_
{},
ds_nz_stride_
{},
e_nz_stride_
{},
a_batch_stride_
{
a_gs_ms_ks_strides
[
NumDimG
-
1
]},
b_batch_stride_
{
b_gs_ns_ks_strides
[
NumDimG
-
1
]},
compute_ptr_offset_of_batch_
{
a_batch_stride_
,
b_batch_stride_
,
ds_grid_desc_g_m_n_
,
e_grid_desc_g_m_n_
},
split_k_
{
split_k
}
{
static_assert
(
NumDimG
>
0
&&
NumDimM
>
0
&&
NumDimN
>
0
&&
NumDimK
>
0
,
""
);
// populate pointer, batch stride, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds_grid
[
i
]);
// D desc
ds_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
(
ds_gs_ms_ns_lengths
[
i
],
ds_gs_ms_ns_strides
[
i
]);
});
// populate desc for Ds/E
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_akb_ak0_m_ak1_
,
b_grid_desc_bkb_bk0_n_bk1_
,
ds_grid_desc_m_n_
,
e_grid_desc_m_n_
,
block_2_etile_map_
))
{
e_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n_
);
ds_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n_
);
}
// for sanity check of vector memory access
a_mz_stride_
=
a_gs_ms_ks_strides
[
NumDimG
+
NumDimM
-
1
];
a_kz_stride_
=
a_gs_ms_ks_strides
[
NumDimG
+
NumDimM
+
NumDimK
-
1
];
b_nz_stride_
=
b_gs_ns_ks_strides
[
NumDimG
+
NumDimN
-
1
];
b_kz_stride_
=
b_gs_ns_ks_strides
[
NumDimG
+
NumDimN
+
NumDimK
-
1
];
for
(
index_t
i
=
0
;
i
<
NumDTensor
;
++
i
)
{
ds_nz_stride_
[
i
]
=
ds_gs_ms_ns_strides
[
i
][
NumDimG
+
NumDimM
+
NumDimN
-
1
];
}
e_nz_stride_
=
e_gs_ms_ns_strides
[
NumDimG
+
NumDimM
+
NumDimN
-
1
];
Print
();
}
void
Print
()
const
{
std
::
cout
<<
"A[M, K]: "
<<
a_grid_desc_m_k_
.
GetLength
(
I0
)
<<
", "
<<
a_grid_desc_m_k_
.
GetLength
(
I1
)
<<
std
::
endl
;
std
::
cout
<<
"B[N, K]: "
<<
b_grid_desc_n_k_
.
GetLength
(
I0
)
<<
", "
<<
b_grid_desc_n_k_
.
GetLength
(
I1
)
<<
std
::
endl
;
std
::
cout
<<
"A[akb, ak0, m, ak1]: "
<<
a_grid_desc_akb_ak0_m_ak1_
.
GetLength
(
I0
)
<<
", "
<<
a_grid_desc_akb_ak0_m_ak1_
.
GetLength
(
I1
)
<<
", "
<<
a_grid_desc_akb_ak0_m_ak1_
.
GetLength
(
I2
)
<<
", "
<<
a_grid_desc_akb_ak0_m_ak1_
.
GetLength
(
I3
)
<<
std
::
endl
;
std
::
cout
<<
"B[bkb, bk0, n, bk1]: "
<<
b_grid_desc_bkb_bk0_n_bk1_
.
GetLength
(
I0
)
<<
", "
<<
b_grid_desc_bkb_bk0_n_bk1_
.
GetLength
(
I1
)
<<
", "
<<
b_grid_desc_bkb_bk0_n_bk1_
.
GetLength
(
I2
)
<<
", "
<<
b_grid_desc_bkb_bk0_n_bk1_
.
GetLength
(
I3
)
<<
std
::
endl
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
std
::
cout
<<
"Ds[M, N]: "
<<
ds_grid_desc_m_n_
[
i
].
GetLength
(
I0
)
<<
", "
<<
ds_grid_desc_m_n_
[
i
].
GetLength
(
I1
)
<<
std
::
endl
;
});
std
::
cout
<<
"E[M, N]: "
<<
e_grid_desc_m_n_
.
GetLength
(
I0
)
<<
", "
<<
e_grid_desc_m_n_
.
GetLength
(
I1
)
<<
std
::
endl
;
}
// private:
// pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid_
;
EDataType
*
p_e_grid_
;
// tensor descriptors for problem definiton
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_N_K
b_grid_desc_n_k_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
DsGridDesc_G_M_N
ds_grid_desc_g_m_n_
;
EGridDesc_G_M_N
e_grid_desc_g_m_n_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AKB_AK0_M_AK1
a_grid_desc_akb_ak0_m_ak1_
;
BGridDesc_BKB_BK0_N_BK1
b_grid_desc_bkb_bk0_n_bk1_
;
typename
GridwiseGemm
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
// block-to-e-tile map
Block2ETileMap
block_2_etile_map_
;
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
// Strides for the last M/N/K dimensions of A/B/Ds/E
// for sanity check of vector load/store
index_t
a_mz_stride_
;
index_t
a_kz_stride_
;
index_t
b_nz_stride_
;
index_t
b_kz_stride_
;
std
::
array
<
index_t
,
NumDTensor
>
ds_nz_stride_
;
index_t
e_mz_stride_
;
index_t
e_nz_stride_
;
index_t
a_batch_stride_
;
index_t
b_batch_stride_
;
ComputePtrOffsetOfStridedBatch
compute_ptr_offset_of_batch_
;
index_t
split_k_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_akb_ak0_m_ak1_
,
arg
.
b_grid_desc_bkb_bk0_n_bk1_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemmMultipleD_xdl_cshuffle has invalid setting"
);
}
const
index_t
G
=
arg
.
e_grid_desc_g_m_n_
.
GetLength
(
I0
);
const
index_t
grid_size
=
arg
.
block_2_etile_map_
.
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
)
*
G
;
const
auto
K
=
arg
.
a_grid_desc_akb_ak0_m_ak1_
.
GetLength
(
I1
)
*
arg
.
a_grid_desc_akb_ak0_m_ak1_
.
GetLength
(
I3
);
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
const
auto
kernel
=
kernel_contraction_multiple_d_xdl_cshuffle
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
typename
GridwiseGemm
::
DsGridPointer
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
DeviceOp
::
AGridDesc_AKB_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BKB_BK0_N_BK1
,
typename
GridwiseGemm
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
,
typename
GridwiseGemm
::
DefaultBlock2ETileMap
,
has_main_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
G
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
a_grid_desc_akb_ak0_m_ak1_
,
arg
.
b_grid_desc_bkb_bk0_n_bk1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
compute_ptr_offset_of_batch_
,
arg
.
block_2_etile_map_
);
};
auto
launch_kernel_atomic_add
=
[
&
](
auto
has_main_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
const
auto
kernel
=
kernel_contraction_multiple_d_xdl_cshuffle
<
GridwiseGemmAtomicAdd
,
ADataType
,
// TODO: distiguish A/B datatype
typename
GridwiseGemmAtomicAdd
::
DsGridPointer
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
DeviceOp
::
AGridDesc_AKB_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BKB_BK0_N_BK1
,
typename
GridwiseGemmAtomicAdd
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemmAtomicAdd
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
,
typename
GridwiseGemmAtomicAdd
::
DefaultBlock2ETileMap
,
has_main_loop
>
;
hipGetErrorString
(
hipMemset
(
arg
.
p_e_grid_
,
0
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
.
GetElementSpaceSize
()
*
sizeof
(
EDataType
)));
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
G
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
a_grid_desc_akb_ak0_m_ak1_
,
arg
.
b_grid_desc_bkb_bk0_n_bk1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
compute_ptr_offset_of_batch_
,
arg
.
block_2_etile_map_
);
};
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
if
(
arg
.
split_k_
<=
1
)
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
else
return
launch_kernel_atomic_add
(
integral_constant
<
bool
,
true
>
{});
}
else
{
if
(
arg
.
split_k_
<=
1
)
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
else
return
launch_kernel_atomic_add
(
integral_constant
<
bool
,
false
>
{});
}
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
{
return
false
;
}
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_akb_ak0_m_ak1_
,
arg
.
b_grid_desc_bkb_bk0_n_bk1_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
))
{
return
false
;
}
// check vector access
static_assert
((
ABlockTransferSrcVectorDim
==
2
||
ABlockTransferSrcVectorDim
==
3
)
&&
(
BBlockTransferSrcVectorDim
==
2
||
BBlockTransferSrcVectorDim
==
3
),
"wrong!"
);
// vector memory access of A: could be on M or AK1 dimension
if
constexpr
(
ABlockTransferSrcVectorDim
==
2
)
{
if
(
!
(
arg
.
a_mz_stride_
==
1
&&
arg
.
a_grid_desc_akb_ak0_m_ak1_
.
GetLength
(
I2
)
%
ABlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
if
(
!
(
arg
.
a_kz_stride_
==
1
&&
arg
.
a_grid_desc_akb_ak0_m_ak1_
.
GetLength
(
I3
)
%
ABlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
// vector memory access of B: could be on N or BK1 dimension
if
constexpr
(
BBlockTransferSrcVectorDim
==
2
)
{
if
(
!
(
arg
.
b_nz_stride_
==
1
&&
arg
.
b_grid_desc_bkb_bk0_n_bk1_
.
GetLength
(
I2
)
%
BBlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
if
(
!
(
arg
.
b_kz_stride_
==
1
&&
arg
.
b_grid_desc_bkb_bk0_n_bk1_
.
GetLength
(
I3
)
%
BBlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
// vector memory access of Ds: always on NPerBlock dimension
bool
valid_d_access
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
if
(
!
(
arg
.
ds_nz_stride_
[
i
]
==
1
&&
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
[
i
].
GetLength
(
I3
)
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
))
{
valid_d_access
=
false
;
}
});
if
(
valid_d_access
==
false
)
{
return
false
;
}
// vector memory access of E: always on NPerBlock dimension
if
(
!
((
arg
.
e_nz_stride_
==
1
&&
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
.
GetLength
(
I3
)
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
)
||
CDEBlockTransferScalarPerVector_NPerBlock
==
1
))
{
return
false
;
}
return
true
;
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_strides
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_strides
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
,
index_t
split_k
)
{
return
Argument
{
p_a
,
p_b
,
p_ds
,
p_e
,
a_gs_ms_ns_lengths
,
a_gs_ms_ks_strides
,
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
,
ds_gs_ms_ns_lengths
,
ds_gs_ms_ns_strides
,
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
,
split_k
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_strides
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_strides
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
,
index_t
split_k
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_ds
,
p_e
,
a_gs_ms_ns_lengths
,
a_gs_ms_ks_strides
,
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
,
ds_gs_ms_ns_lengths
,
ds_gs_ms_ns_strides
,
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
,
split_k
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceSplitKContractionMultipleD_Xdl_CShuffle"
<<
"<"
<<
NumDimG
<<
", "
<<
NumDimM
<<
", "
<<
NumDimN
<<
", "
<<
NumDimK
<<
", "
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
ABlockTransferSrcVectorDim
<<
", "
<<
BBlockTransferSrcVectorDim
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
View file @
e7c36fea
...
...
@@ -209,6 +209,8 @@ struct BlockToCTileMap_KSplit_M00_N0_M01Adapt
const
auto
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n_
.
GetLength
(
I0
),
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n_
.
GetLength
(
I1
),
NPerBlock
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
*
KSplit_
);
// hide groups
const
index_t
idx_ksplit
=
block_1d_id
/
(
M0
*
N0
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
);
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_split_k_multiple_d_xdl_cshuffle.hpp
0 → 100644
View file @
e7c36fea
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
// GEMM:
// input : A[M, K]
// input : B[N, K]
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template
<
typename
ABDataType
,
// FIXME: don't assume A/B have same datatype
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
InMemoryDataOperationEnum
EGlobalMemoryDataOperation
,
typename
AGridDesc_M_K
,
typename
BGridDesc_N_K
,
typename
DsGridDesc_M_N
,
typename
EGridDesc_M_N
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1Value
,
index_t
BK1Value
,
index_t
MPerXdl
,
index_t
NPerXdl
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
>
struct
GridwiseGemmSplitKMultipleD_xdl_cshuffle
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
// K1 should be Number<...>
static
constexpr
auto
AK1
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK1
=
Number
<
BK1Value
>
{};
static
constexpr
auto
AK0PerBlock
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK0PerBlock
=
Number
<
KPerBlock
/
BK1Value
>
{};
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
using
GridwiseGemmPipe
=
GridwiseGemmPipeline_v1
<
NumGemmKPrefetchStage
>
;
__host__
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, src of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
AK0PerBlock
,
Number
<
MPerBlock
>
{},
AK1
),
make_tuple
(
Number
<
MPerBlock
+
ABlockLdsExtraM
>
{}
*
AK1
,
AK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetABlockDescriptor_AKB_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
I1
,
AK0PerBlock
,
Number
<
MPerBlock
>
{},
AK1
),
make_tuple
(
AK0PerBlock
*
Number
<
MPerBlock
+
ABlockLdsExtraM
>
{}
*
AK1
,
Number
<
MPerBlock
+
ABlockLdsExtraM
>
{}
*
AK1
,
AK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// B matrix in LDS memory, src of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
BK0PerBlock
,
Number
<
NPerBlock
>
{},
BK1
),
make_tuple
(
Number
<
NPerBlock
+
BBlockLdsExtraN
>
{}
*
BK1
,
BK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetBBlockDescriptor_BKB_BK0PerBlock_NPerBlock_BK1
()
{
// B matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
I1
,
BK0PerBlock
,
Number
<
NPerBlock
>
{},
BK1
),
make_tuple
(
BK0PerBlock
*
Number
<
NPerBlock
+
BBlockLdsExtraN
>
{}
*
BK1
,
Number
<
NPerBlock
+
BBlockLdsExtraN
>
{}
*
BK1
,
BK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
>
{},
I1
,
Number
<
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
{}));
return
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
;
}
// ck::Tuple<const D0DataType*, const D1DataType*, ...>
static
constexpr
auto
MakeDsGridPointer
()
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
return
static_cast
<
const
DDataType
*>
(
nullptr
);
},
Number
<
NumDTensor
>
{});
}
__host__
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1
,
BK1
);
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_space_size_aligned
=
math
::
integer_least_multiple
(
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
(),
max_lds_align
);
// LDS allocation for C shuffle in LDS
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
constexpr
auto
c_block_size
=
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
((
a_block_space_size_aligned
+
b_block_space_size_aligned
)
*
sizeof
(
ABDataType
),
c_block_size
*
sizeof
(
CShuffleDataType
));
}
// A desc for source in blockwise copy
__host__
__device__
static
constexpr
auto
MakeDefaultAGridDescriptor_AKB_AK0_M_AK1
(
const
AGridDesc_M_K
&
a_grid_desc_m_k
,
const
int
split_k
)
{
const
auto
MRaw
=
a_grid_desc_m_k
.
GetLength
(
I0
);
const
auto
KRaw
=
a_grid_desc_m_k
.
GetLength
(
I1
);
const
index_t
AK0
=
(
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
*
split_k
)
*
KPerBlock
)
/
AK1
;
const
index_t
K
=
split_k
*
AK0
*
AK1
;
const
auto
KPad
=
K
-
KRaw
;
const
auto
a_grid_desc_m_kpad
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
transform_tensor_descriptor
(
a_grid_desc_m_kpad
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
split_k
,
AK0
,
AK1
)),
make_pass_through_transform
(
MRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
// B desc for source in blockwise copy
__host__
__device__
static
constexpr
auto
MakeDefaultBGridDescriptor_BKB_BK0_N_BK1
(
const
BGridDesc_N_K
&
b_grid_desc_n_k
,
const
int
split_k
)
{
const
auto
NRaw
=
b_grid_desc_n_k
.
GetLength
(
I0
);
const
auto
KRaw
=
b_grid_desc_n_k
.
GetLength
(
I1
);
const
index_t
BK0
=
(
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
*
split_k
)
*
KPerBlock
)
/
BK1
;
const
index_t
K
=
split_k
*
BK0
*
BK1
;
const
auto
KPad
=
K
-
KRaw
;
const
auto
b_grid_desc_n_kpad
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_pass_through_transform
(
NRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
transform_tensor_descriptor
(
b_grid_desc_n_kpad
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
split_k
,
BK0
,
BK1
)),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
// E desc for destination in blockwise copy
template
<
typename
EGridDescriptor_M_N
>
__host__
__device__
static
constexpr
auto
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
EGridDescriptor_M_N
&
e_grid_desc_m_n
)
{
const
auto
M
=
e_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
e_grid_desc_m_n
.
GetLength
(
I1
);
const
auto
MBlock
=
M
/
MPerBlock
;
const
auto
NBlock
=
N
/
NPerBlock
;
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
e_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
e_grid_desc_mblock_mperblock_nblock_nperblock
;
}
// Ds desc for source in blockwise copy
template
<
typename
DsGridDescriptor_M_N
>
__host__
__device__
static
constexpr
auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
DsGridDescriptor_M_N
&
ds_grid_desc_m_n
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
i
]);
},
Number
<
NumDTensor
>
{});
}
// return block_id to E matrix tile idx (m0, n0) mapping
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2ETileMap
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
,
const
int
split_k
)
{
return
BlockToCTileMap_KSplit_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
,
EGridDesc_M_N
>
(
e_grid_desc_m_n
,
8
,
split_k
);
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template
<
typename
AGridDesc_AKB_AK0_M_AK1
,
typename
BGridDesc_BKB_BK0_N_BK1
,
typename
Block2ETileMap
>
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
AGridDesc_AKB_AK0_M_AK1
&
a_grid_desc_akb_ak0_m_ak1
,
const
BGridDesc_BKB_BK0_N_BK1
&
b_grid_desc_bkb_bk0_n_bk1
,
const
DsGridDesc_M_N
&
ds_grid_desc_m_n
,
const
EGridDesc_M_N
&
e_grid_desc_m_n
,
const
Block2ETileMap
&
block_2_etile_map
)
{
static_assert
((
MPerBlock
%
(
MPerXdl
*
MXdlPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NXdlPerWave
*
NPerXdl
))
==
0
,
"Invalid tuning param!"
);
const
auto
M
=
a_grid_desc_akb_ak0_m_ak1
.
GetLength
(
I2
);
const
auto
N
=
b_grid_desc_bkb_bk0_n_bk1
.
GetLength
(
I2
);
const
auto
K
=
a_grid_desc_akb_ak0_m_ak1
.
GetLength
(
I1
)
*
a_grid_desc_akb_ak0_m_ak1
.
GetLength
(
I3
);
if
(
K
!=
b_grid_desc_bkb_bk0_n_bk1
.
GetLength
(
I1
)
*
b_grid_desc_bkb_bk0_n_bk1
.
GetLength
(
I3
))
{
return
false
;
}
if
(
a_grid_desc_akb_ak0_m_ak1
.
GetLength
(
I0
)
!=
b_grid_desc_bkb_bk0_n_bk1
.
GetLength
(
I0
))
{
return
false
;
}
// check consistency of desc
if
(
!
(
M
==
e_grid_desc_m_n
.
GetLength
(
I0
)
&&
N
==
e_grid_desc_m_n
.
GetLength
(
I1
)))
{
return
false
;
}
bool
valid
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
valid
=
valid
&&
(
M
==
ds_grid_desc_m_n
[
i
].
GetLength
(
I0
)
&&
N
==
ds_grid_desc_m_n
[
i
].
GetLength
(
I1
));
});
if
(
!
valid
)
{
return
false
;
}
// check tile size
if
(
!
(
M
%
MPerBlock
==
0
&&
N
%
NPerBlock
==
0
&&
K
%
KPerBlock
==
0
))
{
return
false
;
}
// check gridwise gemm pipeline
const
auto
num_k_loop
=
K
/
KPerBlock
;
if
(
!
GridwiseGemmPipe
::
IsSupported
(
num_k_loop
))
{
return
false
;
}
// check block-to-E-tile
if
(
!
block_2_etile_map
.
CheckValidity
(
e_grid_desc_m_n
))
{
return
false
;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
// check tensor size: cannot be larger than 2GB each
constexpr
long_index_t
TwoGB
=
(
long_index_t
{
1
}
<<
31
);
if
(
!
(
a_grid_desc_akb_ak0_m_ak1
.
GetElementSpaceSize
()
*
sizeof
(
ABDataType
)
<=
TwoGB
&&
b_grid_desc_bkb_bk0_n_bk1
.
GetElementSpaceSize
()
*
sizeof
(
ABDataType
)
<=
TwoGB
&&
e_grid_desc_m_n
.
GetElementSpaceSize
()
*
sizeof
(
EDataType
)
<=
TwoGB
))
{
return
false
;
}
return
true
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
GridwiseGemmPipe
::
CalculateHasMainLoop
(
num_loop
);
}
using
DefaultAGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
MakeDefaultAGridDescriptor_AKB_AK0_M_AK1
(
AGridDesc_M_K
{},
1
))
>
;
using
DefaultBGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
MakeDefaultBGridDescriptor_BKB_BK0_N_BK1
(
BGridDesc_N_K
{},
1
))
>
;
using
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
EGridDesc_M_N
{}))
>
;
using
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
DsGridDesc_M_N
{}))
>
;
using
DefaultBlock2ETileMap
=
remove_cvref_t
<
decltype
(
MakeDefaultBlock2ETileMap
(
EGridDesc_M_N
{},
1
))
>
;
using
DsGridPointer
=
decltype
(
MakeDsGridPointer
());
template
<
bool
HasMainKBlockLoop
,
typename
AGridDesc_AKB_AK0_M_AK1
,
typename
BGridDesc_BKB_BK0_N_BK1
,
typename
Block2ETileMap
>
__device__
static
void
Run
(
const
ABDataType
*
__restrict__
p_a_grid
,
const
ABDataType
*
__restrict__
p_b_grid
,
DsGridPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
void
*
__restrict__
p_shared
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
,
const
AGridDesc_AKB_AK0_M_AK1
&
a_grid_desc_akb_ak0_m_ak1
,
const
BGridDesc_BKB_BK0_N_BK1
&
b_grid_desc_bkb_bk0_n_bk1
,
const
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
&
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
&
e_grid_desc_mblock_mperblock_nblock_nperblock
,
const
Block2ETileMap
&
block_2_etile_map
)
{
const
auto
block_work_idx
=
block_2_etile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
if
(
block_work_idx
[
Number
<
0
>
{}]
==
0
)
{
Run0
<
HasMainKBlockLoop
>
(
p_a_grid
,
p_b_grid
,
p_ds_grid
,
p_e_grid
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
a_grid_desc_akb_ak0_m_ak1
,
b_grid_desc_bkb_bk0_n_bk1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_etile_map
);
}
else
{
Run1
<
HasMainKBlockLoop
>
(
p_a_grid
,
p_b_grid
,
p_e_grid
,
p_shared
,
a_element_op
,
b_element_op
,
a_grid_desc_akb_ak0_m_ak1
,
b_grid_desc_bkb_bk0_n_bk1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_etile_map
);
}
}
template
<
bool
HasMainKBlockLoop
,
typename
AGridDesc_AKB_AK0_M_AK1
,
typename
BGridDesc_BKB_BK0_N_BK1
,
typename
Block2ETileMap
>
__device__
static
void
Run0
(
const
ABDataType
*
__restrict__
p_a_grid
,
const
ABDataType
*
__restrict__
p_b_grid
,
DsGridPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
void
*
__restrict__
p_shared
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
,
const
AGridDesc_AKB_AK0_M_AK1
&
a_grid_desc_akb_ak0_m_ak1
,
const
BGridDesc_BKB_BK0_N_BK1
&
b_grid_desc_bkb_bk0_n_bk1
,
const
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
&
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
&
e_grid_desc_mblock_mperblock_nblock_nperblock
,
const
Block2ETileMap
&
block_2_etile_map
)
{
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_akb_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
,
b_grid_desc_bkb_bk0_n_bk1
.
GetElementSpaceSize
());
const
auto
ds_grid_buf
=
generate_tuple
(
[
&
](
auto
i
)
{
return
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_ds_grid
[
i
],
ds_grid_desc_mblock_mperblock_nblock_nperblock
[
i
].
GetElementSpaceSize
());
},
Number
<
NumDTensor
>
{});
auto
e_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_e_grid
,
e_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
// divide block work by [M, N]
const
auto
block_work_idx
=
block_2_etile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
if
(
!
block_2_etile_map
.
ValidCTileIndex
(
make_tuple
(
block_work_idx
[
I1
],
block_work_idx
[
I2
]),
make_tuple
(
e_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I0
),
e_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I2
))))
{
return
;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const
index_t
k_batch_id
=
block_work_idx
[
I0
];
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I2
]
*
NPerBlock
);
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1
,
BK1
);
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
constexpr
auto
a_block_desc_akb_ak0_m_ak1
=
GetABlockDescriptor_AKB_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
constexpr
auto
b_block_desc_bkb_bk0_n_bk1
=
GetBBlockDescriptor_BKB_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
I1
,
AK0PerBlock
,
MPerBlock
,
AK1
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABDataType
,
ABDataType
,
decltype
(
a_grid_desc_akb_ak0_m_ak1
),
decltype
(
a_block_desc_akb_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
0
,
2
,
1
,
3
>
,
ABlockTransferSrcVectorDim
,
3
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
NumGemmKPrefetchStage
>
(
a_grid_desc_akb_ak0_m_ak1
,
make_multi_index
(
k_batch_id
,
0
,
m_block_data_idx_on_grid
,
0
),
a_element_op
,
a_block_desc_akb_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// B matrix blockwise copy
auto
b_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
I1
,
BK0PerBlock
,
NPerBlock
,
BK1
>
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
ABDataType
,
ABDataType
,
decltype
(
b_grid_desc_bkb_bk0_n_bk1
),
decltype
(
b_block_desc_bkb_bk0_n_bk1
),
BBlockTransferSrcAccessOrder
,
Sequence
<
0
,
2
,
1
,
3
>
,
BBlockTransferSrcVectorDim
,
3
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
1
,
1
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
,
NumGemmKPrefetchStage
>
(
b_grid_desc_bkb_bk0_n_bk1
,
make_multi_index
(
k_batch_id
,
0
,
n_block_data_idx_on_grid
,
0
),
b_element_op
,
b_block_desc_bkb_bk0_n_bk1
,
make_multi_index
(
0
,
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1
,
BK1
),
MfmaSelector
<
ABDataType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
auto
blockwise_gemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector
<
BlockSize
,
ABDataType
,
AccDataType
,
decltype
(
a_block_desc_ak0_m_ak1
),
decltype
(
b_block_desc_bk0_n_bk1
),
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
NXdlPerWave
,
KPack
,
LoopSched
>
();
auto
c_thread_buf
=
blockwise_gemm
.
GetCThreadBuffer
();
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
ABDataType
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
ABDataType
*>
(
p_shared
)
+
a_block_space_size_aligned
,
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
0
,
KPerBlock
/
AK1
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
0
,
KPerBlock
/
BK1
,
0
,
0
);
// gridwise GEMM pipeline
const
auto
gridwise_gemm_pipeline
=
GridwiseGemmPipeline_v1_Selector
<
NumGemmKPrefetchStage
,
LoopSched
>
();
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
a_grid_desc_akb_ak0_m_ak1
.
GetLength
(
I1
)
*
a_grid_desc_akb_ak0_m_ak1
.
GetLength
(
I3
))
/
KPerBlock
);
gridwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
>(
a_grid_desc_akb_ak0_m_ak1
,
a_block_desc_akb_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_grid_desc_bkb_bk0_n_bk1
,
b_block_desc_bkb_bk0_n_bk1
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
blockwise_gemm
,
c_thread_buf
,
num_k_block_main_loop
);
// shuffle C and write out
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
CShuffleDataType
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
CShuffleDataType
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
{
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_desc_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_desc_mblock_mperblock_nblock_nperblock
[
i
];
},
Number
<
NumDTensor
>
{}));
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_buf_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_buf
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_buf
[
i
];
},
Number
<
NumDTensor
>
{}));
// tuple of starting index of C/Ds blockwise copy
const
auto
idx_c_ds_block_begin
=
container_concat
(
make_tuple
(
make_multi_index
(
0
,
0
,
0
,
0
)),
generate_tuple
(
[
&
](
auto
)
{
return
make_multi_index
(
block_work_idx
[
I1
],
0
,
block_work_idx
[
I2
],
0
);
},
Number
<
NumDTensor
>
{}));
// blockwise copy C/D/E between LDS and global
auto
cde_block_copy_lds_and_global
=
ThreadGroupTensorSliceTransfer_v7
<
ThisThreadBlock
,
decltype
(
container_concat
(
make_tuple
(
CShuffleDataType
{}),
DsDataType
{})),
Tuple
<
EDataType
>
,
decltype
(
c_ds_desc_refs
),
decltype
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
)),
CDEElementwiseOperation
,
Sequence
<
static_cast
<
index_t
>
(
EGlobalMemoryDataOperation
)
>
,
// FIXME: make
// Sequence support
// arbitray type
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DimAccessOrder,
3
,
// index_t VectorDim,
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
sequence_merge_t
<
Sequence
<
true
>
,
uniform_sequence_gen_t
<
NumDTensor
,
false
>>
,
// ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence
<
false
>>
// ThreadTransferDstResetCoordinateAfterRunFlags
{
c_ds_desc_refs
,
idx_c_ds_block_begin
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
make_tuple
(
make_multi_index
(
block_work_idx
[
I1
],
0
,
block_work_idx
[
I2
],
0
)),
cde_element_op
};
// space filling curve for threadwise C in VGPR before shuffle
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
// space filling curve for shuffled blockwise C/D/E
constexpr
auto
sfc_cde_block
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
static_assert
(
num_access
==
sfc_cde_block
.
GetNumOfAccess
(),
"wrong!"
);
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
// make sure it's safe to read from LDS
block_sync_lds
();
// each block copy its data from LDS to global
cde_block_copy_lds_and_global
.
Run
(
c_ds_desc_refs
,
c_ds_buf_refs
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
tie
(
e_grid_buf
));
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
cde_lds_and_global_step
=
sfc_cde_block
.
GetForwardStep
(
access_id
);
// move on Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
cde_block_copy_lds_and_global
.
MoveSrcSliceWindow
(
c_ds_desc_refs
,
i
+
I1
,
cde_lds_and_global_step
);
});
// move on E
cde_block_copy_lds_and_global
.
MoveDstSliceWindow
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
I0
,
cde_lds_and_global_step
);
}
});
}
}
}
template
<
bool
HasMainKBlockLoop
,
typename
AGridDesc_AKB_AK0_M_AK1
,
typename
BGridDesc_BKB_BK0_N_BK1
,
typename
Block2ETileMap
>
__device__
static
void
Run1
(
const
ABDataType
*
__restrict__
p_a_grid
,
const
ABDataType
*
__restrict__
p_b_grid
,
EDataType
*
__restrict__
p_e_grid
,
void
*
__restrict__
p_shared
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
AGridDesc_AKB_AK0_M_AK1
&
a_grid_desc_akb_ak0_m_ak1
,
const
BGridDesc_BKB_BK0_N_BK1
&
b_grid_desc_bkb_bk0_n_bk1
,
const
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
&
,
const
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
&
e_grid_desc_mblock_mperblock_nblock_nperblock
,
const
Block2ETileMap
&
block_2_etile_map
)
{
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_akb_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
,
b_grid_desc_bkb_bk0_n_bk1
.
GetElementSpaceSize
());
auto
e_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_e_grid
,
e_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
// divide block work by [M, N]
const
auto
block_work_idx
=
block_2_etile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
if
(
!
block_2_etile_map
.
ValidCTileIndex
(
make_tuple
(
block_work_idx
[
I1
],
block_work_idx
[
I2
]),
make_tuple
(
e_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I0
),
e_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I2
))))
{
return
;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const
index_t
k_batch_id
=
block_work_idx
[
I0
];
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I2
]
*
NPerBlock
);
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1
,
BK1
);
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
constexpr
auto
a_block_desc_akb_ak0_m_ak1
=
GetABlockDescriptor_AKB_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
constexpr
auto
b_block_desc_bkb_bk0_n_bk1
=
GetBBlockDescriptor_BKB_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
I1
,
AK0PerBlock
,
MPerBlock
,
AK1
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABDataType
,
ABDataType
,
decltype
(
a_grid_desc_akb_ak0_m_ak1
),
decltype
(
a_block_desc_akb_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
0
,
2
,
1
,
3
>
,
ABlockTransferSrcVectorDim
,
3
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
NumGemmKPrefetchStage
>
(
a_grid_desc_akb_ak0_m_ak1
,
make_multi_index
(
k_batch_id
,
0
,
m_block_data_idx_on_grid
,
0
),
a_element_op
,
a_block_desc_akb_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// B matrix blockwise copy
auto
b_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
I1
,
BK0PerBlock
,
NPerBlock
,
BK1
>
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
ABDataType
,
ABDataType
,
decltype
(
b_grid_desc_bkb_bk0_n_bk1
),
decltype
(
b_block_desc_bkb_bk0_n_bk1
),
BBlockTransferSrcAccessOrder
,
Sequence
<
0
,
2
,
1
,
3
>
,
BBlockTransferSrcVectorDim
,
3
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
1
,
1
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
,
NumGemmKPrefetchStage
>
(
b_grid_desc_bkb_bk0_n_bk1
,
make_multi_index
(
k_batch_id
,
0
,
n_block_data_idx_on_grid
,
0
),
b_element_op
,
b_block_desc_bkb_bk0_n_bk1
,
make_multi_index
(
0
,
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1
,
BK1
),
MfmaSelector
<
ABDataType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
auto
blockwise_gemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector
<
BlockSize
,
ABDataType
,
AccDataType
,
decltype
(
a_block_desc_ak0_m_ak1
),
decltype
(
b_block_desc_bk0_n_bk1
),
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
NXdlPerWave
,
KPack
,
LoopSched
>
();
auto
c_thread_buf
=
blockwise_gemm
.
GetCThreadBuffer
();
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
ABDataType
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
ABDataType
*>
(
p_shared
)
+
a_block_space_size_aligned
,
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
0
,
KPerBlock
/
AK1
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
0
,
KPerBlock
/
BK1
,
0
,
0
);
// gridwise GEMM pipeline
const
auto
gridwise_gemm_pipeline
=
GridwiseGemmPipeline_v1_Selector
<
NumGemmKPrefetchStage
,
LoopSched
>
();
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
a_grid_desc_akb_ak0_m_ak1
.
GetLength
(
I1
)
*
a_grid_desc_akb_ak0_m_ak1
.
GetLength
(
I3
))
/
KPerBlock
);
gridwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
>(
a_grid_desc_akb_ak0_m_ak1
,
a_block_desc_akb_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_grid_desc_bkb_bk0_n_bk1
,
b_block_desc_bkb_bk0_n_bk1
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
blockwise_gemm
,
c_thread_buf
,
num_k_block_main_loop
);
// shuffle C and write out
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
CShuffleDataType
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
CShuffleDataType
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
{
// shuffle: blockwise copy C from LDS to global
auto
c_shuffle_block_copy_lds_to_global
=
ThreadGroupTensorSliceTransfer_v6r1
<
ThisThreadBlock
,
// ThreadGroup
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
// ElementwiseOperation,
EGlobalMemoryDataOperation
,
// DstInMemOp,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
CShuffleDataType
,
// typename SrcData,
EDataType
,
// typename DstData,
decltype
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
decltype
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DimAccessOrder,
3
,
// index_t VectorDim,
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
// index_t ScalarPerVector,
true
,
// bool ThreadTransferSrcResetCoordinateAfterRun,
false
>
// bool ThreadTransferDstResetCoordinateAfterRun>
{
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
0
,
0
,
0
,
0
),
e_grid_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
block_work_idx
[
I1
],
0
,
block_work_idx
[
I2
],
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
// space filling curve for shuffled blockwise C in global mem
constexpr
auto
sfc_c_global
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
static_assert
(
num_access
==
sfc_c_global
.
GetNumOfAccess
(),
"wrong!"
);
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
// make sure it's safe to read from LDS
block_sync_lds
();
// each block copy its data from LDS to global
c_shuffle_block_copy_lds_to_global
.
Run
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
c_shuffle_block_buf
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_buf
);
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
c_global_step
=
sfc_c_global
.
GetForwardStep
(
access_id
);
// move on C
c_shuffle_block_copy_lds_to_global
.
MoveDstSliceWindow
(
e_grid_desc_mblock_mperblock_nblock_nperblock
,
c_global_step
);
}
});
}
}
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_layernorm_welford_variance.hpp
View file @
e7c36fea
...
...
@@ -57,7 +57,7 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
make_cluster_descriptor
(
ThreadClusterLengths_M_K
{},
ThreadClusterArrangeOrder
{});
using
ThreadReduceSrcDesc_M_K
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSlice
Size
>
{})));
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
XSrcVector
Size
>
{})));
using
ThreadReduceDstDesc_M
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{})));
...
...
@@ -73,8 +73,14 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
constexpr
index_t
K_BlockTileStepSize
=
KThreadClusterSize
*
XSrcVectorSize
;
static
constexpr
auto
XThreadBufferNumber
=
Number
<
KThreadSliceSize
/
XSrcVectorSize
>
{};
static
constexpr
auto
GammaThreadBufferNumber
=
Number
<
KThreadSliceSize
/
XSrcVectorSize
>
{};
static
constexpr
auto
BetaThreadBufferNumber
=
Number
<
KThreadSliceSize
/
XSrcVectorSize
>
{};
static
constexpr
auto
YThreadBufferNumber
=
Number
<
KThreadSliceSize
/
XSrcVectorSize
>
{};
__device__
static
int
GetKPerThread
(
const
GridDesc_M_K
&
x_grid_desc_m_k
,
int
thread_k_cluster_id
)
...
...
@@ -87,10 +93,13 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
if
(
kPerBlockTail
>
0
)
{
int
thread_max_len
=
(
thread_k_cluster_id
+
1
)
*
KThreadSliceSize
;
int
delta
=
thread_max_len
-
kPerBlockTail
;
delta
=
math
::
clamp
(
thread_max_len
-
kPerBlockTail
,
0
,
KThreadSliceSize
);
kPerThread
+=
KThreadSliceSize
-
delta
;
static_for
<
0
,
XThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
int
thread_max_len
=
(
thread_k_cluster_id
+
1
)
*
XSrcVectorSize
+
K_BlockTileStepSize
*
i
;
int
delta
=
thread_max_len
-
kPerBlockTail
;
delta
=
math
::
clamp
(
thread_max_len
-
kPerBlockTail
,
0
,
XSrcVectorSize
);
kPerThread
+=
XSrcVectorSize
-
delta
;
});
}
return
kPerThread
;
...
...
@@ -116,19 +125,41 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
auto
y_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_y_global
,
y_grid_desc_m_k
.
GetElementSpaceSize
());
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
x_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
gamma_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>&
beta_thread_buf
=
gamma_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
y_thread_buf
;
auto
x_thread_buf
=
generate_tuple
(
[
&
](
auto
)
{
return
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
XSrcVectorSize
,
true
>
{};
},
Number
<
XThreadBufferNumber
>
{});
auto
gamma_thread_buf
=
generate_tuple
(
[
&
](
auto
)
{
return
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
GammaSrcVectorSize
,
true
>
{};
},
Number
<
GammaThreadBufferNumber
>
{});
auto
beta_thread_buf
=
generate_tuple
(
[
&
](
auto
)
{
return
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
BetaSrcVectorSize
,
true
>
{};
},
Number
<
BetaThreadBufferNumber
>
{});
auto
y_thread_buf
=
generate_tuple
(
[
&
](
auto
)
{
return
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
YDstVectorSize
,
true
>
{};
},
Number
<
YThreadBufferNumber
>
{});
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
mean_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
var_thread_buf
;
...
...
@@ -142,9 +173,9 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
const
auto
thread_m_cluster_id
=
thread_cluster_idx
[
I0
];
const
auto
thread_k_cluster_id
=
thread_cluster_idx
[
I1
];
using
ThreadBufferLengths_M_K
=
Sequence
<
MThreadSliceSize
,
KThreadSlice
Size
>
;
using
ThreadBufferLengths_M_K
=
Sequence
<
MThreadSliceSize
,
XSrcVector
Size
>
;
constexpr
auto
thread_buffer_desc_m_k
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSlice
Size
>
{}));
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
XSrcVector
Size
>
{}));
auto
threadwise_x_load
=
ThreadwiseTensorSliceTransfer_v2
<
XDataType
,
AccDataType
,
...
...
@@ -159,7 +190,7 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
x_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSlice
Size
));
thread_k_cluster_id
*
XSrcVector
Size
));
auto
threadwise_gamma_load
=
ThreadwiseTensorSliceTransfer_v2
<
GammaDataType
,
...
...
@@ -175,7 +206,7 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
gamma_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSlice
Size
));
thread_k_cluster_id
*
GammaSrcVector
Size
));
auto
threadwise_beta_load
=
ThreadwiseTensorSliceTransfer_v2
<
BetaDataType
,
...
...
@@ -191,7 +222,7 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
beta_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSlice
Size
));
thread_k_cluster_id
*
BetaSrcVector
Size
));
auto
threadwise_y_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
...
...
@@ -209,13 +240,10 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
y_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSlice
Size
),
thread_k_cluster_id
*
YDstVector
Size
),
acc_elementwise_op
);
// Copy x from Cache
// one pass: fwd, second pass: bwd
constexpr
auto
thread_copy_fwd_step_m_k
=
make_multi_index
(
0
,
SweepOnce
?
0
:
K_BlockTileSize
);
constexpr
auto
thread_copy_fwd_step_m_k
=
make_multi_index
(
0
,
K_BlockTileStepSize
);
constexpr
auto
thread_copy_bwd_step_m_k
=
make_multi_index
(
0
,
SweepOnce
?
0
:
-
K_BlockTileSize
);
...
...
@@ -238,14 +266,15 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
for
(
index_t
reducedTiles
=
0
;
reducedTiles
<
num_k_block_tile_iteration
;
++
reducedTiles
)
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
x_thread_buf
);
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
threadwise_welford
.
Run
(
x_thread_buf
,
mean_thread_buf
,
var_thread_buf
);
static_for
<
0
,
XThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
x_thread_buf
(
i
));
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
threadwise_welford
.
Run
(
x_thread_buf
[
i
],
mean_thread_buf
,
var_thread_buf
);
});
}
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
...
...
@@ -256,7 +285,8 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
BlockwiseWelford
::
Run
(
mean_thread_buf
(
I
),
var_thread_buf
(
I
),
count
);
});
auto
thread_copy_tail_m_k
=
(
num_k_block_tile_iteration
-
1
)
*
thread_copy_fwd_step_m_k
;
auto
thread_copy_tail_m_k
=
(
num_k_block_tile_iteration
-
1
)
*
XThreadBufferNumber
*
thread_copy_fwd_step_m_k
;
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
thread_copy_tail_m_k
);
...
...
@@ -267,62 +297,86 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
{
if
constexpr
(
!
SweepOnce
)
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
x_thread_buf
);
static_for
<
0
,
XThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
x_thread_buf
(
i
));
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
}
threadwise_gamma_load
.
Run
(
gamma_grid_desc_m_k
,
gamma_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
gamma_thread_buf
);
static_for
<
0
,
GammaThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_gamma_load
.
Run
(
gamma_grid_desc_m_k
,
gamma_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
gamma_thread_buf
(
i
));
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
// normalize
y_thread_buf
(
Number
<
offset_m_k
>
{})
=
(
x_thread_buf
(
Number
<
offset_m_k
>
{})
-
mean_thread_buf
(
iM
))
/
sqrt
(
var_thread_buf
(
iM
)
+
epsilon
);
// gamma
y_thread_buf
(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
Number
<
offset_m_k
>
{})
*
gamma_thread_buf
(
Number
<
offset_m_k
>
{});
auto
divisor
=
1
/
__builtin_amdgcn_sqrtf
(
var_thread_buf
(
iM
)
+
epsilon
);
static_for
<
0
,
XThreadBufferNumber
,
1
>
{}([
&
](
auto
iK0
)
{
static_for
<
0
,
XSrcVectorSize
,
1
>
{}([
&
](
auto
iK1
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK1
));
// normalize
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
=
(
x_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
-
mean_thread_buf
(
iM
))
*
divisor
;
// gamma
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
*
gamma_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{});
});
});
});
threadwise_beta_load
.
Run
(
beta_grid_desc_m_k
,
beta_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
beta_thread_buf
);
static_for
<
0
,
BetaThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_beta_load
.
Run
(
beta_grid_desc_m_k
,
beta_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
beta_thread_buf
(
i
));
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
// beta
y_thread_buf
(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
Number
<
offset_m_k
>
{})
+
beta_thread_buf
(
Number
<
offset_m_k
>
{});
static_for
<
0
,
XThreadBufferNumber
,
1
>
{}([
&
](
auto
iK0
)
{
static_for
<
0
,
XSrcVectorSize
,
1
>
{}([
&
](
auto
iK1
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK1
));
// beta
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
+
beta_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{});
});
});
});
threadwise_y_store
.
Run
(
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
y_thread_buf
,
y_grid_desc_m_k
,
y_global_val_buf
);
static_for
<
0
,
YThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_y_store
.
Run
(
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
y_thread_buf
(
i
),
y_grid_desc_m_k
,
y_global_val_buf
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
}
}
};
...
...
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f16_instance.cpp
View file @
e7c36fea
...
...
@@ -31,7 +31,9 @@ using device_layernorm_f16_instances = std::tuple<
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
8
,
1
,
2
,
1
,
2
,
1
,
2
,
2
>
// clang-format on
>
;
...
...
test/layernorm/test_groupnorm_fp16.cpp
View file @
e7c36fea
...
...
@@ -26,6 +26,8 @@ class TestGroupnorm : public ::testing::Test
{
256
,
9
,
9
,
9
,
9
},
{
1
,
64
,
64
,
32
,
10
},
{
1
,
32
,
32
,
32
,
20
},
{
2
,
32
,
32
,
32
,
30
},
{
2
,
32
,
32
,
32
,
40
},
{
1
,
16
,
16
,
32
,
40
}};
for
(
auto
length
:
lengths
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment