Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
dd6a8de4
Commit
dd6a8de4
authored
Apr 06, 2022
by
Jehandad Khan
Browse files
Merge branch 'develop' into jd/dev_pkg
parents
0aa899aa
abf4bdb9
Changes
470
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1407 additions
and
215 deletions
+1407
-215
example/15_grouped_gemm/CMakeLists.txt
example/15_grouped_gemm/CMakeLists.txt
+1
-0
example/15_grouped_gemm/README.md
example/15_grouped_gemm/README.md
+25
-0
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
+235
-0
example/16_gemm_reduce/CMakeLists.txt
example/16_gemm_reduce/CMakeLists.txt
+1
-0
example/16_gemm_reduce/gemm_reduce_xdl_fp16.cpp
example/16_gemm_reduce/gemm_reduce_xdl_fp16.cpp
+266
-0
example/17_convnd_bwd_data_xdl/CMakeLists.txt
example/17_convnd_bwd_data_xdl/CMakeLists.txt
+1
-0
example/17_convnd_bwd_data_xdl/README.md
example/17_convnd_bwd_data_xdl/README.md
+47
-0
example/17_convnd_bwd_data_xdl/convnd_bwd_data_xdl.cpp
example/17_convnd_bwd_data_xdl/convnd_bwd_data_xdl.cpp
+350
-0
example/18_batched_gemm_reduce/CMakeLists.txt
example/18_batched_gemm_reduce/CMakeLists.txt
+2
-0
example/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
...e/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
+281
-0
example/CMakeLists.txt
example/CMakeLists.txt
+7
-3
include/ck/config.hpp
include/ck/config.hpp
+70
-91
include/ck/problem_transform/transform_backward_data_convolution_into_gemm_v4r1_nhwc_kyxc_nhwk.hpp
...ckward_data_convolution_into_gemm_v4r1_nhwc_kyxc_nhwk.hpp
+55
-55
include/ck/problem_transform/transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk.hpp
...ward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk.hpp
+53
-53
include/ck/tensor/static_tensor.hpp
include/ck/tensor/static_tensor.hpp
+4
-4
include/ck/tensor_operation/gpu/block/blockwise_gemm_dlops_v2r2.hpp
.../tensor_operation/gpu/block/blockwise_gemm_dlops_v2r2.hpp
+2
-2
include/ck/tensor_operation/gpu/block/blockwise_gemm_dlops_v2r3.hpp
.../tensor_operation/gpu/block/blockwise_gemm_dlops_v2r3.hpp
+2
-2
include/ck/tensor_operation/gpu/block/blockwise_gemm_dlops_v3.hpp
...ck/tensor_operation/gpu/block/blockwise_gemm_dlops_v3.hpp
+1
-1
include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
...e/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
+3
-3
include/ck/tensor_operation/gpu/block/blockwise_tensor_slice_transfer_v4r1.hpp
...ration/gpu/block/blockwise_tensor_slice_transfer_v4r1.hpp
+1
-1
No files found.
example/15_grouped_gemm/CMakeLists.txt
0 → 100644
View file @
dd6a8de4
add_example_executable
(
example_grouped_gemm_xdl_fp16 grouped_gemm_xdl_fp16.cpp
)
example/15_grouped_gemm/README.md
0 → 100644
View file @
dd6a8de4
# Instructions for ```example_grouped_gemm_xdl```
## Run ```example_grouped_gemm_xdl```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
./bin/example_grouped_gemm_xdl_fp16 0 1 5
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
gemm[0] a_m_k: dim 2, lengths {256, 64}, strides {64, 1} b_k_n: dim 2, lengths {64, 128}, strides {1, 64} c_m_n: dim 2, lengths {256, 128}, strides {128, 1}
gemm[1] a_m_k: dim 2, lengths {512, 128}, strides {128, 1} b_k_n: dim 2, lengths {128, 256}, strides {1, 128} c_m_n: dim 2, lengths {512, 256}, strides {256, 1}
gemm[2] a_m_k: dim 2, lengths {768, 192}, strides {192, 1} b_k_n: dim 2, lengths {192, 384}, strides {1, 192} c_m_n: dim 2, lengths {768, 384}, strides {384, 1}
gemm[3] a_m_k: dim 2, lengths {1024, 256}, strides {256, 1} b_k_n: dim 2, lengths {256, 512}, strides {1, 256} c_m_n: dim 2, lengths {1024, 512}, strides {512, 1}
group: 0 arg.a_grid_desc_k0_m_k1_{8, 256, 8}, arg.b_grid_desc_k0_n_k1_{8, 128, 8}, arg.c_grid_desc_m_n_{ 256, 128}
group: 1 arg.a_grid_desc_k0_m_k1_{16, 512, 8}, arg.b_grid_desc_k0_n_k1_{16, 256, 8}, arg.c_grid_desc_m_n_{ 512, 256}
group: 2 arg.a_grid_desc_k0_m_k1_{24, 768, 8}, arg.b_grid_desc_k0_n_k1_{24, 384, 8}, arg.c_grid_desc_m_n_{ 768, 384}
group: 3 arg.a_grid_desc_k0_m_k1_{32, 1024, 8}, arg.b_grid_desc_k0_n_k1_{32, 512, 8}, arg.c_grid_desc_m_n_{ 1024, 512}
launch_and_time_kernel: grid_dim {30, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 0.037887 ms, 11.0706 TFlops, 90.8132 GB/s, DeviceGroupedGemmXdl<256, 256, 128, 4, 8, 32, 32, 4, 2>
```
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
0 → 100644
View file @
dd6a8de4
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_grouped_gemm_xdl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// static constexpr auto GemmMNPadding =
// ck::tensor_operation::device::GemmSpecialization::MNPadding;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmXdl
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer| Num|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar| Prefetch|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector| |
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
F16
,
F16
,
F16
,
F32
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
7
,
1
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
exit
(
0
);
}
int
group_count
=
4
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmShape
>
gemm_shapes
;
std
::
vector
<
const
void
*>
p_a
,
p_b
;
std
::
vector
<
void
*>
p_c
;
gemm_shapes
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
int
M
=
256
+
256
*
i
;
int
N
=
128
+
128
*
i
;
int
K
=
64
+
64
*
i
;
gemm_shapes
.
push_back
({
M
,
N
,
K
,
K
,
K
,
N
});
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
CDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
CDataType
>>
c_device_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
c_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
gemm_shapes
.
size
();
i
++
)
{
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
gemm_shapes
[
i
].
M
,
gemm_shapes
[
i
].
K
,
gemm_shapes
[
i
].
StrideA
,
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
gemm_shapes
[
i
].
K
,
gemm_shapes
[
i
].
N
,
gemm_shapes
[
i
].
StrideB
,
BLayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
gemm_shapes
[
i
].
M
,
gemm_shapes
[
i
].
N
,
gemm_shapes
[
i
].
StrideC
,
CLayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
gemm_shapes
[
i
].
M
,
gemm_shapes
[
i
].
N
,
gemm_shapes
[
i
].
StrideC
,
CLayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
gemm_shapes
[
i
].
M
*
gemm_shapes
[
i
].
K
*
gemm_shapes
[
i
].
N
;
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
CDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
}
for
(
int
i
=
0
;
i
<
gemm_shapes
.
size
();
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSpace
()));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSpace
()));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
CDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSpace
()));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
());
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
());
p_a
.
push_back
(
a_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_b
.
push_back
(
b_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_c
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
p_a
,
p_b
,
p_c
,
gemm_shapes
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
for
(
int
i
=
0
;
i
<
gemm_shapes
.
size
();
i
++
)
{
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
());
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
ck
::
utils
::
check_err
(
c_device_tensors
[
i
].
mData
,
c_host_tensors
[
i
].
mData
);
}
}
return
0
;
}
example/16_gemm_reduce/CMakeLists.txt
0 → 100644
View file @
dd6a8de4
add_example_executable
(
example_gemm_reduce_xdl_fp16 gemm_reduce_xdl_fp16.cpp
)
example/16_gemm_reduce/gemm_reduce_xdl_fp16.cpp
0 → 100644
View file @
dd6a8de4
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_reduce_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "element_wise_reduce_operation.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
DDataType
=
F32
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
D0ReduceOp
=
ck
::
tensor_operation
::
element_wise
::
ReduceSum
;
using
D1ReduceOp
=
ck
::
tensor_operation
::
element_wise
::
ReduceSquareSum
;
static
constexpr
auto
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D0| D1| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
AElementOp
,
BElementOp
,
CElementOp
,
D0ReduceOp
,
D1ReduceOp
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
1
;
int
init_method
=
1
;
int
nrepeat
=
5
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
d0_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
DDataType
>
d1_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
d0_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
DDataType
>
d1_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m: "
<<
d0_m_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_m: "
<<
d1_m_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
d0_device_buf
(
sizeof
(
DDataType
)
*
d0_m_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
d1_device_buf
(
sizeof
(
DDataType
)
*
d1_m_device_result
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
auto
d0_reduce_op
=
D0ReduceOp
{};
auto
d1_reduce_op
=
D1ReduceOp
{};
// do GEMM
auto
gemm
=
DeviceGemmReduceInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d1_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
,
d0_reduce_op
,
d1_reduce_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
// warm up
invoker
.
Run
(
argument
);
// timing
float
total_time
=
0
;
for
(
int
i
=
0
;
i
<
nrepeat
;
++
i
)
{
// init DO, D1 to 0
d0_device_buf
.
SetZero
();
d1_device_buf
.
SetZero
();
KernelTimer
timer
;
timer
.
Start
();
invoker
.
Run
(
argument
);
timer
.
End
();
total_time
+=
timer
.
GetElapsedTime
();
}
float
ave_time
=
total_time
/
nrepeat
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
d0_device_buf
.
FromDevice
(
d0_m_device_result
.
mData
.
data
());
d1_device_buf
.
FromDevice
(
d1_m_device_result
.
mData
.
data
());
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
float
d0_acc
=
d0_reduce_op
.
GetReduceZeroValue
();
float
d1_acc
=
d1_reduce_op
.
GetReduceZeroValue
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
d0_reduce_op
.
Reduce
(
d0_acc
,
c_m_n_host_result
(
m
,
n
));
d1_reduce_op
.
Reduce
(
d1_acc
,
c_m_n_host_result
(
m
,
n
));
}
d0_m_host_result
(
m
)
=
d0_acc
;
d1_m_host_result
(
m
)
=
d1_acc
;
}
check_error
(
c_m_n_host_result
,
c_m_n_device_result
);
check_error
(
d0_m_host_result
,
d0_m_device_result
);
check_error
(
d1_m_host_result
,
d1_m_device_result
);
}
return
0
;
}
example/17_convnd_bwd_data_xdl/CMakeLists.txt
0 → 100644
View file @
dd6a8de4
add_example_executable
(
example_convnd_bwd_data_xdl convnd_bwd_data_xdl.cpp
)
example/17_convnd_bwd_data_xdl/README.md
0 → 100644
View file @
dd6a8de4
# Instructions for ```example_convnd_bwd_data_xdl```
## Run ```example_example_convnd_bwd_data_xdl```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4: num_dim_spatial(1|2|3)
#arg5 to ...: N, K, C, [Z,] [Y,] X, [Di,] [Hi,] Wi, S[z,] [Sy,] Sx, [Dz,] [Dy,] Dx, [LeftPz,] [LeftPy,] LeftPx, [RightPy,] [RightPy,] RightPx
./bin/example_convnd_bwd_data_xdl 0 1 5
```
Result
```
in_n_c_hi_wi: dim 4, lengths {128, 128, 71, 71}, strides {645248, 1, 9088, 128}
wei_k_c_y_x: dim 4, lengths {256, 128, 3, 3}, strides {1152, 1, 384, 128}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
arg.a_grid_desc_k0_m_k1_container_{128, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{128, 128, 8}
arg.c_grid_desc_m_n_container_{ 175232, 128}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 2, 2, 2, 4, 2 )
launch_and_time_kernel: grid_dim {1369, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 1 times...
arg.a_grid_desc_k0_m_k1_container_{64, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{64, 128, 8}
arg.c_grid_desc_m_n_container_{ 175232, 128}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 2, 2, 2, 4, 2 )
launch_and_time_kernel: grid_dim {1369, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 1 times...
arg.a_grid_desc_k0_m_k1_container_{64, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{64, 128, 8}
arg.c_grid_desc_m_n_container_{ 175232, 128}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 2, 2, 2, 4, 2 )
launch_and_time_kernel: grid_dim {1369, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 1 times...
arg.a_grid_desc_k0_m_k1_container_{32, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{32, 128, 8}
arg.c_grid_desc_m_n_container_{ 175232, 128}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 2, 2, 2, 4, 2 )
launch_and_time_kernel: grid_dim {1369, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 1 times...
Perf: 1.40031 ms, 69.8734 TFlops, 179.037 GB/s
```
example/17_convnd_bwd_data_xdl/convnd_bwd_data_xdl.cpp
0 → 100644
View file @
dd6a8de4
This diff is collapsed.
Click to expand it.
example/18_batched_gemm_reduce/CMakeLists.txt
0 → 100644
View file @
dd6a8de4
add_example_executable
(
example_batched_gemm_reduce_xdl_fp16 batched_gemm_reduce_xdl_fp16.cpp
)
example/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
0 → 100644
View file @
dd6a8de4
This diff is collapsed.
Click to expand it.
example/CMakeLists.txt
View file @
dd6a8de4
...
@@ -13,6 +13,7 @@ include_directories(BEFORE
...
@@ -13,6 +13,7 @@ include_directories(BEFORE
${
PROJECT_SOURCE_DIR
}
/library/include/ck/library/host_tensor
${
PROJECT_SOURCE_DIR
}
/library/include/ck/library/host_tensor
${
PROJECT_SOURCE_DIR
}
/library/include/ck/library/reference_tensor_operation/cpu
${
PROJECT_SOURCE_DIR
}
/library/include/ck/library/reference_tensor_operation/cpu
${
PROJECT_SOURCE_DIR
}
/library/include/ck/library/reference_tensor_operation/gpu
${
PROJECT_SOURCE_DIR
}
/library/include/ck/library/reference_tensor_operation/gpu
${
PROJECT_SOURCE_DIR
}
/library/include/ck/library/utility
${
PROJECT_SOURCE_DIR
}
/external/include/half
${
PROJECT_SOURCE_DIR
}
/external/include/half
)
)
...
@@ -30,12 +31,15 @@ add_subdirectory(01_gemm)
...
@@ -30,12 +31,15 @@ add_subdirectory(01_gemm)
add_subdirectory
(
02_gemm_alpha_beta
)
add_subdirectory
(
02_gemm_alpha_beta
)
add_subdirectory
(
03_gemm_bias_relu
)
add_subdirectory
(
03_gemm_bias_relu
)
add_subdirectory
(
04_gemm_bias_relu_add
)
add_subdirectory
(
04_gemm_bias_relu_add
)
add_subdirectory
(
05_conv2d_fwd
)
add_subdirectory
(
06_conv2d_fwd_bias_relu
)
add_subdirectory
(
06_conv2d_fwd_bias_relu
)
add_subdirectory
(
07_conv2d_fwd_bias_relu_add
)
add_subdirectory
(
07_conv2d_fwd_bias_relu_add
)
add_subdirectory
(
08_conv3d_fwd
)
add_subdirectory
(
09_convnd_fwd
)
add_subdirectory
(
09_convnd_fwd
)
add_subdirectory
(
10_conv2d_bwd_data
)
add_subdirectory
(
10_conv2d_bwd_data
)
add_subdirectory
(
11_conv2d_bwd_w
g
t
)
add_subdirectory
(
11_conv2d_bwd_w
eigh
t
)
add_subdirectory
(
12_reduce
)
add_subdirectory
(
12_reduce
)
add_subdirectory
(
13_pool2d_fwd
)
add_subdirectory
(
13_pool2d_fwd
)
add_subdirectory
(
14_gemm_xdl_requant_relu_requant
)
add_subdirectory
(
17_convnd_bwd_data_xdl
)
add_subdirectory
(
15_grouped_gemm
)
add_subdirectory
(
16_gemm_reduce
)
add_subdirectory
(
18_batched_gemm_reduce
)
include/ck/config.hpp
View file @
dd6a8de4
This diff is collapsed.
Click to expand it.
include/ck/problem_transform/transform_backward_data_convolution_into_gemm_v4r1_nhwc_kyxc_nhwk.hpp
View file @
dd6a8de4
This diff is collapsed.
Click to expand it.
include/ck/problem_transform/transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk.hpp
View file @
dd6a8de4
This diff is collapsed.
Click to expand it.
include/ck/tensor/static_tensor.hpp
View file @
dd6a8de4
...
@@ -4,7 +4,7 @@
...
@@ -4,7 +4,7 @@
namespace
ck
{
namespace
ck
{
// StaticTensor for Scalar
// StaticTensor for Scalar
template
<
AddressSpaceEnum
_t
AddressSpace
,
template
<
AddressSpaceEnum
AddressSpace
,
typename
T
,
typename
T
,
typename
TensorDesc
,
typename
TensorDesc
,
bool
InvalidElementUseNumericalZeroValue
,
bool
InvalidElementUseNumericalZeroValue
,
...
@@ -80,7 +80,7 @@ struct StaticTensor
...
@@ -80,7 +80,7 @@ struct StaticTensor
};
};
// StaticTensor for vector
// StaticTensor for vector
template
<
AddressSpaceEnum
_t
AddressSpace
,
template
<
AddressSpaceEnum
AddressSpace
,
typename
S
,
typename
S
,
index_t
ScalarPerVector
,
index_t
ScalarPerVector
,
typename
TensorDesc
,
typename
TensorDesc
,
...
@@ -245,7 +245,7 @@ struct StaticTensorTupleOfVectorBuffer
...
@@ -245,7 +245,7 @@ struct StaticTensorTupleOfVectorBuffer
S
ignored_element_scalar_
;
S
ignored_element_scalar_
;
};
};
template
<
AddressSpaceEnum
_t
AddressSpace
,
template
<
AddressSpaceEnum
AddressSpace
,
typename
T
,
typename
T
,
typename
TensorDesc
,
typename
TensorDesc
,
typename
enable_if
<
TensorDesc
::
IsKnownAtCompileTime
(),
bool
>
::
type
=
false
>
typename
enable_if
<
TensorDesc
::
IsKnownAtCompileTime
(),
bool
>
::
type
=
false
>
...
@@ -255,7 +255,7 @@ __host__ __device__ constexpr auto make_static_tensor(TensorDesc)
...
@@ -255,7 +255,7 @@ __host__ __device__ constexpr auto make_static_tensor(TensorDesc)
}
}
template
<
template
<
AddressSpaceEnum
_t
AddressSpace
,
AddressSpaceEnum
AddressSpace
,
typename
T
,
typename
T
,
typename
TensorDesc
,
typename
TensorDesc
,
typename
X
,
typename
X
,
...
...
include/ck/tensor_operation/gpu/block/blockwise_gemm_dlops_v2r2.hpp
View file @
dd6a8de4
...
@@ -207,9 +207,9 @@ struct BlockwiseGemmDlops_km_kn_m0m1n0n1_v2r2_pipeline_2x2
...
@@ -207,9 +207,9 @@ struct BlockwiseGemmDlops_km_kn_m0m1n0n1_v2r2_pipeline_2x2
CM0M1N0N1ThreadDesc
{}.
GetLength
(
I2
)
==
N0
,
CM0M1N0N1ThreadDesc
{}.
GetLength
(
I2
)
==
N0
,
"wrong"
);
"wrong"
);
auto
a_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
_t
::
Vgpr
,
FloatA
>
(
auto
a_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatA
>
(
a_k_m0_m1_thread_desc_
.
GetElementSpaceSize
());
a_k_m0_m1_thread_desc_
.
GetElementSpaceSize
());
auto
b_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
_t
::
Vgpr
,
FloatB
>
(
auto
b_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatB
>
(
b_k_n0_n1_thread_desc_
.
GetElementSpaceSize
());
b_k_n0_n1_thread_desc_
.
GetElementSpaceSize
());
constexpr
auto
threadwise_gemm
=
constexpr
auto
threadwise_gemm
=
...
...
include/ck/tensor_operation/gpu/block/blockwise_gemm_dlops_v2r3.hpp
View file @
dd6a8de4
...
@@ -220,9 +220,9 @@ struct BlockwiseGemmDlops_A_BK0_BM_BK1_B_BK0_BN_BK1_C_BM0_BM1_BN0_BN1_pipeline_B
...
@@ -220,9 +220,9 @@ struct BlockwiseGemmDlops_A_BK0_BM_BK1_B_BK0_BN_BK1_C_BM0_BM1_BN0_BN1_pipeline_B
CThreadDesc_BM0_BM11_BN0_BN11
{}.
GetLength
(
I2
)
==
BN0
,
CThreadDesc_BM0_BM11_BN0_BN11
{}.
GetLength
(
I2
)
==
BN0
,
"wrong"
);
"wrong"
);
auto
a_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
_t
::
Vgpr
,
FloatA
>
(
auto
a_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatA
>
(
a_thread_desc_bk0_bm0_bm1_bk1_
.
GetElementSpaceSize
());
a_thread_desc_bk0_bm0_bm1_bk1_
.
GetElementSpaceSize
());
auto
b_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
_t
::
Vgpr
,
FloatB
>
(
auto
b_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatB
>
(
b_thread_desc_bk0_bn0_bn1_bk1_
.
GetElementSpaceSize
());
b_thread_desc_bk0_bn0_bn1_bk1_
.
GetElementSpaceSize
());
constexpr
auto
threadwise_contraction
=
constexpr
auto
threadwise_contraction
=
...
...
include/ck/tensor_operation/gpu/block/blockwise_gemm_dlops_v3.hpp
View file @
dd6a8de4
...
@@ -119,7 +119,7 @@ struct BlockwiseGemmDlops_km_kn_m0m1n0n1_v3
...
@@ -119,7 +119,7 @@ struct BlockwiseGemmDlops_km_kn_m0m1n0n1_v3
constexpr
auto
a_block_mtx
=
ABlockDesc_E1_K1_E2
{};
constexpr
auto
a_block_mtx
=
ABlockDesc_E1_K1_E2
{};
// thread A buffer for GEMM
// thread A buffer for GEMM
StaticBuffer
<
AddressSpaceEnum
_t
::
Vgpr
,
FloatA
,
a_thread_mtx_
.
GetElementSpaceSize
(),
true
>
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
FloatA
,
a_thread_mtx_
.
GetElementSpaceSize
(),
true
>
a_thread_buf
;
a_thread_buf
;
constexpr
auto
threadwise_gemm
=
ThreadwiseGemmDlops_km_kn_mn_v3
<
FloatA
,
constexpr
auto
threadwise_gemm
=
ThreadwiseGemmDlops_km_kn_mn_v3
<
FloatA
,
...
...
include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
View file @
dd6a8de4
...
@@ -42,7 +42,7 @@ struct BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
...
@@ -42,7 +42,7 @@ struct BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
static
constexpr
index_t
MWaves
=
MPerBlock
/
(
MRepeat
*
MPerXDL
);
static
constexpr
index_t
MWaves
=
MPerBlock
/
(
MRepeat
*
MPerXDL
);
static
constexpr
index_t
NWaves
=
NPerBlock
/
(
NRepeat
*
NPerXDL
);
static
constexpr
index_t
NWaves
=
NPerBlock
/
(
NRepeat
*
NPerXDL
);
StaticBufferTupleOfVector
<
AddressSpaceEnum
_t
::
Vgpr
,
StaticBufferTupleOfVector
<
AddressSpaceEnum
::
Vgpr
,
FloatAcc
,
FloatAcc
,
MRepeat
*
NRepeat
,
MRepeat
*
NRepeat
,
xdlops_gemm
.
GetRegSizePerXdlops
(),
xdlops_gemm
.
GetRegSizePerXdlops
(),
...
@@ -250,9 +250,9 @@ struct BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
...
@@ -250,9 +250,9 @@ struct BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
const
BBlockBuffer
&
b_block_buf
,
const
BBlockBuffer
&
b_block_buf
,
CThreadBuffer
&
c_thread_buf
)
const
CThreadBuffer
&
c_thread_buf
)
const
{
{
auto
a_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
_t
::
Vgpr
,
FloatAB
>
(
auto
a_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatAB
>
(
a_thread_desc_
.
GetElementSpaceSize
());
a_thread_desc_
.
GetElementSpaceSize
());
auto
b_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
_t
::
Vgpr
,
FloatAB
>
(
auto
b_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatAB
>
(
b_thread_desc_
.
GetElementSpaceSize
());
b_thread_desc_
.
GetElementSpaceSize
());
static_for
<
0
,
MRepeat
,
1
>
{}([
&
](
auto
m0
)
{
static_for
<
0
,
MRepeat
,
1
>
{}([
&
](
auto
m0
)
{
...
...
include/ck/tensor_operation/gpu/block/blockwise_tensor_slice_transfer_v4r1.hpp
View file @
dd6a8de4
...
@@ -16,7 +16,7 @@ namespace ck {
...
@@ -16,7 +16,7 @@ namespace ck {
template
<
index_t
BlockSize
,
template
<
index_t
BlockSize
,
typename
SrcElementwiseOperation
,
typename
SrcElementwiseOperation
,
typename
DstElementwiseOperation
,
typename
DstElementwiseOperation
,
InMemoryDataOperationEnum
_t
DstInMemOp
,
InMemoryDataOperationEnum
DstInMemOp
,
typename
BlockSliceLengths
,
typename
BlockSliceLengths
,
typename
ThreadClusterLengths
,
typename
ThreadClusterLengths
,
typename
ThreadClusterArrangeOrder
,
typename
ThreadClusterArrangeOrder
,
...
...
Prev
1
2
3
4
5
6
7
…
24
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment