Commit c54b7bc9 authored by Chao Liu's avatar Chao Liu
Browse files

gMerge remote-tracking branch 'origin/develop' into group_norm

parents 9a8967a4 f584ab0c
add_example_executable(example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp) add_example_executable(example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp) add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_example_executable(example_padded_batched_gemm_scale_softmax_gemm_xdl_fp16 padded_batched_gemm_scale_softmax_gemm_xdl_fp16.cpp) add_example_executable(example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_custom_target(example_batched_gemm_scale_softmax_gemm) add_custom_target(example_gemm_scale_softmax_gemm)
add_dependencies(example_batched_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16) add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16)
add_dependencies(example_batched_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16) add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16)
add_dependencies(example_batched_gemm_scale_softmax_gemm example_padded_batched_gemm_scale_softmax_gemm_xdl_fp16) add_dependencies(example_gemm_scale_softmax_gemm example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16)
...@@ -58,7 +58,7 @@ using Acc0ElementOp = ck::tensor_operation::element_wise::Scale; ...@@ -58,7 +58,7 @@ using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough; using B1ElementOp = PassThrough;
using CElementOp = PassThrough; using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNOPadding; static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNPadding;
using DeviceGemmInstance = using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle<
...@@ -149,8 +149,8 @@ int main(int argc, char* argv[]) ...@@ -149,8 +149,8 @@ int main(int argc, char* argv[])
// GEMM shape for A/B0/B1/C // GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o // C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck::index_t M = 128; ck::index_t M = 120;
ck::index_t N = 1024; ck::index_t N = 1000;
ck::index_t K = 64; ck::index_t K = 64;
ck::index_t O = 128; ck::index_t O = 128;
ck::index_t StrideA = -1; ck::index_t StrideA = -1;
......
...@@ -55,7 +55,7 @@ using Acc0ElementOp = ck::tensor_operation::element_wise::Scale; ...@@ -55,7 +55,7 @@ using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough; using B1ElementOp = PassThrough;
using CElementOp = PassThrough; using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default; static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNPadding;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle< using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle<
ALayout, ALayout,
...@@ -73,7 +73,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmSoftma ...@@ -73,7 +73,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmSoftma
Acc0ElementOp, Acc0ElementOp,
B1ElementOp, B1ElementOp,
CElementOp, CElementOp,
GemmDefault, GemmSpec,
1, 1,
256, 256,
128, // MPerBlock 128, // MPerBlock
...@@ -144,8 +144,8 @@ int main(int argc, char* argv[]) ...@@ -144,8 +144,8 @@ int main(int argc, char* argv[])
bool time_kernel = false; bool time_kernel = false;
// GEMM shape // GEMM shape
ck::index_t M = 1024; ck::index_t M = 1020;
ck::index_t N = 1024; ck::index_t N = 1020;
ck::index_t K = 64; ck::index_t K = 64;
ck::index_t O = 128; ck::index_t O = 128;
ck::index_t BatchCount = 4; ck::index_t BatchCount = 4;
......
add_custom_target(example_permute)
add_example_executable(example_permute_1xHxW_fp16 permute_1xHxW_fp16.cpp)
add_example_executable(example_permute_NxHxW_fp16 permute_NxHxW_fp16.cpp)
add_example_executable(example_permute_HxWx4_fp16 permute_HxWx4_fp16.cpp)
add_dependencies(example_permute example_permute_1xHxW_fp16)
add_dependencies(example_permute example_permute_NxHxW_fp16)
add_dependencies(example_permute example_permute_HxWx4_fp16)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <iterator>
#include <numeric>
#include <type_traits>
#include <utility>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_permute_impl.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/utility/type.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using F16 = ck::half_t;
using F32 = float;
using F64 = double;
struct Problem final
{
static constexpr std::size_t NumDim = 3;
using Shape = std::array<std::size_t, NumDim>;
using Axes = Shape;
Problem() = delete;
explicit Problem(const Shape& default_shape, const Axes& default_axes)
: shape(default_shape), axes(default_axes)
{
}
Shape shape;
Axes axes;
};
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
namespace detail {
template <typename Array, std::size_t Difference>
struct enlarge_array_size;
template <typename T, std::size_t Size, std::size_t Difference>
struct enlarge_array_size<std::array<T, Size>, Difference>
{
using type = std::array<T, Size + Difference>;
};
template <typename Array, std::size_t Difference>
using enlarge_array_size_t = typename enlarge_array_size<Array, Difference>::type;
template <typename Array>
struct get_array_size;
template <typename T, std::size_t Size>
struct get_array_size<std::array<T, Size>> : std::integral_constant<std::size_t, Size>
{
};
template <typename Array>
inline constexpr std::size_t get_array_size_v = get_array_size<Array>::value;
template <typename T, typename = void>
struct is_iterator : std::false_type
{
};
template <typename T>
struct is_iterator<T,
std::void_t<decltype(*std::declval<T>()),
decltype(++std::declval<std::add_lvalue_reference_t<T>>()),
decltype(std::declval<std::add_lvalue_reference_t<T>>()++)>>
: std::true_type
{
};
template <typename T>
inline constexpr bool is_iterator_v = is_iterator<T>::value;
struct Placeholder final
{
template <typename T>
constexpr inline operator T() const noexcept;
};
template <typename Iterator, typename = void>
struct is_output_iterator : std::false_type
{
};
template <typename Iterator>
struct is_output_iterator<
Iterator,
std::void_t<decltype(*std::declval<Iterator>() = std::declval<Placeholder>())>>
: std::bool_constant<is_iterator_v<Iterator>>
{
};
template <typename T>
inline constexpr bool is_output_iterator_v = is_output_iterator<T>::value;
template <typename Iterator, typename = void>
struct is_bidirectional_iterator : std::false_type
{
};
template <typename Iterator>
struct is_bidirectional_iterator<
Iterator,
std::void_t<decltype(--std::declval<std::add_lvalue_reference_t<Iterator>>()),
decltype(std::declval<std::add_lvalue_reference_t<Iterator>>()--)>>
: std::bool_constant<is_iterator_v<Iterator>>
{
};
template <typename Iterator>
inline constexpr bool is_bidirectional_iterator_v = is_bidirectional_iterator<Iterator>::value;
template <typename Iterator, typename = void>
struct is_random_access_iterator : std::false_type
{
};
template <typename Iterator>
struct is_random_access_iterator<Iterator,
std::void_t<decltype(std::declval<Iterator>() + 1),
decltype(std::declval<Iterator>() - 1),
decltype(std::declval<Iterator>()[1])>>
: std::bool_constant<is_iterator_v<Iterator>>
{
};
template <typename Iterator>
inline constexpr bool is_random_access_iterator_v = is_random_access_iterator<Iterator>::value;
template <typename T, typename = void>
struct is_range : std::false_type
{
};
template <typename T>
struct is_range<T,
std::void_t<decltype(begin(std::declval<T>())),
decltype(end(std::declval<T>())),
decltype(begin(std::declval<T>()) != end(std::declval<T>()))>>
: std::bool_constant<is_iterator_v<ck::remove_cvref_t<decltype(begin(std::declval<T>()))>>>
{
};
template <typename T>
inline constexpr bool is_range_v = is_range<T>::value;
template <typename Range, typename = void>
struct is_sized_range : std::false_type
{
};
template <typename Range>
struct is_sized_range<Range, std::void_t<decltype(size(std::declval<Range>()))>>
: std::bool_constant<is_range_v<Range>>
{
};
template <typename Range>
inline constexpr bool is_sized_range_v = is_sized_range<Range>::value;
template <typename Range, typename = void>
struct is_bidirectional_range : std::false_type
{
};
template <typename Range>
struct is_bidirectional_range<Range, std::void_t<>>
: std::bool_constant<
is_range_v<Range> &&
is_bidirectional_iterator_v<ck::remove_cvref_t<decltype(begin(std::declval<Range>()))>>>
{
};
template <typename Range>
inline constexpr bool is_bidirectional_range_v = is_bidirectional_range<Range>::value;
template <typename Range, typename = void>
struct is_random_access_range : std::false_type
{
};
template <typename Range>
struct is_random_access_range<Range, std::void_t<>>
: std::bool_constant<
is_range_v<Range> &&
is_random_access_iterator_v<ck::remove_cvref_t<decltype(begin(std::declval<Range>()))>>>
{
};
template <typename Range>
inline constexpr bool is_random_access_range_v = is_random_access_range<Range>::value;
template <typename Range>
class to_array_proxy
{
static_assert(is_range_v<Range>);
public:
explicit to_array_proxy(const Range& source) noexcept : source_(source) {}
template <typename T, std::size_t Size>
operator std::array<T, Size>() const
{
std::array<T, Size> destination;
std::copy_n(std::begin(source_),
std::min<std::size_t>(Size, std::size(source_)),
std::begin(destination));
return destination;
}
private:
const Range& source_;
};
} // namespace detail
template <typename Range>
inline auto to_array(Range& range) noexcept
-> std::enable_if_t<detail::is_range_v<Range>,
detail::to_array_proxy<ck::remove_cvref_t<Range>>>
{
return detail::to_array_proxy<ck::remove_cvref_t<Range>>{range};
}
namespace ranges {
template <typename InputRange, typename OutputIterator>
inline auto copy(InputRange&& range, OutputIterator iter)
-> decltype(std::copy(std::begin(std::forward<InputRange>(range)),
std::end(std::forward<InputRange>(range)),
iter))
{
return std::copy(std::begin(std::forward<InputRange>(range)),
std::end(std::forward<InputRange>(range)),
iter);
}
} // namespace ranges
template <typename Axes>
inline auto is_valid_axes(const Axes& axes)
-> std::enable_if_t<detail::is_random_access_range_v<Axes>, bool>
{
using std::empty;
if(empty(axes))
{
return false;
}
using std::begin, std::end;
std::vector<std::size_t> sorted_axes(begin(axes), end(axes));
std::sort(begin(sorted_axes), end(sorted_axes));
const auto last = std::unique(begin(sorted_axes), end(sorted_axes));
return (last == end(sorted_axes)) && (*begin(sorted_axes) == 0) &&
(*std::prev(last) == size(axes) - 1);
}
template <typename Shape>
inline auto is_valid_shape(const Shape& shape) -> std::enable_if_t<detail::is_range_v<Shape>, bool>
{
static_assert(std::is_unsigned_v<ck::remove_cvref_t<decltype(*std::begin(shape))>>);
using std::begin, std::end;
using std::empty;
return !empty(shape) && std::all_of(begin(shape), end(shape), [](auto dim) { return 0 < dim; });
}
template <typename Shape, typename Indices>
inline auto is_valid_indices(const Shape& shape, const Indices& indices)
-> std::enable_if_t<detail::is_sized_range_v<Shape> && detail::is_sized_range_v<Indices>, bool>
{
static_assert(std::is_unsigned_v<ck::remove_cvref_t<decltype(*std::begin(indices))>>);
if(!is_valid_shape(shape))
{
return false;
}
using std::empty;
if(empty(indices))
{
return false;
}
using std::size;
if(size(shape) != size(indices))
{
return false;
}
using std::begin, std::end;
auto dim = begin(shape);
auto idx = begin(indices);
for(; dim != end(shape) && idx != end(indices); ++dim, ++idx)
{
if(*dim <= *idx)
{
return false;
}
}
return true;
}
template <std::size_t Size>
std::array<std::size_t, Size> transpose(const std::array<std::size_t, Size>& shape,
const std::array<std::size_t, Size>& axes)
{
assert(is_valid_shape(shape) && is_valid_axes(axes));
std::array<std::size_t, Size> transposed;
auto iter = std::begin(transposed);
for(const auto axis : axes)
{
*iter++ = shape[axis];
}
return transposed;
}
auto extend_shape(const Problem::Shape& shape, std::size_t new_dim)
{
detail::enlarge_array_size_t<Problem::Shape, 1> extended_shape;
using std::begin, std::end;
std::copy(begin(shape), end(shape), begin(extended_shape));
extended_shape.back() = new_dim;
return extended_shape;
}
auto extend_axes(const Problem::Axes& axes)
{
detail::enlarge_array_size_t<Problem::Axes, 1> extended_axes;
using std::begin, std::end;
std::copy(begin(axes), end(axes), begin(extended_axes));
extended_axes.back() = detail::get_array_size_v<Problem::Axes>;
return extended_axes;
}
template <typename Shape, typename Indices>
auto advance_indices(const Shape& shape, Indices& indices) -> std::enable_if_t<
detail::is_bidirectional_range_v<Shape> && detail::is_sized_range_v<Shape> &&
detail::is_bidirectional_range_v<Indices> && detail::is_sized_range_v<Indices>,
bool>
{
using std::size;
if(!(is_valid_shape(shape) && is_valid_indices(shape, indices) && size(shape) == size(indices)))
{
return false;
}
bool carry = true;
using std::rbegin, std::rend;
auto dim = rbegin(shape);
auto idx = rbegin(indices);
for(; carry && dim != rend(shape) && idx != rend(indices); ++dim, ++idx)
{
*idx = (*idx + carry);
carry = ((*idx == *dim) ? (*idx = 0, true) : false);
}
return !carry;
}
template <typename Src, typename Axes, typename Functor, typename Dest>
auto host_permute(const Tensor<Src>& src, const Axes& axes, Functor functor, Tensor<Dest>& dest)
-> std::enable_if_t<detail::is_random_access_range_v<Axes> && detail::is_sized_range_v<Axes> &&
std::is_invocable_v<Functor,
std::add_lvalue_reference_t<Dest>,
std::add_lvalue_reference_t<Src>>,
bool>
{
const auto& shape = src.mDesc.GetLengths();
const auto& transposed_shape = dest.mDesc.GetLengths();
if(!(is_valid_shape(shape) && is_valid_shape(transposed_shape)))
{
return false;
}
using std::size;
if(!is_valid_axes(axes))
{
return false;
}
static_assert(detail::is_sized_range_v<ck::remove_cvref_t<decltype(shape)>> &&
detail::is_sized_range_v<ck::remove_cvref_t<decltype(transposed_shape)>>);
if(size(shape) != size(transposed_shape))
{
return false;
}
static_assert(detail::is_random_access_range_v<ck::remove_cvref_t<decltype(shape)>> &&
detail::is_random_access_range_v<ck::remove_cvref_t<decltype(transposed_shape)>>);
{
for(std::size_t idx = 0; idx < size(shape); ++idx)
{
if(transposed_shape[idx] != shape[axes[idx]])
{
return false;
}
}
}
std::vector<std::size_t> indices(size(shape), 0);
if(!is_valid_indices(shape, indices))
{
return false;
}
switch(size(shape))
{
case 3: {
do
{
Dest output = 0;
functor(output, src(indices[0], indices[1], indices[2]));
dest(indices[axes[0]], indices[axes[1]], indices[axes[2]]) = output;
} while(advance_indices(shape, indices));
}
break;
case 4: {
do
{
Dest output = 0;
functor(output, src(indices[0], indices[1], indices[2], indices[3]));
dest(indices[axes[0]], indices[axes[1]], indices[axes[2]], indices[axes[3]]) = output;
} while(advance_indices(shape, indices));
}
break;
default: return false;
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using InDataType = F16;
using OutDataType = F16;
// clang-format off
using DevicePermuteInstance = ck::tensor_operation::device::DevicePermuteImpl
// ######| NumDim| InData| OutData| Elementwise| Block| NPer| HPer| WPer| InBlock| InBlockTransfer| InBlockTransfer| Src| Dst| Src| Dst|
// ######| | Type| Type| Operation| Size| Block| Block| Block| LdsExtraW| ThreadClusterLengths| ThreadClusterArrangeOrder| VectorDim| VectorDim| ScalarPerVector| ScalarPerVector|
// ######| | | | | | | | | | | | | | | |
// ######| | | | | | | | | | | | | | | |
< 3, InDataType, OutDataType, PassThrough, 256, 1, 32, 32, 3, S<1, 32, 8>, S<0, 1, 2>, 2, 1, 2, 1>;
// clang-format on
#include "run_permute_element_example.inc"
int main() { return !run_permute_element_example({1, 32000, 80}, {0, 2, 1}); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using DataType = F16;
using BundleType = F64;
static_assert(sizeof(BundleType) % sizeof(DataType) == 0);
// clang-format off
using DevicePermuteInstance = ck::tensor_operation::device::DevicePermuteImpl
// ######| NumDim| InData| OutData| Elementwise| Block| NPer| HPer| WPer| InBlock| InBlockTransfer| InBlockTransfer| Src| Dst| Src| Dst|
// ######| | Type| Type| Operation| Size| Block| Block| Block| LdsExtraW| ThreadClusterLengths| ThreadClusterArrangeOrder| VectorDim| VectorDim| ScalarPerVector| ScalarPerVector|
// ######| | | | | | | | | | | | | | | |
// ######| | | | | | | | | | | | | | | |
< 3, BundleType, BundleType, PassThrough, 256, 1, 32, 32, 5, S<1, 32, 8>, S<0, 1, 2>, 2, 1, 4, 1>;
// clang-format on
#include "run_permute_bundle_example.inc"
int main() { return !run_permute_bundle_example({1, 80, 32000}, {0, 2, 1}); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using InDataType = F16;
using OutDataType = F16;
// clang-format off
using DevicePermuteInstance = ck::tensor_operation::device::DevicePermuteImpl
// ######| NumDim| InData| OutData| Elementwise| Block| NPer| HPer| WPer| InBlock| InBlockTransfer| InBlockTransfer| Src| Dst| Src| Dst|
// ######| | Type| Type| Operation| Size| Block| Block| Block| LdsExtraW| ThreadClusterLengths| ThreadClusterArrangeOrder| VectorDim| VectorDim| ScalarPerVector| ScalarPerVector|
// ######| | | | | | | | | | | | | | | |
// ######| | | | | | | | | | | | | | | |
< 3, InDataType, OutDataType, PassThrough, 128, 4, 16, 8, 6, S<2, 16, 4>, S<0, 1, 2>, 2, 1, 2, 1>;
// clang-format on
#include "run_permute_element_example.inc"
int main() { return !run_permute_element_example({121, 768, 80}, {0, 2, 1}); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
bool run_permute_bundle(const Problem& problem)
{
const auto& input_bundle_shape = problem.shape;
const auto& input_bundle_axes = problem.axes;
const auto output_bundle_shape = transpose(input_bundle_shape, input_bundle_axes);
Tensor<BundleType> input_bundle_tensor(input_bundle_shape);
Tensor<BundleType> output_bundle_tensor(output_bundle_shape);
// initialize tensor by assigning DataType values
ck::utils::FillUniformDistribution<DataType>{-1.f, 1.f}(input_bundle_tensor.AsSpan<DataType>());
DeviceMem input_device_buf(input_bundle_tensor.GetElementSpaceSizeInBytes());
DeviceMem output_device_buf(output_bundle_tensor.GetElementSpaceSizeInBytes());
using std::data;
input_device_buf.ToDevice(data(input_bundle_tensor));
static_assert(std::is_default_constructible_v<DevicePermuteInstance>);
auto permute = DevicePermuteInstance{};
auto argument = permute.MakeArgument(to_array(input_bundle_shape),
to_array(input_bundle_tensor.GetStrides()),
to_array(output_bundle_shape),
to_array(output_bundle_tensor.GetStrides()),
input_device_buf.GetDeviceBuffer(),
output_device_buf.GetDeviceBuffer(),
PassThrough{});
if(!permute.IsSupportedArgument(argument))
{
std::cerr << "The runtime parameters seems not supported by the device instance, exiting!"
<< std::endl;
return false;
};
auto invoker = permute.MakeInvoker();
float ave_time = invoker.Run(argument, StreamConfig{nullptr, true});
std::cout << "Perf: " << ave_time << " ms" << std::endl;
output_device_buf.FromDevice(data(output_bundle_tensor));
constexpr std::size_t NumElemsInBundle = sizeof(BundleType) / sizeof(DataType);
// extend tensor shape from [N, H, W] to [N, H, W, NumElemsInBundle]
// axes from [0, 2, 1] to [0, 2, 1, 3]
const auto input_shape = extend_shape(input_bundle_shape, NumElemsInBundle);
const auto input_axes = extend_axes(input_bundle_axes);
using std::begin;
Tensor<DataType> input_tensor(input_shape);
ranges::copy(input_bundle_tensor.AsSpan<const DataType>(), begin(input_tensor));
Tensor<DataType> output_tensor(transpose(input_shape, input_axes));
if(!host_permute(input_tensor, input_axes, PassThrough{}, output_tensor))
{
return false;
}
return ck::utils::check_err(output_bundle_tensor.AsSpan<const DataType>(),
output_tensor.AsSpan<const DataType>(),
"Error: incorrect results in output tensor",
1e-6,
1e-6);
}
bool run_permute_bundle_example(const Problem::Shape& shape, const Problem::Axes& axes)
{
return run_permute_bundle(Problem{shape, axes});
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
bool run_permute_element(const Problem& problem)
{
const auto& input_shape = problem.shape;
const auto& input_axes = problem.axes;
const auto output_shape = transpose(input_shape, input_axes);
Tensor<InDataType> input_tensor(input_shape);
Tensor<OutDataType> output_tensor(output_shape);
ck::utils::FillUniformDistribution<InDataType>{-1.f, 1.f}(input_tensor);
DeviceMem input_device_buf(input_tensor.GetElementSpaceSizeInBytes());
DeviceMem output_device_buf(output_tensor.GetElementSpaceSizeInBytes());
using std::data;
input_device_buf.ToDevice(data(input_tensor));
static_assert(std::is_default_constructible_v<DevicePermuteInstance>);
auto permute = DevicePermuteInstance{};
auto argument = permute.MakeArgument(to_array(input_shape),
to_array(input_tensor.GetStrides()),
to_array(output_shape),
to_array(output_tensor.GetStrides()),
input_device_buf.GetDeviceBuffer(),
output_device_buf.GetDeviceBuffer(),
PassThrough{});
if(!permute.IsSupportedArgument(argument))
{
std::cerr << "The runtime parameters seems not supported by the device instance, exiting!"
<< std::endl;
return false;
};
auto invoker = permute.MakeInvoker();
float ave_time = invoker.Run(argument, StreamConfig{nullptr, true});
std::cout << "Perf: " << ave_time << " ms" << std::endl;
output_device_buf.FromDevice(data(output_tensor));
Tensor<OutDataType> output_tensor_host(output_shape);
if(!host_permute(input_tensor, input_axes, PassThrough{}, output_tensor_host))
{
return false;
}
return ck::utils::check_err(output_tensor.AsSpan<const OutDataType>(),
output_tensor_host.AsSpan<const OutDataType>(),
"Error: incorrect results in output tensor",
1e-6,
1e-6);
}
bool run_permute_element_example(const Problem::Shape& shape, const Problem::Axes& axes)
{
return run_permute_element(Problem{shape, axes});
}
...@@ -649,6 +649,9 @@ struct BlockwiseGemmXdlops_v2 ...@@ -649,6 +649,9 @@ struct BlockwiseGemmXdlops_v2
static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerXDL); static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerXDL);
static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerXDL); static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerXDL);
static_assert(KPerThread % KPack == 0,
"Wrong KPack setting; try increasing KPerThread or decreasing KPack");
StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr, StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr,
FloatAcc, FloatAcc,
MRepeat * NRepeat, MRepeat * NRepeat,
......
...@@ -3,6 +3,7 @@ ...@@ -3,6 +3,7 @@
#pragma once #pragma once
#include <cmath>
#include <string> #include <string>
#include "ck/stream_config.hpp" #include "ck/stream_config.hpp"
......
...@@ -503,13 +503,9 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout ...@@ -503,13 +503,9 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{}) float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{ {
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_, if(!DeviceOp::IsSupportedArgument(arg))
arg.b_grid_desc_bk0_n_bk1_,
arg.b1_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_))
{ {
throw std::runtime_error("wrong! GridwiseGemm has invalid setting"); throw std::runtime_error("wrong! unsupported argument");
} }
const index_t grid_size = const index_t grid_size =
......
...@@ -222,14 +222,9 @@ struct DeviceElementwise ...@@ -222,14 +222,9 @@ struct DeviceElementwise
} }
}; };
bool IsSupportedArgument(const BaseArgument* p_arg) override static bool IsSupportedArgument(const Argument& arg)
{ {
const Argument* pArg = dynamic_cast<const Argument*>(p_arg); if(arg.lengths_.back() % MPerThread != 0)
if(pArg == nullptr)
return false;
if(pArg->lengths_.back() % MPerThread != 0)
return false; return false;
auto IsScalarPerVectorValid = [&](const std::array<index_t, NumDim>& lengths, auto IsScalarPerVectorValid = [&](const std::array<index_t, NumDim>& lengths,
...@@ -247,19 +242,40 @@ struct DeviceElementwise ...@@ -247,19 +242,40 @@ struct DeviceElementwise
bool valid = true; bool valid = true;
static_for<0, NumInput, 1>{}([&](auto I) { static_for<0, NumInput, 1>{}([&](auto I) {
if(!IsScalarPerVectorValid( if(!IsScalarPerVectorValid(
pArg->lengths_, pArg->inStridesArray_[I.value], InScalarPerVectorSeq::At(I))) arg.lengths_, arg.inStridesArray_[I.value], InScalarPerVectorSeq::At(I)))
valid = false; valid = false;
}); });
static_for<0, NumOutput, 1>{}([&](auto I) { static_for<0, NumOutput, 1>{}([&](auto I) {
if(!IsScalarPerVectorValid( if(!IsScalarPerVectorValid(
pArg->lengths_, pArg->outStridesArray_[I.value], OutScalarPerVectorSeq::At(I))) arg.lengths_, arg.outStridesArray_[I.value], OutScalarPerVectorSeq::At(I)))
valid = false; valid = false;
}); });
return valid; return valid;
}; };
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto
MakeArgument(const std::array<index_t, NumDim> lengths,
const std::array<std::array<index_t, NumDim>, NumInput> inStridesArray,
const std::array<std::array<index_t, NumDim>, NumOutput> outStridesArray,
const std::array<const void*, NumInput> in_dev_buffers,
const std::array<void*, NumOutput> out_dev_buffers,
ElementwiseOperation elementwise_op)
{
return Argument{lengths,
inStridesArray,
outStridesArray,
in_dev_buffers,
out_dev_buffers,
elementwise_op};
}
std::unique_ptr<BaseArgument> std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::array<index_t, NumDim> lengths, MakeArgumentPointer(const std::array<index_t, NumDim> lengths,
const std::array<std::array<index_t, NumDim>, NumInput> inStridesArray, const std::array<std::array<index_t, NumDim>, NumInput> inStridesArray,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename B0Layout,
typename B1Layout,
typename CPermuteNumDims_G_M_Gemm1N, // Sequence<>
typename ADataType,
typename B0DataType,
typename B1DataType,
typename CDataType,
typename AElementwiseOperation,
typename B0ElementwiseOperation,
typename Acc0ElementwiseOperation,
typename B1ElementwiseOperation,
typename CElementwiseOperation>
struct DeviceGroupedGemmSoftmaxGemmPermute : public BaseOperator
{
struct ProblemDesc
{
// Overall problem shape
index_t M;
index_t N;
index_t K;
index_t O;
index_t Batch;
// Stride for A/B0/B1; layout determined by template args
index_t StrideA;
index_t StrideB0;
index_t StrideB1;
index_t BatchStrideA;
index_t BatchStrideB0;
index_t BatchStrideB1;
// Lengths and strides for output C
std::vector<index_t> c_gs_ms_os_lengths;
std::vector<index_t> c_gs_ms_os_strides;
};
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(std::vector<const void*> p_a_vec,
std::vector<const void*> p_b0_vec,
std::vector<const void*> p_b1_vec,
std::vector<void*> p_c_vec,
std::vector<ProblemDesc> problem_desc_vec,
AElementwiseOperation a_element_op,
B0ElementwiseOperation b0_element_op,
Acc0ElementwiseOperation acc0_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <cmath>
#include <memory>
#include <type_traits>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <index_t NumDim, typename InDataType, typename OutDataType, typename ElementwiseOperation>
struct DevicePermute : BaseOperator
{
using Lengths = std::array<index_t, NumDim>;
using Strides = Lengths;
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const Lengths& in_lengths,
const Strides& in_strides,
const Lengths& out_lengths,
const Strides& out_strides,
const void* in_dev_buffer,
void* out_dev_buffer,
ElementwiseOperation elementwise_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <memory>
#include <utility>
#include "ck/utility/math.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_permute.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_permute.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// Swap last 2 dimensions
// input shape: [d[0], d[1], d[2], ..., d[NumDim-3], d[NumDim-2], d[NumDim-1]]
// ^^^^^^^^^^^
// output shape: [d[0], d[1], d[2], ..., d[NumDim-3], d[NumDim-1], d[NumDim-2]]
// ^^^^^^^^^^^
template <index_t NumDim,
typename InDataType,
typename OutDataType,
typename ElementwiseOperation,
index_t BlockSize,
index_t NPerBlock,
index_t HPerBlock,
index_t WPerBlock,
index_t InBlockLdsExtraW,
typename InBlockTransferThreadClusterLengths,
typename InBlockTransferThreadClusterArrangeOrder,
index_t SrcVectorDim,
index_t DstVectorDim,
index_t SrcScalarPerVector,
index_t DstScalarPerVector>
struct DevicePermuteImpl : DevicePermute<NumDim, InDataType, OutDataType, ElementwiseOperation>
{
using BaseType = DevicePermute<NumDim, InDataType, OutDataType, ElementwiseOperation>;
using typename BaseType::Lengths;
using typename BaseType::Strides;
static_assert(3 <= NumDim, "Only accept at least 3D dimension tensor");
static_assert((NumDim - 2) <= SrcVectorDim && SrcVectorDim < NumDim);
static_assert((NumDim - 2) <= DstVectorDim && DstVectorDim < NumDim);
static_assert(SrcVectorDim != DstVectorDim);
template <index_t N = NumDim>
static auto ConvertArrayToTuple(const std::array<index_t, NumDim>& array)
{
static_assert(1 <= N && N <= NumDim);
return generate_tuple([&](auto I) { return array[I]; }, Number<N>{});
}
static auto MakeDescriptor_N_H_W(const Lengths& lengths, const Strides& stride)
{
// create nd descriptor, shape: [d[0], d[1], d[2], ..., d[NumDim-3], d[NumDim-2],
// d[NumDim-1]]
const auto desc =
make_naive_tensor_descriptor(ConvertArrayToTuple(lengths), ConvertArrayToTuple(stride));
// merge nd to 3d descriptor, shape: [(d[0] * d[1] * d[2] * ... * d[NumDim-3]), d[NumDim-2],
// d[NumDim-1]]
// => [N, H, W]
const index_t H = *std::next(rbegin(lengths));
const index_t W = *rbegin(lengths);
const auto desc_n_h_w = transform_tensor_descriptor(
desc,
make_tuple(make_merge_transform(ConvertArrayToTuple<NumDim - 2>(lengths)),
make_pass_through_transform(H),
make_pass_through_transform(W)),
make_tuple(generate_sequence_v2([&](auto I) { return I; }, Number<NumDim - 2>{}),
Sequence<NumDim - 2>{},
Sequence<NumDim - 1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return PadTensorDescriptor(
desc_n_h_w, make_tuple(NPerBlock, HPerBlock, WPerBlock), Sequence<true, true, true>{});
}
using InGridDesc = decltype(MakeDescriptor_N_H_W({1, 1}, {1, 1}));
using OutGridDesc = InGridDesc;
using GridwisePermute = GridwisePermute<
InGridDesc,
OutGridDesc,
InDataType,
OutDataType,
ElementwiseOperation,
BlockSize,
NPerBlock,
HPerBlock,
WPerBlock,
InBlockLdsExtraW,
InBlockTransferThreadClusterLengths,
InBlockTransferThreadClusterArrangeOrder,
SrcVectorDim - (NumDim - 3), // calculate new SrcVectorDim for the merged descriptor
DstVectorDim - (NumDim - 3), // calculate new DstVectorDim for the merged descriptor
SrcScalarPerVector,
DstScalarPerVector>;
using Block2TileMap = typename GridwisePermute::DefaultBlock2TileMap;
struct Argument : public BaseArgument
{
Argument(const Lengths& in_lengths,
const Strides& in_strides,
const Lengths& out_lengths,
const Strides& out_strides,
const void* in_dev_buffer,
void* out_dev_buffer,
ElementwiseOperation elementwise_op)
: in_dev_buffer_(static_cast<const InDataType*>(in_dev_buffer)),
out_dev_buffer_(static_cast<OutDataType*>(out_dev_buffer)),
in_grid_desc_(MakeDescriptor_N_H_W(in_lengths, in_strides)),
out_grid_desc_(MakeDescriptor_N_H_W(out_lengths, out_strides)),
in_lengths_(in_lengths),
in_strides_(in_strides),
out_lengths_(out_lengths),
out_strides_(out_strides),
elementwise_op_(elementwise_op),
block_2_tile_map_(GridwisePermute::MakeDefaultBlock2TileMap(in_grid_desc_))
{
}
const InDataType* in_dev_buffer_;
OutDataType* out_dev_buffer_;
InGridDesc in_grid_desc_;
OutGridDesc out_grid_desc_;
Lengths in_lengths_;
Strides in_strides_;
Lengths out_lengths_;
Strides out_strides_;
ElementwiseOperation elementwise_op_;
Block2TileMap block_2_tile_map_;
};
struct Invoker : BaseInvoker
{
static float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
const index_t grid_size = arg.block_2_tile_map_.CalculateGridSize(arg.in_grid_desc_);
const auto kernel = kernel_nd_permute<GridwisePermute,
InGridDesc,
OutGridDesc,
InDataType,
OutDataType,
ElementwiseOperation,
Block2TileMap>;
float elapsed_time = launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.in_grid_desc_,
arg.out_grid_desc_,
arg.in_dev_buffer_,
arg.out_dev_buffer_,
arg.elementwise_op_,
arg.block_2_tile_map_);
return elapsed_time;
}
float Run(const BaseArgument* arg,
const StreamConfig& stream_config = StreamConfig{}) override final
{
const auto* const argument = dynamic_cast<const Argument*>(arg);
if(!argument)
{
return NAN;
}
return Run(*argument, stream_config);
}
};
static bool IsSupportedArgument(const Argument& arg)
{
constexpr auto GetPaddedLength = [](index_t length, index_t tile_length) {
return math::integer_divide_ceil(length, tile_length) * tile_length;
};
constexpr auto IsScalarPerVectorValid =
[](index_t length, index_t stride, index_t scalar_per_vector) {
if(stride == 1 && length % scalar_per_vector == 0)
{
return true;
}
else if(stride != 1 && scalar_per_vector == 1)
{
return true;
}
return false;
};
return IsScalarPerVectorValid(arg.in_lengths_[SrcVectorDim],
arg.in_strides_[SrcVectorDim],
SrcScalarPerVector) &&
IsScalarPerVectorValid(
GetPaddedLength(arg.in_lengths_[SrcVectorDim],
(SrcVectorDim == NumDim - 2 ? HPerBlock : WPerBlock)),
arg.in_strides_[SrcVectorDim],
SrcScalarPerVector) &&
IsScalarPerVectorValid(arg.out_lengths_[DstVectorDim],
arg.out_strides_[DstVectorDim],
DstScalarPerVector) &&
IsScalarPerVectorValid(
GetPaddedLength(arg.out_lengths_[DstVectorDim],
(DstVectorDim == NumDim - 2 ? HPerBlock : WPerBlock)),
arg.in_strides_[DstVectorDim],
DstScalarPerVector) &&
GridwisePermute::CheckValidity(arg.in_grid_desc_, arg.out_grid_desc_);
};
// override methods inherited from 'BaseOperator'
bool IsSupportedArgument(const BaseArgument* arg) override final
{
const auto* const argument = dynamic_cast<const Argument*>(arg);
if(!argument)
{
return false;
}
return IsSupportedArgument(*argument);
}
// override methods inherited from 'DevicePermute'
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const Lengths& in_lengths,
const Strides& in_strides,
const Lengths& out_lengths,
const Strides& out_strides,
const void* in_dev_buffer,
void* out_dev_buffer,
ElementwiseOperation elementwise_op) override final
{
return std::make_unique<Argument>(in_lengths,
in_strides,
out_lengths,
out_strides,
in_dev_buffer,
out_dev_buffer,
elementwise_op);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override final
{
return std::make_unique<Invoker>();
};
// other constructor methods
template <typename... Args>
static std::enable_if_t<std::is_constructible_v<Argument, Args...>, Argument>
MakeArgument(Args&&... args) noexcept(std::is_nothrow_constructible_v<Argument, Args...>)
{
return Argument{std::forward<Args>(args)...};
}
static std::enable_if_t<std::is_default_constructible_v<Invoker>, Invoker>
MakeInvoker() noexcept(std::is_nothrow_default_constructible_v<Invoker>)
{
return Invoker{};
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -486,4 +486,48 @@ __host__ __device__ bool DefaultValidCTileIndex(const CTileIdx& c_tile_idx, ...@@ -486,4 +486,48 @@ __host__ __device__ bool DefaultValidCTileIndex(const CTileIdx& c_tile_idx,
return is_valid; return is_valid;
} }
// This wrapper class is for grouped gemm where it subtracts blockIdx by a value so that the
// workgroups assigned to a given gemm problem have top index offsetted to range [0,
// grid_size_per_gemm]
template <typename UnderlyingBlockToCTileMap>
struct OffsettedBlockToCTileMap
{
using underlying_type = UnderlyingBlockToCTileMap;
OffsettedBlockToCTileMap(UnderlyingBlockToCTileMap block_to_ctile_map, index_t block_start)
{
block_to_ctile_map_ = block_to_ctile_map;
block_start_ = block_start;
}
template <typename TopIdx>
__host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const
{
return block_to_ctile_map_.CalculateBottomIndex(
make_multi_index(idx_top[Number<0>{}] - block_start_));
}
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool ValidCTileIndex(const CTileIdx& c_tile_idx,
const CTileDim& c_tile_dim) const
{
return block_to_ctile_map_.ValidCTileIndex(c_tile_idx, c_tile_dim);
}
template <typename CGridDesc_M_N>
__host__ bool CheckValidity(const CGridDesc_M_N& c_grid_desc_m_n) const
{
return block_to_ctile_map_.CheckValidity(c_grid_desc_m_n);
}
template <typename CGridDesc_M_N>
__host__ constexpr index_t CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n) const
{
return block_to_ctile_map_.CalculateGridSize(c_grid_desc_m_n);
}
UnderlyingBlockToCTileMap block_to_ctile_map_;
index_t block_start_;
};
} // namespace ck } // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment