Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
c54b7bc9
Commit
c54b7bc9
authored
Sep 19, 2022
by
Chao Liu
Browse files
gMerge remote-tracking branch 'origin/develop' into group_norm
parents
9a8967a4
f584ab0c
Changes
32
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2529 additions
and
27 deletions
+2529
-27
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
+5
-5
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
...gemm/batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
+3
-3
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
...softmax_gemm/batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
+4
-4
example/32_batched_gemm_scale_softmax_gemm/grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
...gemm/grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
+443
-0
example/39_permute/CMakeLists.txt
example/39_permute/CMakeLists.txt
+9
-0
example/39_permute/common.hpp
example/39_permute/common.hpp
+468
-0
example/39_permute/permute_1xHxW_fp16.cpp
example/39_permute/permute_1xHxW_fp16.cpp
+20
-0
example/39_permute/permute_HxWx4_fp16.cpp
example/39_permute/permute_HxWx4_fp16.cpp
+22
-0
example/39_permute/permute_NxHxW_fp16.cpp
example/39_permute/permute_NxHxW_fp16.cpp
+20
-0
example/39_permute/run_permute_bundle_example.inc
example/39_permute/run_permute_bundle_example.inc
+78
-0
example/39_permute/run_permute_element_example.inc
example/39_permute/run_permute_element_example.inc
+65
-0
include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
...e/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
+3
-0
include/ck/tensor_operation/gpu/device/device_base.hpp
include/ck/tensor_operation/gpu/device/device_base.hpp
+1
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp
...tion/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp
+2
-6
include/ck/tensor_operation/gpu/device/device_elementwise.hpp
...ude/ck/tensor_operation/gpu/device/device_elementwise.hpp
+25
-9
include/ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute.hpp
...n/gpu/device/device_grouped_gemm_softmax_gemm_permute.hpp
+69
-0
include/ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
...device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
+929
-0
include/ck/tensor_operation/gpu/device/device_permute.hpp
include/ck/tensor_operation/gpu/device/device_permute.hpp
+37
-0
include/ck/tensor_operation/gpu/device/impl/device_permute_impl.hpp
.../tensor_operation/gpu/device/impl/device_permute_impl.hpp
+282
-0
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
+44
-0
No files found.
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
View file @
c54b7bc9
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_
padded_batch
ed_gemm_scale_softmax_gemm_xdl_fp16
padded_batch
ed_gemm_scale_softmax_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_
group
ed_gemm_scale_softmax_gemm_
permute_
xdl_fp16
group
ed_gemm_scale_softmax_gemm_
permute_
xdl_fp16.cpp
)
add_custom_target
(
example_
batched_
gemm_scale_softmax_gemm
)
add_custom_target
(
example_gemm_scale_softmax_gemm
)
add_dependencies
(
example_
batched_
gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16
)
add_dependencies
(
example_
batched_
gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_
batched_
gemm_scale_softmax_gemm example_
padded_batch
ed_gemm_scale_softmax_gemm_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_
group
ed_gemm_scale_softmax_gemm_
permute_
xdl_fp16
)
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
View file @
c54b7bc9
...
@@ -58,7 +58,7 @@ using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
...
@@ -58,7 +58,7 @@ using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using
B1ElementOp
=
PassThrough
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MN
O
Padding
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
using
DeviceGemmInstance
=
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
...
@@ -149,8 +149,8 @@ int main(int argc, char* argv[])
...
@@ -149,8 +149,8 @@ int main(int argc, char* argv[])
// GEMM shape for A/B0/B1/C
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck
::
index_t
M
=
12
8
;
ck
::
index_t
M
=
12
0
;
ck
::
index_t
N
=
10
24
;
ck
::
index_t
N
=
10
00
;
ck
::
index_t
K
=
64
;
ck
::
index_t
K
=
64
;
ck
::
index_t
O
=
128
;
ck
::
index_t
O
=
128
;
ck
::
index_t
StrideA
=
-
1
;
ck
::
index_t
StrideA
=
-
1
;
...
...
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
View file @
c54b7bc9
...
@@ -55,7 +55,7 @@ using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
...
@@ -55,7 +55,7 @@ using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using
B1ElementOp
=
PassThrough
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
Gemm
Default
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
Gemm
Spec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
ALayout
,
ALayout
,
...
@@ -73,7 +73,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmSoftma
...
@@ -73,7 +73,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmSoftma
Acc0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
B1ElementOp
,
CElementOp
,
CElementOp
,
Gemm
Default
,
Gemm
Spec
,
1
,
1
,
256
,
256
,
128
,
// MPerBlock
128
,
// MPerBlock
...
@@ -144,8 +144,8 @@ int main(int argc, char* argv[])
...
@@ -144,8 +144,8 @@ int main(int argc, char* argv[])
bool
time_kernel
=
false
;
bool
time_kernel
=
false
;
// GEMM shape
// GEMM shape
ck
::
index_t
M
=
102
4
;
ck
::
index_t
M
=
102
0
;
ck
::
index_t
N
=
102
4
;
ck
::
index_t
N
=
102
0
;
ck
::
index_t
K
=
64
;
ck
::
index_t
K
=
64
;
ck
::
index_t
O
=
128
;
ck
::
index_t
O
=
128
;
ck
::
index_t
BatchCount
=
4
;
ck
::
index_t
BatchCount
=
4
;
...
...
example/32_batched_gemm_scale_softmax_gemm/
padded_batch
ed_gemm_scale_softmax_gemm_xdl_fp16.cpp
→
example/32_batched_gemm_scale_softmax_gemm/
group
ed_gemm_scale_softmax_gemm_
permute_
xdl_fp16.cpp
View file @
c54b7bc9
...
@@ -16,7 +16,8 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g
...
@@ -16,7 +16,8 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
...
@@ -47,7 +48,9 @@ using CDataType = F16;
...
@@ -47,7 +48,9 @@ using CDataType = F16;
using
ALayout
=
Row
;
using
ALayout
=
Row
;
using
B0Layout
=
Col
;
using
B0Layout
=
Col
;
using
B1Layout
=
Row
;
using
B1Layout
=
Row
;
using
CLayout
=
Row
;
using
CPermuteNumDims_G_M_O
=
S
<
1
,
1
,
1
>
;
// "using CLayout = Row" has been replaced by CPermuteNumDims_M_O
using
AElementOp
=
PassThrough
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
...
@@ -55,65 +58,66 @@ using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
...
@@ -55,65 +58,66 @@ using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using
B1ElementOp
=
PassThrough
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
MNPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
using
DeviceGemmInstance
=
ALayout
,
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
B0Layout
,
ALayout
,
B1Layout
,
B0Layout
,
CLayout
,
B1Layout
,
ADataType
,
CPermuteNumDims_G_M_O
,
B0DataType
,
ADataType
,
B1DataType
,
B0DataType
,
CDataType
,
B1DataType
,
AccDataType
,
CDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
CShuffleDataType
,
B0ElementOp
,
AElementOp
,
Acc0ElementOp
,
B0ElementOp
,
B1ElementOp
,
Acc0ElementOp
,
CElementOp
,
B1ElementOp
,
MNPadding
,
CElementOp
,
1
,
GemmSpec
,
256
,
1
,
128
,
// MPerBlock
256
,
128
,
// NPerBlock
128
,
// MPerBlock
32
,
// KPerBlock
128
,
// NPerBlock
64
,
// Gemm1NPerBlock
32
,
// KPerBlock
32
,
// Gemm1KPerBlock
64
,
// Gemm1NPerBlock
8
,
// AK1
32
,
// Gemm1KPerBlock
8
,
// BK1
8
,
// AK1
2
,
// B1K1
8
,
// BK1
32
,
// MPerXDL
2
,
// B1K1
32
,
// NPerXDL
32
,
// MPerXDL
1
,
// MXdlPerWave
32
,
// NPerXDL
4
,
// NXdlPerWave
1
,
// MXdlPerWave
2
,
// Gemm1NXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
2
,
// Gemm1NXdlPerWave
S
<
1
,
0
,
2
>
,
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
S
<
1
,
0
,
2
>
,
8
,
2
,
8
,
8
,
true
,
8
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
true
,
S
<
1
,
0
,
2
>
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
S
<
1
,
0
,
2
>
,
8
,
2
,
8
,
8
,
true
,
8
,
S
<
16
,
16
,
1
>
,
// B1BlockTransfer
true
,
S
<
0
,
2
,
1
>
,
S
<
16
,
16
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
S
<
0
,
2
,
1
>
,
4
,
1
,
2
,
4
,
false
,
2
,
1
,
// CShuffleMXdlPerWavePerShuffle
false
,
2
,
// CShuffleNXdlPerWavePerShuffle
1
,
// CShuffleMXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
2
,
// CShuffleNXdlPerWavePerShuffle
8
>
;
// CShuffleBlockTransferScalarPerVector_NPerBlock
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
>
;
// CShuffleBlockTransferScalarPerVector_NPerBlock
// Ref Gemm0: fp16 in, fp32 out
// Ref Gemm0: fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
...
@@ -143,22 +147,6 @@ int main(int argc, char* argv[])
...
@@ -143,22 +147,6 @@ int main(int argc, char* argv[])
int
init_method
=
1
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
1020
;
ck
::
index_t
N
=
1020
;
ck
::
index_t
K
=
64
;
ck
::
index_t
O
=
128
;
ck
::
index_t
BatchCount
=
4
;
ck
::
index_t
StrideA
=
-
1
;
ck
::
index_t
StrideB0
=
-
1
;
ck
::
index_t
StrideB1
=
-
1
;
ck
::
index_t
StrideC
=
-
1
;
ck
::
index_t
BatchStrideA
=
-
1
;
ck
::
index_t
BatchStrideB0
=
-
1
;
ck
::
index_t
BatchStrideB1
=
-
1
;
ck
::
index_t
BatchStrideC
=
-
1
;
float
alpha
=
1
;
if
(
argc
==
1
)
if
(
argc
==
1
)
{
{
// use default case
// use default case
...
@@ -169,74 +157,58 @@ int main(int argc, char* argv[])
...
@@ -169,74 +157,58 @@ int main(int argc, char* argv[])
init_method
=
std
::
stoi
(
argv
[
2
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
}
else
if
(
argc
==
9
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
BatchCount
=
std
::
stoi
(
argv
[
8
]);
}
else
if
(
argc
==
18
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
BatchCount
=
std
::
stoi
(
argv
[
8
]);
StrideA
=
std
::
stoi
(
argv
[
9
]);
StrideB0
=
std
::
stoi
(
argv
[
10
]);
StrideB1
=
std
::
stoi
(
argv
[
11
]);
StrideC
=
std
::
stoi
(
argv
[
12
]);
BatchStrideA
=
std
::
stoi
(
argv
[
13
]);
BatchStrideB0
=
std
::
stoi
(
argv
[
14
]);
BatchStrideB1
=
std
::
stoi
(
argv
[
15
]);
BatchStrideC
=
std
::
stoi
(
argv
[
16
]);
alpha
=
std
::
stof
(
argv
[
17
]);
}
else
else
{
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 16: M, N, K, O, Batch, StrideA, StrideB0, StrideB1, StrideC, BatchStrideA, "
"BatchStrideB0, BatchStrideB1, BatchStrideC
\n
"
);
printf
(
"arg17: scale (alpha)
\n
"
);
exit
(
0
);
exit
(
0
);
}
}
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
float
alpha
=
1
;
// scaling after 1st gemm
const
int
DefaultStrideB0
=
ck
::
is_same_v
<
B0Layout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideB1
=
ck
::
is_same_v
<
B1Layout
,
Row
>
?
O
:
N
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
O
:
M
;
StrideA
=
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
;
std
::
size_t
group_count
=
13
;
StrideB0
=
(
StrideB0
<
0
)
?
DefaultStrideB0
:
StrideB0
;
StrideB1
=
(
StrideB1
<
0
)
?
DefaultStrideB1
:
StrideB1
;
StrideC
=
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
;
const
int
DefaultBatchStrideA
=
(
ck
::
is_same_v
<
ALayout
,
Col
>
?
K
:
M
)
*
StrideA
;
// Problem descs
const
int
DefaultBatchStrideB0
=
(
ck
::
is_same_v
<
B0Layout
,
Col
>
?
N
:
K
)
*
StrideB0
;
std
::
vector
<
DeviceGemmInstance
::
ProblemDesc
>
problem_descs
;
const
int
DefaultBatchStrideB1
=
(
ck
::
is_same_v
<
B1Layout
,
Col
>
?
O
:
N
)
*
StrideB1
;
std
::
vector
<
const
void
*>
p_a
;
const
int
DefaultBatchStrideC
=
(
ck
::
is_same_v
<
CLayout
,
Col
>
?
O
:
M
)
*
StrideC
;
std
::
vector
<
const
void
*>
p_b0
;
std
::
vector
<
const
void
*>
p_b1
;
std
::
vector
<
void
*>
p_c
;
BatchStrideA
=
BatchStrideA
<
0
?
DefaultBatchStrideA
:
BatchStrideA
;
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
BatchStrideB0
=
BatchStrideB0
<
0
?
DefaultBatchStrideB0
:
BatchStrideB0
;
{
BatchStrideB1
=
BatchStrideB1
<
0
?
DefaultBatchStrideB1
:
BatchStrideB1
;
int
M
=
128
*
(
rand
()
%
8
+
1
);
BatchStrideC
=
BatchStrideC
<
0
?
DefaultBatchStrideC
:
BatchStrideC
;
int
N
=
128
*
(
rand
()
%
8
+
1
);
int
K
=
64
;
int
O
=
64
*
(
rand
()
%
2
+
1
);
int
Batch
=
rand
()
%
8
+
1
;
const
int
StrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
StrideB0
=
ck
::
is_same_v
<
B0Layout
,
Row
>
?
N
:
K
;
const
int
StrideB1
=
ck
::
is_same_v
<
B1Layout
,
Row
>
?
O
:
N
;
const
int
BatchStrideA
=
(
ck
::
is_same_v
<
ALayout
,
Col
>
?
K
:
M
)
*
StrideA
;
const
int
BatchStrideB0
=
(
ck
::
is_same_v
<
B0Layout
,
Col
>
?
N
:
K
)
*
StrideB0
;
const
int
BatchStrideB1
=
(
ck
::
is_same_v
<
B1Layout
,
Col
>
?
O
:
N
)
*
StrideB1
;
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
Batch
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
{
O
,
Batch
*
O
,
1
};
problem_descs
.
push_back
({
M
,
N
,
K
,
O
,
Batch
,
StrideA
,
StrideB0
,
StrideB1
,
BatchStrideA
,
BatchStrideB0
,
BatchStrideB1
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
});
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
row
,
...
@@ -256,56 +228,108 @@ int main(int argc, char* argv[])
...
@@ -256,56 +228,108 @@ int main(int argc, char* argv[])
}
}
};
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
Tensor
<
ADataType
>
a_g_m_k
(
std
::
vector
<
Tensor
<
B0DataType
>>
b0_tensors
;
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
std
::
vector
<
Tensor
<
B1DataType
>>
b1_tensors
;
Tensor
<
B0DataType
>
b0_g_k_n
(
std
::
vector
<
Tensor
<
CDataType
>>
c_tensors
;
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB0
,
BatchStrideB0
,
B0Layout
{}));
Tensor
<
B1DataType
>
b1_g_n_o
(
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
f_host_tensor_descriptor
(
BatchCount
,
N
,
O
,
StrideB1
,
BatchStrideB1
,
B1Layout
{}));
Tensor
<
CDataType
>
c_g_m_o_host_result
(
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
;
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
std
::
vector
<
DeviceMemPtr
>
b0_tensors_device
;
Tensor
<
CDataType
>
c_g_m_o_device_result
(
std
::
vector
<
DeviceMemPtr
>
b1_tensors_device
;
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
std
::
vector
<
DeviceMemPtr
>
c_tensors_device
;
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
size_t
flop
=
0
,
num_byte
=
0
;
std
::
cout
<<
"b0_g_k_n: "
<<
b0_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_g_n_o: "
<<
b1_g_n_o
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"group count "
<<
group_count
<<
". printing first 4 groups
\n
"
;
std
::
cout
<<
"c_g_m_o: "
<<
c_g_m_o_host_result
.
mDesc
<<
std
::
endl
;
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
switch
(
init_method
)
{
{
case
0
:
break
;
const
auto
&
M
=
problem_descs
[
i
].
M
;
case
1
:
const
auto
&
N
=
problem_descs
[
i
].
N
;
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
const
auto
&
K
=
problem_descs
[
i
].
K
;
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
const
auto
&
O
=
problem_descs
[
i
].
O
;
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
5
,
5
});
const
auto
&
Batch
=
problem_descs
[
i
].
Batch
;
break
;
const
auto
&
StrideA
=
problem_descs
[
i
].
StrideA
;
case
2
:
const
auto
&
StrideB0
=
problem_descs
[
i
].
StrideB0
;
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
const
auto
&
StrideB1
=
problem_descs
[
i
].
StrideB1
;
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
const
auto
&
BatchStrideA
=
problem_descs
[
i
].
BatchStrideA
;
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
const
auto
&
BatchStrideB0
=
problem_descs
[
i
].
BatchStrideB0
;
break
;
const
auto
&
BatchStrideB1
=
problem_descs
[
i
].
BatchStrideB1
;
case
3
:
const
auto
&
c_gs_ms_os_lengths
=
problem_descs
[
i
].
c_gs_ms_os_lengths
;
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
const
auto
&
c_gs_ms_os_strides
=
problem_descs
[
i
].
c_gs_ms_os_strides
;
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
// C_m_o = A_m_k * B0_k_n * B1_n_o
break
;
Tensor
<
ADataType
>
a_g_m_k
(
default:
f_host_tensor_descriptor
(
Batch
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
Tensor
<
B0DataType
>
b0_g_k_n
(
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
f_host_tensor_descriptor
(
Batch
,
K
,
N
,
StrideB0
,
BatchStrideB0
,
B0Layout
{}));
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
Tensor
<
B1DataType
>
b1_g_n_o
(
}
f_host_tensor_descriptor
(
Batch
,
N
,
O
,
StrideB1
,
BatchStrideB1
,
B1Layout
{}));
Tensor
<
CDataType
>
c_gs_ms_os_device_result
(
std
::
vector
<
std
::
size_t
>
(
c_gs_ms_os_lengths
.
begin
(),
c_gs_ms_os_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
c_gs_ms_os_strides
.
begin
(),
c_gs_ms_os_strides
.
end
()));
flop
+=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
Batch
;
num_byte
+=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
)
*
Batch
;
if
(
i
<
4
)
{
std
::
cout
<<
"a_g_m_k["
<<
i
<<
"]: "
<<
a_g_m_k
.
mDesc
<<
", "
<<
"b0_g_k_n["
<<
i
<<
"]: "
<<
b0_g_k_n
.
mDesc
<<
", "
<<
"b1_g_n_o["
<<
i
<<
"]: "
<<
b1_g_n_o
.
mDesc
<<
", "
<<
"c_gs_ms_os["
<<
i
<<
"]: "
<<
c_gs_ms_os_device_result
.
mDesc
<<
std
::
endl
;
}
DeviceMem
a_g_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
switch
(
init_method
)
DeviceMem
b0_g_k_n_device_buf
(
sizeof
(
B0DataType
)
*
b0_g_k_n
.
mDesc
.
GetElementSpaceSize
());
{
DeviceMem
b1_g_n_o_device_buf
(
sizeof
(
B1DataType
)
*
b1_g_n_o
.
mDesc
.
GetElementSpaceSize
());
case
0
:
break
;
DeviceMem
c_g_m_o_device_buf
(
sizeof
(
CDataType
)
*
case
1
:
c_g_m_o_device_result
.
mDesc
.
GetElementSpaceSize
());
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
2
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
a_g_m_k_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
a_tensors
.
push_back
(
a_g_m_k
);
b0_g_k_n_device_buf
.
ToDevice
(
b0_g_k_n
.
mData
.
data
());
b0_tensors
.
push_back
(
b0_g_k_n
);
b1_g_n_o_device_buf
.
ToDevice
(
b1_g_n_o
.
mData
.
data
());
b1_tensors
.
push_back
(
b1_g_n_o
);
c_tensors
.
push_back
(
c_gs_ms_os_device_result
);
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
()));
b0_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
B0DataType
)
*
b0_g_k_n
.
mDesc
.
GetElementSpaceSize
()));
b1_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
B1DataType
)
*
b1_g_n_o
.
mDesc
.
GetElementSpaceSize
()));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
CDataType
)
*
c_gs_ms_os_device_result
.
mDesc
.
GetElementSpaceSize
()));
a_tensors_device
[
i
]
->
ToDevice
(
a_g_m_k
.
mData
.
data
());
b0_tensors_device
[
i
]
->
ToDevice
(
b0_g_k_n
.
mData
.
data
());
b1_tensors_device
[
i
]
->
ToDevice
(
b1_g_n_o
.
mData
.
data
());
p_a
.
push_back
(
a_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_b0
.
push_back
(
b0_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_b1
.
push_back
(
b1_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_c
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
}
auto
a_element_op
=
AElementOp
{};
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
...
@@ -314,31 +338,23 @@ int main(int argc, char* argv[])
...
@@ -314,31 +338,23 @@ int main(int argc, char* argv[])
auto
c_element_op
=
CElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
auto
argument
=
gemm
.
MakeArgument
(
p_a
,
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_g_m_k_device_buf
.
GetDeviceBuffer
()),
p_b0
,
static_cast
<
B0DataType
*>
(
b0_g_k_n_device_buf
.
GetDeviceBuffer
()),
p_b1
,
static_cast
<
B1DataType
*>
(
b1_g_n_o_device_buf
.
GetDeviceBuffer
()),
p_c
,
static_cast
<
CDataType
*>
(
c_g_m_o_device_buf
.
GetDeviceBuffer
()),
problem_descs
,
M
,
a_element_op
,
N
,
b0_element_op
,
K
,
acc0_element_op
,
O
,
b1_element_op
,
BatchCount
,
c_element_op
);
StrideA
,
StrideB0
,
// specify workspace for problem_desc
StrideB1
,
DeviceMem
problem_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
StrideC
,
BatchStrideA
,
gemm
.
SetWorkSpacePointer
(
&
argument
,
problem_desc_workspace
.
GetDeviceBuffer
());
BatchStrideB0
,
BatchStrideB1
,
BatchStrideC
,
a_element_op
,
b0_element_op
,
acc0_element_op
,
b1_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
{
...
@@ -349,49 +365,79 @@ int main(int argc, char* argv[])
...
@@ -349,49 +365,79 @@ int main(int argc, char* argv[])
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
BatchCount
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_bt
yp
e
/
1.E6
/
ave_time
;
float
gb_per_sec
=
num_b
y
te
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
c_g_m_o_device_buf
.
FromDevice
(
c_g_m_o_device_result
.
mData
.
data
());
bool
pass
=
true
;
if
(
do_verification
)
if
(
do_verification
)
{
{
// Output of Gemm0 is input A of Gemm1
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
Tensor
<
AccDataType
>
acc0_g_m_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
{
const
auto
&
M
=
problem_descs
[
i
].
M
;
const
auto
&
N
=
problem_descs
[
i
].
N
;
const
auto
&
O
=
problem_descs
[
i
].
O
;
const
auto
&
Batch
=
problem_descs
[
i
].
Batch
;
const
auto
&
c_gs_ms_os_lengths
=
problem_descs
[
i
].
c_gs_ms_os_lengths
;
const
auto
&
c_gs_ms_os_strides
=
problem_descs
[
i
].
c_gs_ms_os_strides
;
const
auto
&
a_g_m_k
=
a_tensors
[
i
];
const
auto
&
b0_g_k_n
=
b0_tensors
[
i
];
const
auto
&
b1_g_n_o
=
b1_tensors
[
i
];
auto
&
c_gs_ms_os_device_result
=
c_tensors
[
i
];
auto
&
c_gs_ms_os_device_buf
=
*
c_tensors_device
[
i
];
Tensor
<
CDataType
>
c_gs_ms_os_host_result
(
std
::
vector
<
std
::
size_t
>
(
c_gs_ms_os_lengths
.
begin
(),
c_gs_ms_os_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
c_gs_ms_os_strides
.
begin
(),
c_gs_ms_os_strides
.
end
()));
Tensor
<
ADataType
>
a1
_g_m
_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}
));
c
_g
s
_m
s_os_device_buf
.
FromDevice
(
c_gs_ms_os_device_result
.
mData
.
data
(
));
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
// Output of Gemm0 is input A of Gemm1
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
Tensor
<
AccDataType
>
acc0_m_n
(
f_host_tensor_descriptor
(
Batch
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
acc0_g_m_n
,
a_element_op
,
b0_element_op
,
acc0_element_op
);
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
Tensor
<
ADataType
>
a1_g_m_n
(
f_host_tensor_descriptor
(
Batch
,
M
,
N
,
N
,
M
*
N
,
Row
{})
);
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
Tensor
<
CDataType
>
c_g_m_o_host_result
(
std
::
vector
<
int
>
{
Batch
,
M
,
O
},
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
std
::
vector
<
int
>
{
M
*
O
,
O
,
1
});
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
acc0_g_m_n
,
a1_g_m_n
,
1
,
0
,
{
2
});
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
acc0_m_n
,
a_element_op
,
b0_element_op
,
acc0_element_op
);
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
acc0_m_n
,
a1_g_m_n
,
1
,
0
,
{
2
});
return
ck
::
utils
::
check_err
(
c_g_m_o_device_result
.
mData
,
c_g_m_o_host_result
.
mData
)
?
0
:
1
;
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
// Note: in this example, we merely permute the dimensions by changing underlying
// strides so we simply access data as-is
c_gs_ms_os_host_result
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
c_g_m_o_host_result
(
idx
);
});
bool
pass_
=
ck
::
utils
::
check_err
(
c_gs_ms_os_device_result
.
mData
,
c_gs_ms_os_host_result
.
mData
);
pass
&=
pass_
;
}
}
}
return
0
;
return
pass
?
0
:
1
;
}
}
example/39_permute/CMakeLists.txt
0 → 100644
View file @
c54b7bc9
add_custom_target
(
example_permute
)
add_example_executable
(
example_permute_1xHxW_fp16 permute_1xHxW_fp16.cpp
)
add_example_executable
(
example_permute_NxHxW_fp16 permute_NxHxW_fp16.cpp
)
add_example_executable
(
example_permute_HxWx4_fp16 permute_HxWx4_fp16.cpp
)
add_dependencies
(
example_permute example_permute_1xHxW_fp16
)
add_dependencies
(
example_permute example_permute_NxHxW_fp16
)
add_dependencies
(
example_permute example_permute_HxWx4_fp16
)
example/39_permute/common.hpp
0 → 100644
View file @
c54b7bc9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <iterator>
#include <numeric>
#include <type_traits>
#include <utility>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_permute_impl.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/utility/type.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F64
=
double
;
struct
Problem
final
{
static
constexpr
std
::
size_t
NumDim
=
3
;
using
Shape
=
std
::
array
<
std
::
size_t
,
NumDim
>
;
using
Axes
=
Shape
;
Problem
()
=
delete
;
explicit
Problem
(
const
Shape
&
default_shape
,
const
Axes
&
default_axes
)
:
shape
(
default_shape
),
axes
(
default_axes
)
{
}
Shape
shape
;
Axes
axes
;
};
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
namespace
detail
{
template
<
typename
Array
,
std
::
size_t
Difference
>
struct
enlarge_array_size
;
template
<
typename
T
,
std
::
size_t
Size
,
std
::
size_t
Difference
>
struct
enlarge_array_size
<
std
::
array
<
T
,
Size
>
,
Difference
>
{
using
type
=
std
::
array
<
T
,
Size
+
Difference
>
;
};
template
<
typename
Array
,
std
::
size_t
Difference
>
using
enlarge_array_size_t
=
typename
enlarge_array_size
<
Array
,
Difference
>::
type
;
template
<
typename
Array
>
struct
get_array_size
;
template
<
typename
T
,
std
::
size_t
Size
>
struct
get_array_size
<
std
::
array
<
T
,
Size
>>
:
std
::
integral_constant
<
std
::
size_t
,
Size
>
{
};
template
<
typename
Array
>
inline
constexpr
std
::
size_t
get_array_size_v
=
get_array_size
<
Array
>::
value
;
template
<
typename
T
,
typename
=
void
>
struct
is_iterator
:
std
::
false_type
{
};
template
<
typename
T
>
struct
is_iterator
<
T
,
std
::
void_t
<
decltype
(
*
std
::
declval
<
T
>
()),
decltype
(
++
std
::
declval
<
std
::
add_lvalue_reference_t
<
T
>>
()),
decltype
(
std
::
declval
<
std
::
add_lvalue_reference_t
<
T
>>
()
++
)
>>
:
std
::
true_type
{
};
template
<
typename
T
>
inline
constexpr
bool
is_iterator_v
=
is_iterator
<
T
>::
value
;
struct
Placeholder
final
{
template
<
typename
T
>
constexpr
inline
operator
T
()
const
noexcept
;
};
template
<
typename
Iterator
,
typename
=
void
>
struct
is_output_iterator
:
std
::
false_type
{
};
template
<
typename
Iterator
>
struct
is_output_iterator
<
Iterator
,
std
::
void_t
<
decltype
(
*
std
::
declval
<
Iterator
>
()
=
std
::
declval
<
Placeholder
>
())
>>
:
std
::
bool_constant
<
is_iterator_v
<
Iterator
>>
{
};
template
<
typename
T
>
inline
constexpr
bool
is_output_iterator_v
=
is_output_iterator
<
T
>::
value
;
template
<
typename
Iterator
,
typename
=
void
>
struct
is_bidirectional_iterator
:
std
::
false_type
{
};
template
<
typename
Iterator
>
struct
is_bidirectional_iterator
<
Iterator
,
std
::
void_t
<
decltype
(
--
std
::
declval
<
std
::
add_lvalue_reference_t
<
Iterator
>>
()),
decltype
(
std
::
declval
<
std
::
add_lvalue_reference_t
<
Iterator
>>
()
--
)
>>
:
std
::
bool_constant
<
is_iterator_v
<
Iterator
>>
{
};
template
<
typename
Iterator
>
inline
constexpr
bool
is_bidirectional_iterator_v
=
is_bidirectional_iterator
<
Iterator
>::
value
;
template
<
typename
Iterator
,
typename
=
void
>
struct
is_random_access_iterator
:
std
::
false_type
{
};
template
<
typename
Iterator
>
struct
is_random_access_iterator
<
Iterator
,
std
::
void_t
<
decltype
(
std
::
declval
<
Iterator
>
()
+
1
),
decltype
(
std
::
declval
<
Iterator
>
()
-
1
),
decltype
(
std
::
declval
<
Iterator
>
()[
1
])
>>
:
std
::
bool_constant
<
is_iterator_v
<
Iterator
>>
{
};
template
<
typename
Iterator
>
inline
constexpr
bool
is_random_access_iterator_v
=
is_random_access_iterator
<
Iterator
>::
value
;
template
<
typename
T
,
typename
=
void
>
struct
is_range
:
std
::
false_type
{
};
template
<
typename
T
>
struct
is_range
<
T
,
std
::
void_t
<
decltype
(
begin
(
std
::
declval
<
T
>
())),
decltype
(
end
(
std
::
declval
<
T
>
())),
decltype
(
begin
(
std
::
declval
<
T
>
())
!=
end
(
std
::
declval
<
T
>
()))
>>
:
std
::
bool_constant
<
is_iterator_v
<
ck
::
remove_cvref_t
<
decltype
(
begin
(
std
::
declval
<
T
>
()))
>>>
{
};
template
<
typename
T
>
inline
constexpr
bool
is_range_v
=
is_range
<
T
>::
value
;
template
<
typename
Range
,
typename
=
void
>
struct
is_sized_range
:
std
::
false_type
{
};
template
<
typename
Range
>
struct
is_sized_range
<
Range
,
std
::
void_t
<
decltype
(
size
(
std
::
declval
<
Range
>
()))
>>
:
std
::
bool_constant
<
is_range_v
<
Range
>>
{
};
template
<
typename
Range
>
inline
constexpr
bool
is_sized_range_v
=
is_sized_range
<
Range
>::
value
;
template
<
typename
Range
,
typename
=
void
>
struct
is_bidirectional_range
:
std
::
false_type
{
};
template
<
typename
Range
>
struct
is_bidirectional_range
<
Range
,
std
::
void_t
<>>
:
std
::
bool_constant
<
is_range_v
<
Range
>
&&
is_bidirectional_iterator_v
<
ck
::
remove_cvref_t
<
decltype
(
begin
(
std
::
declval
<
Range
>
()))
>>>
{
};
template
<
typename
Range
>
inline
constexpr
bool
is_bidirectional_range_v
=
is_bidirectional_range
<
Range
>::
value
;
template
<
typename
Range
,
typename
=
void
>
struct
is_random_access_range
:
std
::
false_type
{
};
template
<
typename
Range
>
struct
is_random_access_range
<
Range
,
std
::
void_t
<>>
:
std
::
bool_constant
<
is_range_v
<
Range
>
&&
is_random_access_iterator_v
<
ck
::
remove_cvref_t
<
decltype
(
begin
(
std
::
declval
<
Range
>
()))
>>>
{
};
template
<
typename
Range
>
inline
constexpr
bool
is_random_access_range_v
=
is_random_access_range
<
Range
>::
value
;
template
<
typename
Range
>
class
to_array_proxy
{
static_assert
(
is_range_v
<
Range
>
);
public:
explicit
to_array_proxy
(
const
Range
&
source
)
noexcept
:
source_
(
source
)
{}
template
<
typename
T
,
std
::
size_t
Size
>
operator
std
::
array
<
T
,
Size
>
()
const
{
std
::
array
<
T
,
Size
>
destination
;
std
::
copy_n
(
std
::
begin
(
source_
),
std
::
min
<
std
::
size_t
>
(
Size
,
std
::
size
(
source_
)),
std
::
begin
(
destination
));
return
destination
;
}
private:
const
Range
&
source_
;
};
}
// namespace detail
template
<
typename
Range
>
inline
auto
to_array
(
Range
&
range
)
noexcept
->
std
::
enable_if_t
<
detail
::
is_range_v
<
Range
>
,
detail
::
to_array_proxy
<
ck
::
remove_cvref_t
<
Range
>>>
{
return
detail
::
to_array_proxy
<
ck
::
remove_cvref_t
<
Range
>>
{
range
};
}
namespace
ranges
{
template
<
typename
InputRange
,
typename
OutputIterator
>
inline
auto
copy
(
InputRange
&&
range
,
OutputIterator
iter
)
->
decltype
(
std
::
copy
(
std
::
begin
(
std
::
forward
<
InputRange
>
(
range
)),
std
::
end
(
std
::
forward
<
InputRange
>
(
range
)),
iter
))
{
return
std
::
copy
(
std
::
begin
(
std
::
forward
<
InputRange
>
(
range
)),
std
::
end
(
std
::
forward
<
InputRange
>
(
range
)),
iter
);
}
}
// namespace ranges
template
<
typename
Axes
>
inline
auto
is_valid_axes
(
const
Axes
&
axes
)
->
std
::
enable_if_t
<
detail
::
is_random_access_range_v
<
Axes
>
,
bool
>
{
using
std
::
empty
;
if
(
empty
(
axes
))
{
return
false
;
}
using
std
::
begin
,
std
::
end
;
std
::
vector
<
std
::
size_t
>
sorted_axes
(
begin
(
axes
),
end
(
axes
));
std
::
sort
(
begin
(
sorted_axes
),
end
(
sorted_axes
));
const
auto
last
=
std
::
unique
(
begin
(
sorted_axes
),
end
(
sorted_axes
));
return
(
last
==
end
(
sorted_axes
))
&&
(
*
begin
(
sorted_axes
)
==
0
)
&&
(
*
std
::
prev
(
last
)
==
size
(
axes
)
-
1
);
}
template
<
typename
Shape
>
inline
auto
is_valid_shape
(
const
Shape
&
shape
)
->
std
::
enable_if_t
<
detail
::
is_range_v
<
Shape
>
,
bool
>
{
static_assert
(
std
::
is_unsigned_v
<
ck
::
remove_cvref_t
<
decltype
(
*
std
::
begin
(
shape
))
>>
);
using
std
::
begin
,
std
::
end
;
using
std
::
empty
;
return
!
empty
(
shape
)
&&
std
::
all_of
(
begin
(
shape
),
end
(
shape
),
[](
auto
dim
)
{
return
0
<
dim
;
});
}
template
<
typename
Shape
,
typename
Indices
>
inline
auto
is_valid_indices
(
const
Shape
&
shape
,
const
Indices
&
indices
)
->
std
::
enable_if_t
<
detail
::
is_sized_range_v
<
Shape
>
&&
detail
::
is_sized_range_v
<
Indices
>
,
bool
>
{
static_assert
(
std
::
is_unsigned_v
<
ck
::
remove_cvref_t
<
decltype
(
*
std
::
begin
(
indices
))
>>
);
if
(
!
is_valid_shape
(
shape
))
{
return
false
;
}
using
std
::
empty
;
if
(
empty
(
indices
))
{
return
false
;
}
using
std
::
size
;
if
(
size
(
shape
)
!=
size
(
indices
))
{
return
false
;
}
using
std
::
begin
,
std
::
end
;
auto
dim
=
begin
(
shape
);
auto
idx
=
begin
(
indices
);
for
(;
dim
!=
end
(
shape
)
&&
idx
!=
end
(
indices
);
++
dim
,
++
idx
)
{
if
(
*
dim
<=
*
idx
)
{
return
false
;
}
}
return
true
;
}
template
<
std
::
size_t
Size
>
std
::
array
<
std
::
size_t
,
Size
>
transpose
(
const
std
::
array
<
std
::
size_t
,
Size
>&
shape
,
const
std
::
array
<
std
::
size_t
,
Size
>&
axes
)
{
assert
(
is_valid_shape
(
shape
)
&&
is_valid_axes
(
axes
));
std
::
array
<
std
::
size_t
,
Size
>
transposed
;
auto
iter
=
std
::
begin
(
transposed
);
for
(
const
auto
axis
:
axes
)
{
*
iter
++
=
shape
[
axis
];
}
return
transposed
;
}
auto
extend_shape
(
const
Problem
::
Shape
&
shape
,
std
::
size_t
new_dim
)
{
detail
::
enlarge_array_size_t
<
Problem
::
Shape
,
1
>
extended_shape
;
using
std
::
begin
,
std
::
end
;
std
::
copy
(
begin
(
shape
),
end
(
shape
),
begin
(
extended_shape
));
extended_shape
.
back
()
=
new_dim
;
return
extended_shape
;
}
auto
extend_axes
(
const
Problem
::
Axes
&
axes
)
{
detail
::
enlarge_array_size_t
<
Problem
::
Axes
,
1
>
extended_axes
;
using
std
::
begin
,
std
::
end
;
std
::
copy
(
begin
(
axes
),
end
(
axes
),
begin
(
extended_axes
));
extended_axes
.
back
()
=
detail
::
get_array_size_v
<
Problem
::
Axes
>
;
return
extended_axes
;
}
template
<
typename
Shape
,
typename
Indices
>
auto
advance_indices
(
const
Shape
&
shape
,
Indices
&
indices
)
->
std
::
enable_if_t
<
detail
::
is_bidirectional_range_v
<
Shape
>
&&
detail
::
is_sized_range_v
<
Shape
>
&&
detail
::
is_bidirectional_range_v
<
Indices
>
&&
detail
::
is_sized_range_v
<
Indices
>
,
bool
>
{
using
std
::
size
;
if
(
!
(
is_valid_shape
(
shape
)
&&
is_valid_indices
(
shape
,
indices
)
&&
size
(
shape
)
==
size
(
indices
)))
{
return
false
;
}
bool
carry
=
true
;
using
std
::
rbegin
,
std
::
rend
;
auto
dim
=
rbegin
(
shape
);
auto
idx
=
rbegin
(
indices
);
for
(;
carry
&&
dim
!=
rend
(
shape
)
&&
idx
!=
rend
(
indices
);
++
dim
,
++
idx
)
{
*
idx
=
(
*
idx
+
carry
);
carry
=
((
*
idx
==
*
dim
)
?
(
*
idx
=
0
,
true
)
:
false
);
}
return
!
carry
;
}
template
<
typename
Src
,
typename
Axes
,
typename
Functor
,
typename
Dest
>
auto
host_permute
(
const
Tensor
<
Src
>&
src
,
const
Axes
&
axes
,
Functor
functor
,
Tensor
<
Dest
>&
dest
)
->
std
::
enable_if_t
<
detail
::
is_random_access_range_v
<
Axes
>
&&
detail
::
is_sized_range_v
<
Axes
>
&&
std
::
is_invocable_v
<
Functor
,
std
::
add_lvalue_reference_t
<
Dest
>
,
std
::
add_lvalue_reference_t
<
Src
>>
,
bool
>
{
const
auto
&
shape
=
src
.
mDesc
.
GetLengths
();
const
auto
&
transposed_shape
=
dest
.
mDesc
.
GetLengths
();
if
(
!
(
is_valid_shape
(
shape
)
&&
is_valid_shape
(
transposed_shape
)))
{
return
false
;
}
using
std
::
size
;
if
(
!
is_valid_axes
(
axes
))
{
return
false
;
}
static_assert
(
detail
::
is_sized_range_v
<
ck
::
remove_cvref_t
<
decltype
(
shape
)
>>
&&
detail
::
is_sized_range_v
<
ck
::
remove_cvref_t
<
decltype
(
transposed_shape
)
>>
);
if
(
size
(
shape
)
!=
size
(
transposed_shape
))
{
return
false
;
}
static_assert
(
detail
::
is_random_access_range_v
<
ck
::
remove_cvref_t
<
decltype
(
shape
)
>>
&&
detail
::
is_random_access_range_v
<
ck
::
remove_cvref_t
<
decltype
(
transposed_shape
)
>>
);
{
for
(
std
::
size_t
idx
=
0
;
idx
<
size
(
shape
);
++
idx
)
{
if
(
transposed_shape
[
idx
]
!=
shape
[
axes
[
idx
]])
{
return
false
;
}
}
}
std
::
vector
<
std
::
size_t
>
indices
(
size
(
shape
),
0
);
if
(
!
is_valid_indices
(
shape
,
indices
))
{
return
false
;
}
switch
(
size
(
shape
))
{
case
3
:
{
do
{
Dest
output
=
0
;
functor
(
output
,
src
(
indices
[
0
],
indices
[
1
],
indices
[
2
]));
dest
(
indices
[
axes
[
0
]],
indices
[
axes
[
1
]],
indices
[
axes
[
2
]])
=
output
;
}
while
(
advance_indices
(
shape
,
indices
));
}
break
;
case
4
:
{
do
{
Dest
output
=
0
;
functor
(
output
,
src
(
indices
[
0
],
indices
[
1
],
indices
[
2
],
indices
[
3
]));
dest
(
indices
[
axes
[
0
]],
indices
[
axes
[
1
]],
indices
[
axes
[
2
]],
indices
[
axes
[
3
]])
=
output
;
}
while
(
advance_indices
(
shape
,
indices
));
}
break
;
default:
return
false
;
}
return
true
;
}
example/39_permute/permute_1xHxW_fp16.cpp
0 → 100644
View file @
c54b7bc9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
InDataType
=
F16
;
using
OutDataType
=
F16
;
// clang-format off
using
DevicePermuteInstance
=
ck
::
tensor_operation
::
device
::
DevicePermuteImpl
// ######| NumDim| InData| OutData| Elementwise| Block| NPer| HPer| WPer| InBlock| InBlockTransfer| InBlockTransfer| Src| Dst| Src| Dst|
// ######| | Type| Type| Operation| Size| Block| Block| Block| LdsExtraW| ThreadClusterLengths| ThreadClusterArrangeOrder| VectorDim| VectorDim| ScalarPerVector| ScalarPerVector|
// ######| | | | | | | | | | | | | | | |
// ######| | | | | | | | | | | | | | | |
<
3
,
InDataType
,
OutDataType
,
PassThrough
,
256
,
1
,
32
,
32
,
3
,
S
<
1
,
32
,
8
>
,
S
<
0
,
1
,
2
>
,
2
,
1
,
2
,
1
>
;
// clang-format on
#include "run_permute_element_example.inc"
int
main
()
{
return
!
run_permute_element_example
({
1
,
32000
,
80
},
{
0
,
2
,
1
});
}
example/39_permute/permute_HxWx4_fp16.cpp
0 → 100644
View file @
c54b7bc9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
DataType
=
F16
;
using
BundleType
=
F64
;
static_assert
(
sizeof
(
BundleType
)
%
sizeof
(
DataType
)
==
0
);
// clang-format off
using
DevicePermuteInstance
=
ck
::
tensor_operation
::
device
::
DevicePermuteImpl
// ######| NumDim| InData| OutData| Elementwise| Block| NPer| HPer| WPer| InBlock| InBlockTransfer| InBlockTransfer| Src| Dst| Src| Dst|
// ######| | Type| Type| Operation| Size| Block| Block| Block| LdsExtraW| ThreadClusterLengths| ThreadClusterArrangeOrder| VectorDim| VectorDim| ScalarPerVector| ScalarPerVector|
// ######| | | | | | | | | | | | | | | |
// ######| | | | | | | | | | | | | | | |
<
3
,
BundleType
,
BundleType
,
PassThrough
,
256
,
1
,
32
,
32
,
5
,
S
<
1
,
32
,
8
>
,
S
<
0
,
1
,
2
>
,
2
,
1
,
4
,
1
>
;
// clang-format on
#include "run_permute_bundle_example.inc"
int
main
()
{
return
!
run_permute_bundle_example
({
1
,
80
,
32000
},
{
0
,
2
,
1
});
}
example/39_permute/permute_NxHxW_fp16.cpp
0 → 100644
View file @
c54b7bc9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
InDataType
=
F16
;
using
OutDataType
=
F16
;
// clang-format off
using
DevicePermuteInstance
=
ck
::
tensor_operation
::
device
::
DevicePermuteImpl
// ######| NumDim| InData| OutData| Elementwise| Block| NPer| HPer| WPer| InBlock| InBlockTransfer| InBlockTransfer| Src| Dst| Src| Dst|
// ######| | Type| Type| Operation| Size| Block| Block| Block| LdsExtraW| ThreadClusterLengths| ThreadClusterArrangeOrder| VectorDim| VectorDim| ScalarPerVector| ScalarPerVector|
// ######| | | | | | | | | | | | | | | |
// ######| | | | | | | | | | | | | | | |
<
3
,
InDataType
,
OutDataType
,
PassThrough
,
128
,
4
,
16
,
8
,
6
,
S
<
2
,
16
,
4
>
,
S
<
0
,
1
,
2
>
,
2
,
1
,
2
,
1
>
;
// clang-format on
#include "run_permute_element_example.inc"
int
main
()
{
return
!
run_permute_element_example
({
121
,
768
,
80
},
{
0
,
2
,
1
});
}
example/39_permute/run_permute_bundle_example.inc
0 → 100644
View file @
c54b7bc9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
bool
run_permute_bundle
(
const
Problem
&
problem
)
{
const
auto
&
input_bundle_shape
=
problem
.
shape
;
const
auto
&
input_bundle_axes
=
problem
.
axes
;
const
auto
output_bundle_shape
=
transpose
(
input_bundle_shape
,
input_bundle_axes
);
Tensor
<
BundleType
>
input_bundle_tensor
(
input_bundle_shape
);
Tensor
<
BundleType
>
output_bundle_tensor
(
output_bundle_shape
);
// initialize tensor by assigning DataType values
ck
::
utils
::
FillUniformDistribution
<
DataType
>
{
-
1.
f
,
1.
f
}(
input_bundle_tensor
.
AsSpan
<
DataType
>
());
DeviceMem
input_device_buf
(
input_bundle_tensor
.
GetElementSpaceSizeInBytes
());
DeviceMem
output_device_buf
(
output_bundle_tensor
.
GetElementSpaceSizeInBytes
());
using
std
::
data
;
input_device_buf
.
ToDevice
(
data
(
input_bundle_tensor
));
static_assert
(
std
::
is_default_constructible_v
<
DevicePermuteInstance
>
);
auto
permute
=
DevicePermuteInstance
{};
auto
argument
=
permute
.
MakeArgument
(
to_array
(
input_bundle_shape
),
to_array
(
input_bundle_tensor
.
GetStrides
()),
to_array
(
output_bundle_shape
),
to_array
(
output_bundle_tensor
.
GetStrides
()),
input_device_buf
.
GetDeviceBuffer
(),
output_device_buf
.
GetDeviceBuffer
(),
PassThrough
{});
if
(
!
permute
.
IsSupportedArgument
(
argument
))
{
std
::
cerr
<<
"The runtime parameters seems not supported by the device instance, exiting!"
<<
std
::
endl
;
return
false
;
};
auto
invoker
=
permute
.
MakeInvoker
();
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
true
});
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms"
<<
std
::
endl
;
output_device_buf
.
FromDevice
(
data
(
output_bundle_tensor
));
constexpr
std
::
size_t
NumElemsInBundle
=
sizeof
(
BundleType
)
/
sizeof
(
DataType
);
// extend tensor shape from [N, H, W] to [N, H, W, NumElemsInBundle]
// axes from [0, 2, 1] to [0, 2, 1, 3]
const
auto
input_shape
=
extend_shape
(
input_bundle_shape
,
NumElemsInBundle
);
const
auto
input_axes
=
extend_axes
(
input_bundle_axes
);
using
std
::
begin
;
Tensor
<
DataType
>
input_tensor
(
input_shape
);
ranges
::
copy
(
input_bundle_tensor
.
AsSpan
<
const
DataType
>
(),
begin
(
input_tensor
));
Tensor
<
DataType
>
output_tensor
(
transpose
(
input_shape
,
input_axes
));
if
(
!
host_permute
(
input_tensor
,
input_axes
,
PassThrough
{},
output_tensor
))
{
return
false
;
}
return
ck
::
utils
::
check_err
(
output_bundle_tensor
.
AsSpan
<
const
DataType
>
(),
output_tensor
.
AsSpan
<
const
DataType
>
(),
"Error: incorrect results in output tensor"
,
1
e
-
6
,
1
e
-
6
);
}
bool
run_permute_bundle_example
(
const
Problem
::
Shape
&
shape
,
const
Problem
::
Axes
&
axes
)
{
return
run_permute_bundle
(
Problem
{
shape
,
axes
});
}
example/39_permute/run_permute_element_example.inc
0 → 100644
View file @
c54b7bc9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
bool
run_permute_element
(
const
Problem
&
problem
)
{
const
auto
&
input_shape
=
problem
.
shape
;
const
auto
&
input_axes
=
problem
.
axes
;
const
auto
output_shape
=
transpose
(
input_shape
,
input_axes
);
Tensor
<
InDataType
>
input_tensor
(
input_shape
);
Tensor
<
OutDataType
>
output_tensor
(
output_shape
);
ck
::
utils
::
FillUniformDistribution
<
InDataType
>
{
-
1.
f
,
1.
f
}(
input_tensor
);
DeviceMem
input_device_buf
(
input_tensor
.
GetElementSpaceSizeInBytes
());
DeviceMem
output_device_buf
(
output_tensor
.
GetElementSpaceSizeInBytes
());
using
std
::
data
;
input_device_buf
.
ToDevice
(
data
(
input_tensor
));
static_assert
(
std
::
is_default_constructible_v
<
DevicePermuteInstance
>
);
auto
permute
=
DevicePermuteInstance
{};
auto
argument
=
permute
.
MakeArgument
(
to_array
(
input_shape
),
to_array
(
input_tensor
.
GetStrides
()),
to_array
(
output_shape
),
to_array
(
output_tensor
.
GetStrides
()),
input_device_buf
.
GetDeviceBuffer
(),
output_device_buf
.
GetDeviceBuffer
(),
PassThrough
{});
if
(
!
permute
.
IsSupportedArgument
(
argument
))
{
std
::
cerr
<<
"The runtime parameters seems not supported by the device instance, exiting!"
<<
std
::
endl
;
return
false
;
};
auto
invoker
=
permute
.
MakeInvoker
();
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
true
});
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms"
<<
std
::
endl
;
output_device_buf
.
FromDevice
(
data
(
output_tensor
));
Tensor
<
OutDataType
>
output_tensor_host
(
output_shape
);
if
(
!
host_permute
(
input_tensor
,
input_axes
,
PassThrough
{},
output_tensor_host
))
{
return
false
;
}
return
ck
::
utils
::
check_err
(
output_tensor
.
AsSpan
<
const
OutDataType
>
(),
output_tensor_host
.
AsSpan
<
const
OutDataType
>
(),
"Error: incorrect results in output tensor"
,
1
e
-
6
,
1
e
-
6
);
}
bool
run_permute_element_example
(
const
Problem
::
Shape
&
shape
,
const
Problem
::
Axes
&
axes
)
{
return
run_permute_element
(
Problem
{
shape
,
axes
});
}
include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
View file @
c54b7bc9
...
@@ -649,6 +649,9 @@ struct BlockwiseGemmXdlops_v2
...
@@ -649,6 +649,9 @@ struct BlockwiseGemmXdlops_v2
static
constexpr
index_t
MWaves
=
MPerBlock
/
(
MRepeat
*
MPerXDL
);
static
constexpr
index_t
MWaves
=
MPerBlock
/
(
MRepeat
*
MPerXDL
);
static
constexpr
index_t
NWaves
=
NPerBlock
/
(
NRepeat
*
NPerXDL
);
static
constexpr
index_t
NWaves
=
NPerBlock
/
(
NRepeat
*
NPerXDL
);
static_assert
(
KPerThread
%
KPack
==
0
,
"Wrong KPack setting; try increasing KPerThread or decreasing KPack"
);
StaticBufferTupleOfVector
<
AddressSpaceEnum
::
Vgpr
,
StaticBufferTupleOfVector
<
AddressSpaceEnum
::
Vgpr
,
FloatAcc
,
FloatAcc
,
MRepeat
*
NRepeat
,
MRepeat
*
NRepeat
,
...
...
include/ck/tensor_operation/gpu/device/device_base.hpp
View file @
c54b7bc9
...
@@ -3,6 +3,7 @@
...
@@ -3,6 +3,7 @@
#pragma once
#pragma once
#include <cmath>
#include <string>
#include <string>
#include "ck/stream_config.hpp"
#include "ck/stream_config.hpp"
...
...
include/ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp
View file @
c54b7bc9
...
@@ -503,13 +503,9 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
...
@@ -503,13 +503,9 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
if
(
!
DeviceOp
::
IsSupportedArgument
(
arg
))
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
b1_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
))
{
{
throw
std
::
runtime_error
(
"wrong!
GridwiseGemm has invalid setting
"
);
throw
std
::
runtime_error
(
"wrong!
unsupported argument
"
);
}
}
const
index_t
grid_size
=
const
index_t
grid_size
=
...
...
include/ck/tensor_operation/gpu/device/device_elementwise.hpp
View file @
c54b7bc9
...
@@ -222,14 +222,9 @@ struct DeviceElementwise
...
@@ -222,14 +222,9 @@ struct DeviceElementwise
}
}
};
};
bool
IsSupportedArgument
(
const
Base
Argument
*
p_arg
)
override
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
arg
.
lengths_
.
back
()
%
MPerThread
!=
0
)
if
(
pArg
==
nullptr
)
return
false
;
if
(
pArg
->
lengths_
.
back
()
%
MPerThread
!=
0
)
return
false
;
return
false
;
auto
IsScalarPerVectorValid
=
[
&
](
const
std
::
array
<
index_t
,
NumDim
>&
lengths
,
auto
IsScalarPerVectorValid
=
[
&
](
const
std
::
array
<
index_t
,
NumDim
>&
lengths
,
...
@@ -247,19 +242,40 @@ struct DeviceElementwise
...
@@ -247,19 +242,40 @@ struct DeviceElementwise
bool
valid
=
true
;
bool
valid
=
true
;
static_for
<
0
,
NumInput
,
1
>
{}([
&
](
auto
I
)
{
static_for
<
0
,
NumInput
,
1
>
{}([
&
](
auto
I
)
{
if
(
!
IsScalarPerVectorValid
(
if
(
!
IsScalarPerVectorValid
(
pArg
->
lengths_
,
pArg
->
inStridesArray_
[
I
.
value
],
InScalarPerVectorSeq
::
At
(
I
)))
arg
.
lengths_
,
arg
.
inStridesArray_
[
I
.
value
],
InScalarPerVectorSeq
::
At
(
I
)))
valid
=
false
;
valid
=
false
;
});
});
static_for
<
0
,
NumOutput
,
1
>
{}([
&
](
auto
I
)
{
static_for
<
0
,
NumOutput
,
1
>
{}([
&
](
auto
I
)
{
if
(
!
IsScalarPerVectorValid
(
if
(
!
IsScalarPerVectorValid
(
pArg
->
lengths_
,
pArg
->
outStridesArray_
[
I
.
value
],
OutScalarPerVectorSeq
::
At
(
I
)))
arg
.
lengths_
,
arg
.
outStridesArray_
[
I
.
value
],
OutScalarPerVectorSeq
::
At
(
I
)))
valid
=
false
;
valid
=
false
;
});
});
return
valid
;
return
valid
;
};
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
std
::
array
<
index_t
,
NumDim
>
lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumInput
>
inStridesArray
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumOutput
>
outStridesArray
,
const
std
::
array
<
const
void
*
,
NumInput
>
in_dev_buffers
,
const
std
::
array
<
void
*
,
NumOutput
>
out_dev_buffers
,
ElementwiseOperation
elementwise_op
)
{
return
Argument
{
lengths
,
inStridesArray
,
outStridesArray
,
in_dev_buffers
,
out_dev_buffers
,
elementwise_op
};
}
std
::
unique_ptr
<
BaseArgument
>
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
array
<
index_t
,
NumDim
>
lengths
,
MakeArgumentPointer
(
const
std
::
array
<
index_t
,
NumDim
>
lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumInput
>
inStridesArray
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumInput
>
inStridesArray
,
...
...
include/ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute.hpp
0 → 100644
View file @
c54b7bc9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
B0Layout
,
typename
B1Layout
,
typename
CPermuteNumDims_G_M_Gemm1N
,
// Sequence<>
typename
ADataType
,
typename
B0DataType
,
typename
B1DataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
B0ElementwiseOperation
,
typename
Acc0ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceGroupedGemmSoftmaxGemmPermute
:
public
BaseOperator
{
struct
ProblemDesc
{
// Overall problem shape
index_t
M
;
index_t
N
;
index_t
K
;
index_t
O
;
index_t
Batch
;
// Stride for A/B0/B1; layout determined by template args
index_t
StrideA
;
index_t
StrideB0
;
index_t
StrideB1
;
index_t
BatchStrideA
;
index_t
BatchStrideB0
;
index_t
BatchStrideB1
;
// Lengths and strides for output C
std
::
vector
<
index_t
>
c_gs_ms_os_lengths
;
std
::
vector
<
index_t
>
c_gs_ms_os_strides
;
};
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
const
void
*>
p_a_vec
,
std
::
vector
<
const
void
*>
p_b0_vec
,
std
::
vector
<
const
void
*>
p_b1_vec
,
std
::
vector
<
void
*>
p_c_vec
,
std
::
vector
<
ProblemDesc
>
problem_desc_vec
,
AElementwiseOperation
a_element_op
,
B0ElementwiseOperation
b0_element_op
,
Acc0ElementwiseOperation
acc0_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
0 → 100644
View file @
c54b7bc9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v1.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseGemm
,
typename
GroupKernelArg
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_grouped_gemm_softmax_gemm_xdl_cshuffle_v1
(
const
void
CK_CONSTANT_ADDRESS_SPACE
*
group_kernel_args
,
const
index_t
group_count
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
AccElementwiseOperation
acc_element_op
,
const
B1ElementwiseOperation
b1_element_op
,
const
CElementwiseOperation
c_element_op
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
block_id
=
get_block_1d_id
();
const
auto
arg_ptr
=
reinterpret_cast
<
const
GroupKernelArg
*>
(
cast_pointer_to_generic_address_space
(
group_kernel_args
));
index_t
left
=
0
;
index_t
right
=
group_count
;
index_t
group_id
=
index_t
((
left
+
right
)
/
2
);
while
((
!
(
block_id
>=
arg_ptr
[
group_id
].
block_start_
&&
block_id
<
arg_ptr
[
group_id
].
block_end_
))
&&
left
<=
right
)
{
if
(
block_id
<
arg_ptr
[
group_id
].
block_start_
)
{
right
=
group_id
;
}
else
{
left
=
group_id
;
}
group_id
=
index_t
((
left
+
right
)
/
2
);
}
// per-group batch offset
const
index_t
num_blocks_per_batch
=
arg_ptr
[
group_id
].
num_blocks_per_batch_
;
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
(
block_id
-
arg_ptr
[
group_id
].
block_start_
)
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetABasePtr
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetBBasePtr
(
g_idx
)));
const
long_index_t
b1_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetB1BasePtr
(
g_idx
)));
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetCBasePtr
(
g_idx
)));
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
arg_ptr
[
group_id
].
p_a_grid_
+
a_batch_offset
,
arg_ptr
[
group_id
].
p_b_grid_
+
b_batch_offset
,
arg_ptr
[
group_id
].
p_b1_grid_
+
b1_batch_offset
,
arg_ptr
[
group_id
].
p_c_grid_
+
c_batch_offset
,
p_shared
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
,
arg_ptr
[
group_id
].
a_grid_desc_ak0_m_ak1_
,
arg_ptr
[
group_id
].
b_grid_desc_bk0_n_bk1_
,
arg_ptr
[
group_id
].
b1_grid_desc_bk0_n_bk1_
,
arg_ptr
[
group_id
].
c_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg_ptr
[
group_id
].
block_2_ctile_map_
);
#else
ignore
=
group_kernel_args
;
ignore
=
group_count
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
acc_element_op
;
ignore
=
b1_element_op
;
ignore
=
c_element_op
;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
// Computes C = A * B0 * B1
// ^^^^^^ (Acc0)
// ^^^^^^^^^^^ (Acc1)
template
<
typename
ALayout
,
typename
BLayout
,
// B0Layout
typename
B1Layout
,
typename
CPermuteNumDims_G_M_Gemm1N
,
// Sequence<NumDimG, NumDimM, NumDimGemm1N>
typename
ADataType
,
typename
BDataType
,
typename
B1DataType
,
typename
CDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
// Gemm0NPerBlock
index_t
KPerBlock
,
// Gemm0KPerBlock
index_t
Gemm1NPerBlock
,
index_t
Gemm1KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
B1K1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
index_t
Gemm1NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
typename
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
B1BlockTransferThreadClusterArrangeOrder
,
typename
B1BlockTransferSrcAccessOrder
,
index_t
B1BlockTransferSrcVectorDim
,
index_t
B1BlockTransferSrcScalarPerVector
,
index_t
B1BlockTransferDstScalarPerVector_BK1
,
bool
B1BlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
LoopScheduler
::
Default
>
struct
DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
:
public
DeviceGroupedGemmSoftmaxGemmPermute
<
ALayout
,
BLayout
,
B1Layout
,
CPermuteNumDims_G_M_Gemm1N
,
ADataType
,
BDataType
,
B1DataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
;
using
ProblemDesc
=
typename
DeviceGroupedGemmSoftmaxGemmPermute
<
ALayout
,
BLayout
,
B1Layout
,
CPermuteNumDims_G_M_Gemm1N
,
ADataType
,
BDataType
,
B1DataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
>::
ProblemDesc
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
matrix_padder
=
GemmGemmPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
,
Gemm1NPerBlock
};
// FIXME: pad K
static_assert
(
!
matrix_padder
.
PadK
,
"KPadding is currently not supported"
);
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA
));
}
}();
const
auto
a_grid_desc_m_k
=
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
const
auto
M
=
a_grid_desc_m_k
.
GetLength
(
I0
);
const
auto
K
=
a_grid_desc_m_k
.
GetLength
(
I1
);
const
auto
AK0
=
K
/
AK1
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
const
auto
b_grid_desc_n_k
=
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
const
auto
N
=
b_grid_desc_n_k
.
GetLength
(
I0
);
const
auto
K
=
b_grid_desc_n_k
.
GetLength
(
I1
);
const
auto
BK0
=
K
/
BK1
;
return
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
// Args: Gemm1KRaw, Gemm1NRaw, StrideB1
static
auto
MakeB1GridDescriptor_BK0_N_BK1
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b1_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
B1Layout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
B1Layout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
const
auto
b1_grid_desc_n_k
=
matrix_padder
.
PadB1Descriptor_N_K
(
b1_grid_desc_nraw_kraw
);
const
auto
N
=
b1_grid_desc_n_k
.
GetLength
(
I0
);
const
auto
K
=
b1_grid_desc_n_k
.
GetLength
(
I1
);
const
auto
B1K0
=
K
/
B1K1
;
return
transform_tensor_descriptor
(
b1_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
B1K0
,
B1K1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
// assume C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
static
auto
MakeCGridDescriptor_M_N
(
const
std
::
vector
<
index_t
>&
c_gs_ms_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
c_gs_ms_ns_strides_vec
)
{
constexpr
index_t
NumDimG
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I0
);
constexpr
index_t
NumDimM
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I1
);
constexpr
index_t
NumDimN
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I2
);
// NumDimGemm1N
assert
(
c_gs_ms_ns_lengths_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
&&
c_gs_ms_ns_strides_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
start
,
auto
end
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
start
+
i
];
},
Number
<
end
-
start
>
{});
};
const
auto
c_ms_ns_lengths
=
to_tuple
(
c_gs_ms_ns_lengths_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
const
auto
c_ms_ns_strides
=
to_tuple
(
c_gs_ms_ns_strides_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
// dimension Ids for M0, M1, ...
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimM
,
1
>::
type
{};
// dimension Ids for N0, N1, ...
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDimM
,
NumDimM
+
NumDimN
,
1
>::
type
{};
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
c_ms_ns_lengths
,
mDimIds
);
// lengths for K0, K1, ...
const
auto
nLengths
=
get_container_subset
(
c_ms_ns_lengths
,
nDimIds
);
// naive tensor C[M0, M1, M2, ..., N0, N1, N2...]
const
auto
c_grid_desc_ms_ns
=
make_naive_tensor_descriptor
(
c_ms_ns_lengths
,
c_ms_ns_strides
);
// transformed tensor C[MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 * N2 * ...]
const
auto
c_grid_desc_mraw_nraw
=
transform_tensor_descriptor
(
c_grid_desc_ms_ns
,
make_tuple
(
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
mDimIds
,
nDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
matrix_padder
.
PadCDescriptor_M_N
(
c_grid_desc_mraw_nraw
);
}
// assume C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
static
auto
MakeCGridDescriptor_G_M_N
(
const
std
::
vector
<
index_t
>&
c_gs_ms_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
c_gs_ms_ns_strides_vec
)
{
constexpr
index_t
NumDimG
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I0
);
constexpr
index_t
NumDimM
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I1
);
constexpr
index_t
NumDimN
=
CPermuteNumDims_G_M_Gemm1N
::
At
(
I2
);
// NumDimGemm1N
assert
(
c_gs_ms_ns_lengths_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
&&
c_gs_ms_ns_strides_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
start
,
auto
end
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
start
+
i
];
},
Number
<
end
-
start
>
{});
};
const
auto
c_gs_ms_ns_lengths
=
to_tuple
(
c_gs_ms_ns_lengths_vec
,
Number
<
0
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
const
auto
c_gs_ms_ns_strides
=
to_tuple
(
c_gs_ms_ns_strides_vec
,
Number
<
0
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
// dimension Ids for G0, G1, ...
constexpr
auto
gDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimG
,
1
>::
type
{};
// dimension Ids for M0, M1, ...
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
NumDimG
,
NumDimG
+
NumDimM
,
1
>::
type
{};
// dimension Ids for N0, N1, ...
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDimG
+
NumDimM
,
NumDimG
+
NumDimM
+
NumDimN
,
1
>::
type
{};
// lengths for G0, G1, ...
const
auto
gLengths
=
get_container_subset
(
c_gs_ms_ns_lengths
,
gDimIds
);
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
c_gs_ms_ns_lengths
,
mDimIds
);
// lengths for K0, K1, ...
const
auto
nLengths
=
get_container_subset
(
c_gs_ms_ns_lengths
,
nDimIds
);
// naive tensor C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
const
auto
c_grid_desc_gs_ms_ns
=
make_naive_tensor_descriptor
(
c_gs_ms_ns_lengths
,
c_gs_ms_ns_strides
);
// transformed tensor C[G = G0 * G1 * ..., MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 *
// N2 * ...]
const
auto
c_grid_desc_g_mraw_nraw
=
transform_tensor_descriptor
(
c_grid_desc_gs_ms_ns
,
make_tuple
(
make_merge_transform
(
gLengths
),
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
gDimIds
,
mDimIds
,
nDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
// this desc is only for calculating batch offset so no padding needed
return
c_grid_desc_g_mraw_nraw
;
}
using
AGridDesc_AK0_M_AK1
=
decltype
(
MakeAGridDescriptor_AK0_M_AK1
(
1
,
1
,
1
));
using
BGridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
(
1
,
1
,
1
));
using
B1GridDesc_BK0_N_BK1
=
decltype
(
MakeB1GridDescriptor_BK0_N_BK1
(
1
,
1
,
1
));
using
CGridDesc_M_N
=
decltype
(
MakeCGridDescriptor_M_N
({},
{}));
using
CGridDesc_G_M_N
=
decltype
(
MakeCGridDescriptor_G_M_N
({},
{}));
struct
ComputeBasePtrOfStridedBatch
{
ComputeBasePtrOfStridedBatch
(
index_t
BatchStrideA
,
index_t
BatchStrideB
,
index_t
BatchStrideB1
,
CGridDesc_G_M_N
c_grid_desc_g_m_n
)
:
BatchStrideA_
(
BatchStrideA
),
BatchStrideB_
(
BatchStrideB
),
BatchStrideB1_
(
BatchStrideB1
),
c_grid_desc_g_m_n_
(
c_grid_desc_g_m_n
)
{
}
__host__
__device__
constexpr
long_index_t
GetABasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideA_
);
}
__host__
__device__
constexpr
long_index_t
GetBBasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB_
);
}
__host__
__device__
constexpr
long_index_t
GetB1BasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB1_
);
}
__host__
__device__
constexpr
long_index_t
GetCBasePtr
(
index_t
g_idx
)
const
{
return
c_grid_desc_g_m_n_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
private:
index_t
BatchStrideA_
;
index_t
BatchStrideB_
;
index_t
BatchStrideB1_
;
CGridDesc_G_M_N
c_grid_desc_g_m_n_
;
};
// GridwiseGemm
using
GridwiseGemm
=
GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
ADataType
,
// TODO: distinguish A/B datatype
GemmAccDataType
,
CShuffleDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
B1GridDesc_BK0_N_BK1
,
CGridDesc_M_N
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
Gemm1NPerBlock
,
Gemm1KPerBlock
,
AK1
,
BK1
,
B1K1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
Gemm1NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
true
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
true
,
BBlockLdsExtraN
,
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
B1BlockTransferThreadClusterArrangeOrder
,
B1BlockTransferSrcAccessOrder
,
B1BlockTransferSrcVectorDim
,
B1BlockTransferSrcScalarPerVector
,
B1BlockTransferDstScalarPerVector_BK1
,
false
,
B1BlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopSched
,
matrix_padder
.
PadN
>
;
using
Block2CTileMap
=
OffsettedBlockToCTileMap
<
typename
GridwiseGemm
::
DefaultBlock2CTileMap
>
;
struct
GroupKernelArg
{
// pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
const
B1DataType
*
p_b1_grid_
;
CDataType
*
p_c_grid_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
B1GridDesc_BK0_N_BK1
b1_grid_desc_bk0_n_bk1_
;
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_
;
// batch & stride
index_t
num_blocks_per_batch_
;
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch_
;
// block-to-c-tile map
Block2CTileMap
block_2_ctile_map_
;
index_t
block_start_
,
block_end_
;
};
struct
GroupDeviceArg
{
// problem definiton
index_t
M
;
index_t
N
;
index_t
K
;
index_t
O
;
// Strides for the last dimensions of C for sanity check of vector load/store
index_t
c_extent_lowest_
;
index_t
c_stride_lowest_
;
CGridDesc_M_N
c_grid_desc_m_n_
;
};
// Argument
// FIXME: constness
struct
Argument
:
public
BaseArgument
{
Argument
(
std
::
vector
<
const
void
*>
p_a_vec
,
std
::
vector
<
const
void
*>
p_b_vec
,
std
::
vector
<
const
void
*>
p_b1_vec
,
std
::
vector
<
void
*>
p_c_vec
,
std
::
vector
<
ProblemDesc
>
problem_desc_vec
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
:
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
acc_element_op_
{
acc_element_op
},
b1_element_op_
{
b1_element_op
},
c_element_op_
{
c_element_op
}
{
group_count_
=
problem_desc_vec
.
size
();
if
(
!
(
group_count_
==
p_a_vec
.
size
()
&&
group_count_
==
p_b_vec
.
size
()
&&
group_count_
==
p_b1_vec
.
size
()
&&
group_count_
==
p_c_vec
.
size
()))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != a/b/b1/c_vec.size"
);
}
grid_size_
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
group_count_
;
i
++
)
{
const
auto
p_a_grid
=
static_cast
<
const
ADataType
*>
(
p_a_vec
[
i
]);
const
auto
p_b_grid
=
static_cast
<
const
BDataType
*>
(
p_b_vec
[
i
]);
const
auto
p_b1_grid
=
static_cast
<
const
B1DataType
*>
(
p_b1_vec
[
i
]);
const
auto
p_c_grid
=
static_cast
<
CDataType
*>
(
p_c_vec
[
i
]);
const
auto
a_grid_desc_ak0_m_ak1
=
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
(
problem_desc_vec
[
i
].
M
,
problem_desc_vec
[
i
].
K
,
problem_desc_vec
[
i
].
StrideA
);
const
auto
b_grid_desc_bk0_n_bk1
=
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
(
problem_desc_vec
[
i
].
K
,
problem_desc_vec
[
i
].
N
,
problem_desc_vec
[
i
].
StrideB0
);
const
auto
b1_grid_desc_bk0_n_bk1
=
DeviceOp
::
MakeB1GridDescriptor_BK0_N_BK1
(
problem_desc_vec
[
i
].
N
,
problem_desc_vec
[
i
].
O
,
problem_desc_vec
[
i
].
StrideB1
);
const
auto
c_grid_desc_m_n
=
DeviceOp
::
MakeCGridDescriptor_M_N
(
problem_desc_vec
[
i
].
c_gs_ms_os_lengths
,
problem_desc_vec
[
i
].
c_gs_ms_os_strides
);
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
GridwiseGemm
::
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n
);
const
index_t
BlockStart
=
grid_size_
;
const
auto
block_2_ctile_map
=
Block2CTileMap
(
c_grid_desc_m_n
,
BlockStart
);
const
index_t
grid_size_grp
=
block_2_ctile_map
.
CalculateGridSize
(
c_grid_desc_m_n
)
*
problem_desc_vec
[
i
].
Batch
;
const
index_t
BlockEnd
=
grid_size_
+
grid_size_grp
;
// batch stride
// TODO ANT: only keep batch stride in tensor desc to reduce scalar cache pressure
const
auto
c_grid_desc_g_m_n
=
DeviceOp
::
MakeCGridDescriptor_G_M_N
(
problem_desc_vec
[
i
].
c_gs_ms_os_lengths
,
problem_desc_vec
[
i
].
c_gs_ms_os_strides
);
const
auto
compute_base_ptr_of_batch
=
ComputeBasePtrOfStridedBatch
(
problem_desc_vec
[
i
].
BatchStrideA
,
problem_desc_vec
[
i
].
BatchStrideB0
,
problem_desc_vec
[
i
].
BatchStrideB1
,
c_grid_desc_g_m_n
);
grid_size_
+=
grid_size_grp
;
group_kernel_args_
.
push_back
({
p_a_grid
,
p_b_grid
,
p_b1_grid
,
p_c_grid
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
b1_grid_desc_bk0_n_bk1
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_ctile_map
.
CalculateGridSize
(
c_grid_desc_m_n
),
compute_base_ptr_of_batch
,
block_2_ctile_map
,
BlockStart
,
BlockEnd
});
group_device_args_
.
push_back
({
problem_desc_vec
[
i
].
M
,
problem_desc_vec
[
i
].
N
,
problem_desc_vec
[
i
].
K
,
problem_desc_vec
[
i
].
O
,
problem_desc_vec
[
i
].
c_gs_ms_os_lengths
.
back
(),
problem_desc_vec
[
i
].
c_gs_ms_os_strides
.
back
(),
c_grid_desc_m_n
});
}
}
std
::
vector
<
GroupKernelArg
>
group_kernel_args_
;
std
::
vector
<
GroupDeviceArg
>
group_device_args_
;
std
::
size_t
group_count_
;
index_t
grid_size_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
AccElementwiseOperation
acc_element_op_
;
B1ElementwiseOperation
b1_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
!
DeviceOp
::
IsSupportedArgument
(
arg
))
{
throw
std
::
runtime_error
(
"wrong! unsupported argument"
);
}
bool
all_has_main_k_block_loop
=
true
;
bool
some_has_main_k_block_loop
=
false
;
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
group_count_
;
i
++
)
{
const
auto
K
=
arg
.
group_kernel_args_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
group_kernel_args_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
const
bool
y
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
);
all_has_main_k_block_loop
&=
y
;
some_has_main_k_block_loop
|=
y
;
}
hipGetErrorString
(
hipMemcpy
(
arg
.
p_workspace_
,
arg
.
group_kernel_args_
.
data
(),
arg
.
group_kernel_args_
.
size
()
*
sizeof
(
GroupKernelArg
),
hipMemcpyHostToDevice
));
float
ave_time
=
0
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
)
{
const
auto
kernel
=
kernel_grouped_gemm_softmax_gemm_xdl_cshuffle_v1
<
GridwiseGemm
,
GroupKernelArg
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
,
has_main_k_block_loop_
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
arg
.
p_workspace_
),
arg
.
group_count_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
acc_element_op_
,
arg
.
b1_element_op_
,
arg
.
c_element_op_
);
};
// Gemm1_K is split into Gemm1_K0/K1 where K1 is known at compile time, so we only need
// to concern Gemm0's loop
if
(
all_has_main_k_block_loop
)
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
if
(
!
some_has_main_k_block_loop
)
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
else
{
throw
std
::
runtime_error
(
"wrong! all gemm problems have to simultaneously meet "
"has_main_k_block_loop or no_main_k_block_loop"
);
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
{
return
false
;
}
bool
all_has_main_k_block_loop
=
true
;
bool
some_has_main_k_block_loop
=
false
;
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
group_count_
;
i
++
)
{
const
auto
&
kernel_arg
=
arg
.
group_kernel_args_
[
i
];
const
auto
&
device_arg
=
arg
.
group_device_args_
[
i
];
// Check if C permute dimension matches GEMM + GEMM shape
const
index_t
c_m
=
device_arg
.
c_grid_desc_m_n_
.
GetLength
(
I0
);
const
index_t
c_gemm1n
=
device_arg
.
c_grid_desc_m_n_
.
GetLength
(
I1
);
const
index_t
a_m
=
kernel_arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I1
);
const
index_t
b1_gemm1n
=
kernel_arg
.
b1_grid_desc_bk0_n_bk1_
.
GetLength
(
I1
);
if
(
!
(
c_m
==
a_m
&&
c_gemm1n
==
b1_gemm1n
))
{
return
false
;
}
// Check if having main loop
const
auto
K
=
kernel_arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
kernel_arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
const
bool
y
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
);
all_has_main_k_block_loop
&=
y
;
some_has_main_k_block_loop
|=
y
;
// Note: we need raw lengths since threadwise copy can not handle vector load when
// part of vector is out of bounds
const
auto
MRaw
=
device_arg
.
M
;
const
auto
NRaw
=
device_arg
.
N
;
const
auto
KRaw
=
device_arg
.
K
;
const
auto
Gemm1NRaw
=
device_arg
.
O
;
// Check scalar per vector requirement
const
auto
a_extent_lowest
=
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
?
KRaw
:
MRaw
;
const
auto
b_extent_lowest
=
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>
?
NRaw
:
KRaw
;
const
auto
b1_extent_lowest
=
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
B1Layout
>
?
Gemm1NRaw
:
NRaw
;
const
auto
c_extent_lowest
=
device_arg
.
c_extent_lowest_
;
if
(
!
(
a_extent_lowest
%
ABlockTransferSrcScalarPerVector
==
0
&&
b_extent_lowest
%
BBlockTransferSrcScalarPerVector
==
0
&&
b1_extent_lowest
%
B1BlockTransferSrcScalarPerVector
==
0
&&
c_extent_lowest
%
CShuffleBlockTransferScalarPerVector_NPerBlock
==
0
))
{
return
false
;
}
// Check vector store requirement; assumes last dimension in N to be contiguous
if
(
device_arg
.
c_stride_lowest_
!=
1
)
{
return
false
;
}
if
(
!
GridwiseGemm
::
CheckValidity
(
kernel_arg
.
a_grid_desc_ak0_m_ak1_
,
kernel_arg
.
b_grid_desc_bk0_n_bk1_
,
kernel_arg
.
b1_grid_desc_bk0_n_bk1_
,
device_arg
.
c_grid_desc_m_n_
,
kernel_arg
.
block_2_ctile_map_
))
{
return
false
;
}
}
// all gemm problems have to simultaneously meet has_main_k_block_loop or
// no_main_k_block_loop
if
(
!
(
all_has_main_k_block_loop
||
!
some_has_main_k_block_loop
))
{
return
false
;
}
return
true
;
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
std
::
vector
<
const
void
*>
p_a_vec
,
std
::
vector
<
const
void
*>
p_b_vec
,
std
::
vector
<
const
void
*>
p_b1_vec
,
std
::
vector
<
void
*>
p_c_vec
,
std
::
vector
<
ProblemDesc
>
problem_desc_vec
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
p_a_vec
,
p_b_vec
,
p_b1_vec
,
p_c_vec
,
problem_desc_vec
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
const
void
*>
p_a_vec
,
std
::
vector
<
const
void
*>
p_b_vec
,
std
::
vector
<
const
void
*>
p_b1_vec
,
std
::
vector
<
void
*>
p_c_vec
,
std
::
vector
<
ProblemDesc
>
problem_desc_vec
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a_vec
,
p_b_vec
,
p_b1_vec
,
p_c_vec
,
problem_desc_vec
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerBlock
<<
", "
<<
Gemm1NPerBlock
<<
", "
<<
Gemm1KPerBlock
<<
", "
<<
B1K1
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
p_arg
)
const
override
{
return
dynamic_cast
<
const
Argument
*>
(
p_arg
)
->
group_count_
*
sizeof
(
GroupKernelArg
);
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_permute.hpp
0 → 100644
View file @
c54b7bc9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <cmath>
#include <memory>
#include <type_traits>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
index_t
NumDim
,
typename
InDataType
,
typename
OutDataType
,
typename
ElementwiseOperation
>
struct
DevicePermute
:
BaseOperator
{
using
Lengths
=
std
::
array
<
index_t
,
NumDim
>
;
using
Strides
=
Lengths
;
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
Lengths
&
in_lengths
,
const
Strides
&
in_strides
,
const
Lengths
&
out_lengths
,
const
Strides
&
out_strides
,
const
void
*
in_dev_buffer
,
void
*
out_dev_buffer
,
ElementwiseOperation
elementwise_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_permute_impl.hpp
0 → 100644
View file @
c54b7bc9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <memory>
#include <utility>
#include "ck/utility/math.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_permute.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_permute.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// Swap last 2 dimensions
// input shape: [d[0], d[1], d[2], ..., d[NumDim-3], d[NumDim-2], d[NumDim-1]]
// ^^^^^^^^^^^
// output shape: [d[0], d[1], d[2], ..., d[NumDim-3], d[NumDim-1], d[NumDim-2]]
// ^^^^^^^^^^^
template
<
index_t
NumDim
,
typename
InDataType
,
typename
OutDataType
,
typename
ElementwiseOperation
,
index_t
BlockSize
,
index_t
NPerBlock
,
index_t
HPerBlock
,
index_t
WPerBlock
,
index_t
InBlockLdsExtraW
,
typename
InBlockTransferThreadClusterLengths
,
typename
InBlockTransferThreadClusterArrangeOrder
,
index_t
SrcVectorDim
,
index_t
DstVectorDim
,
index_t
SrcScalarPerVector
,
index_t
DstScalarPerVector
>
struct
DevicePermuteImpl
:
DevicePermute
<
NumDim
,
InDataType
,
OutDataType
,
ElementwiseOperation
>
{
using
BaseType
=
DevicePermute
<
NumDim
,
InDataType
,
OutDataType
,
ElementwiseOperation
>
;
using
typename
BaseType
::
Lengths
;
using
typename
BaseType
::
Strides
;
static_assert
(
3
<=
NumDim
,
"Only accept at least 3D dimension tensor"
);
static_assert
((
NumDim
-
2
)
<=
SrcVectorDim
&&
SrcVectorDim
<
NumDim
);
static_assert
((
NumDim
-
2
)
<=
DstVectorDim
&&
DstVectorDim
<
NumDim
);
static_assert
(
SrcVectorDim
!=
DstVectorDim
);
template
<
index_t
N
=
NumDim
>
static
auto
ConvertArrayToTuple
(
const
std
::
array
<
index_t
,
NumDim
>&
array
)
{
static_assert
(
1
<=
N
&&
N
<=
NumDim
);
return
generate_tuple
([
&
](
auto
I
)
{
return
array
[
I
];
},
Number
<
N
>
{});
}
static
auto
MakeDescriptor_N_H_W
(
const
Lengths
&
lengths
,
const
Strides
&
stride
)
{
// create nd descriptor, shape: [d[0], d[1], d[2], ..., d[NumDim-3], d[NumDim-2],
// d[NumDim-1]]
const
auto
desc
=
make_naive_tensor_descriptor
(
ConvertArrayToTuple
(
lengths
),
ConvertArrayToTuple
(
stride
));
// merge nd to 3d descriptor, shape: [(d[0] * d[1] * d[2] * ... * d[NumDim-3]), d[NumDim-2],
// d[NumDim-1]]
// => [N, H, W]
const
index_t
H
=
*
std
::
next
(
rbegin
(
lengths
));
const
index_t
W
=
*
rbegin
(
lengths
);
const
auto
desc_n_h_w
=
transform_tensor_descriptor
(
desc
,
make_tuple
(
make_merge_transform
(
ConvertArrayToTuple
<
NumDim
-
2
>
(
lengths
)),
make_pass_through_transform
(
H
),
make_pass_through_transform
(
W
)),
make_tuple
(
generate_sequence_v2
([
&
](
auto
I
)
{
return
I
;
},
Number
<
NumDim
-
2
>
{}),
Sequence
<
NumDim
-
2
>
{},
Sequence
<
NumDim
-
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
PadTensorDescriptor
(
desc_n_h_w
,
make_tuple
(
NPerBlock
,
HPerBlock
,
WPerBlock
),
Sequence
<
true
,
true
,
true
>
{});
}
using
InGridDesc
=
decltype
(
MakeDescriptor_N_H_W
({
1
,
1
},
{
1
,
1
}));
using
OutGridDesc
=
InGridDesc
;
using
GridwisePermute
=
GridwisePermute
<
InGridDesc
,
OutGridDesc
,
InDataType
,
OutDataType
,
ElementwiseOperation
,
BlockSize
,
NPerBlock
,
HPerBlock
,
WPerBlock
,
InBlockLdsExtraW
,
InBlockTransferThreadClusterLengths
,
InBlockTransferThreadClusterArrangeOrder
,
SrcVectorDim
-
(
NumDim
-
3
),
// calculate new SrcVectorDim for the merged descriptor
DstVectorDim
-
(
NumDim
-
3
),
// calculate new DstVectorDim for the merged descriptor
SrcScalarPerVector
,
DstScalarPerVector
>
;
using
Block2TileMap
=
typename
GridwisePermute
::
DefaultBlock2TileMap
;
struct
Argument
:
public
BaseArgument
{
Argument
(
const
Lengths
&
in_lengths
,
const
Strides
&
in_strides
,
const
Lengths
&
out_lengths
,
const
Strides
&
out_strides
,
const
void
*
in_dev_buffer
,
void
*
out_dev_buffer
,
ElementwiseOperation
elementwise_op
)
:
in_dev_buffer_
(
static_cast
<
const
InDataType
*>
(
in_dev_buffer
)),
out_dev_buffer_
(
static_cast
<
OutDataType
*>
(
out_dev_buffer
)),
in_grid_desc_
(
MakeDescriptor_N_H_W
(
in_lengths
,
in_strides
)),
out_grid_desc_
(
MakeDescriptor_N_H_W
(
out_lengths
,
out_strides
)),
in_lengths_
(
in_lengths
),
in_strides_
(
in_strides
),
out_lengths_
(
out_lengths
),
out_strides_
(
out_strides
),
elementwise_op_
(
elementwise_op
),
block_2_tile_map_
(
GridwisePermute
::
MakeDefaultBlock2TileMap
(
in_grid_desc_
))
{
}
const
InDataType
*
in_dev_buffer_
;
OutDataType
*
out_dev_buffer_
;
InGridDesc
in_grid_desc_
;
OutGridDesc
out_grid_desc_
;
Lengths
in_lengths_
;
Strides
in_strides_
;
Lengths
out_lengths_
;
Strides
out_strides_
;
ElementwiseOperation
elementwise_op_
;
Block2TileMap
block_2_tile_map_
;
};
struct
Invoker
:
BaseInvoker
{
static
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
const
index_t
grid_size
=
arg
.
block_2_tile_map_
.
CalculateGridSize
(
arg
.
in_grid_desc_
);
const
auto
kernel
=
kernel_nd_permute
<
GridwisePermute
,
InGridDesc
,
OutGridDesc
,
InDataType
,
OutDataType
,
ElementwiseOperation
,
Block2TileMap
>
;
float
elapsed_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
in_grid_desc_
,
arg
.
out_grid_desc_
,
arg
.
in_dev_buffer_
,
arg
.
out_dev_buffer_
,
arg
.
elementwise_op_
,
arg
.
block_2_tile_map_
);
return
elapsed_time
;
}
float
Run
(
const
BaseArgument
*
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
final
{
const
auto
*
const
argument
=
dynamic_cast
<
const
Argument
*>
(
arg
);
if
(
!
argument
)
{
return
NAN
;
}
return
Run
(
*
argument
,
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
constexpr
auto
GetPaddedLength
=
[](
index_t
length
,
index_t
tile_length
)
{
return
math
::
integer_divide_ceil
(
length
,
tile_length
)
*
tile_length
;
};
constexpr
auto
IsScalarPerVectorValid
=
[](
index_t
length
,
index_t
stride
,
index_t
scalar_per_vector
)
{
if
(
stride
==
1
&&
length
%
scalar_per_vector
==
0
)
{
return
true
;
}
else
if
(
stride
!=
1
&&
scalar_per_vector
==
1
)
{
return
true
;
}
return
false
;
};
return
IsScalarPerVectorValid
(
arg
.
in_lengths_
[
SrcVectorDim
],
arg
.
in_strides_
[
SrcVectorDim
],
SrcScalarPerVector
)
&&
IsScalarPerVectorValid
(
GetPaddedLength
(
arg
.
in_lengths_
[
SrcVectorDim
],
(
SrcVectorDim
==
NumDim
-
2
?
HPerBlock
:
WPerBlock
)),
arg
.
in_strides_
[
SrcVectorDim
],
SrcScalarPerVector
)
&&
IsScalarPerVectorValid
(
arg
.
out_lengths_
[
DstVectorDim
],
arg
.
out_strides_
[
DstVectorDim
],
DstScalarPerVector
)
&&
IsScalarPerVectorValid
(
GetPaddedLength
(
arg
.
out_lengths_
[
DstVectorDim
],
(
DstVectorDim
==
NumDim
-
2
?
HPerBlock
:
WPerBlock
)),
arg
.
in_strides_
[
DstVectorDim
],
DstScalarPerVector
)
&&
GridwisePermute
::
CheckValidity
(
arg
.
in_grid_desc_
,
arg
.
out_grid_desc_
);
};
// override methods inherited from 'BaseOperator'
bool
IsSupportedArgument
(
const
BaseArgument
*
arg
)
override
final
{
const
auto
*
const
argument
=
dynamic_cast
<
const
Argument
*>
(
arg
);
if
(
!
argument
)
{
return
false
;
}
return
IsSupportedArgument
(
*
argument
);
}
// override methods inherited from 'DevicePermute'
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
Lengths
&
in_lengths
,
const
Strides
&
in_strides
,
const
Lengths
&
out_lengths
,
const
Strides
&
out_strides
,
const
void
*
in_dev_buffer
,
void
*
out_dev_buffer
,
ElementwiseOperation
elementwise_op
)
override
final
{
return
std
::
make_unique
<
Argument
>
(
in_lengths
,
in_strides
,
out_lengths
,
out_strides
,
in_dev_buffer
,
out_dev_buffer
,
elementwise_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
final
{
return
std
::
make_unique
<
Invoker
>
();
};
// other constructor methods
template
<
typename
...
Args
>
static
std
::
enable_if_t
<
std
::
is_constructible_v
<
Argument
,
Args
...
>
,
Argument
>
MakeArgument
(
Args
&&
...
args
)
noexcept
(
std
::
is_nothrow_constructible_v
<
Argument
,
Args
...
>
)
{
return
Argument
{
std
::
forward
<
Args
>
(
args
)...};
}
static
std
::
enable_if_t
<
std
::
is_default_constructible_v
<
Invoker
>
,
Invoker
>
MakeInvoker
()
noexcept
(
std
::
is_nothrow_default_constructible_v
<
Invoker
>
)
{
return
Invoker
{};
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
View file @
c54b7bc9
...
@@ -486,4 +486,48 @@ __host__ __device__ bool DefaultValidCTileIndex(const CTileIdx& c_tile_idx,
...
@@ -486,4 +486,48 @@ __host__ __device__ bool DefaultValidCTileIndex(const CTileIdx& c_tile_idx,
return
is_valid
;
return
is_valid
;
}
}
// This wrapper class is for grouped gemm where it subtracts blockIdx by a value so that the
// workgroups assigned to a given gemm problem have top index offsetted to range [0,
// grid_size_per_gemm]
template
<
typename
UnderlyingBlockToCTileMap
>
struct
OffsettedBlockToCTileMap
{
using
underlying_type
=
UnderlyingBlockToCTileMap
;
OffsettedBlockToCTileMap
(
UnderlyingBlockToCTileMap
block_to_ctile_map
,
index_t
block_start
)
{
block_to_ctile_map_
=
block_to_ctile_map
;
block_start_
=
block_start
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
return
block_to_ctile_map_
.
CalculateBottomIndex
(
make_multi_index
(
idx_top
[
Number
<
0
>
{}]
-
block_start_
));
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
c_tile_idx
,
const
CTileDim
&
c_tile_dim
)
const
{
return
block_to_ctile_map_
.
ValidCTileIndex
(
c_tile_idx
,
c_tile_dim
);
}
template
<
typename
CGridDesc_M_N
>
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
block_to_ctile_map_
.
CheckValidity
(
c_grid_desc_m_n
);
}
template
<
typename
CGridDesc_M_N
>
__host__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
block_to_ctile_map_
.
CalculateGridSize
(
c_grid_desc_m_n
);
}
UnderlyingBlockToCTileMap
block_to_ctile_map_
;
index_t
block_start_
;
};
}
// namespace ck
}
// namespace ck
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment