Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
a245b8f3
Unverified
Commit
a245b8f3
authored
Nov 15, 2023
by
Illia Silin
Committed by
GitHub
Nov 15, 2023
Browse files
Merge branch 'develop' into lwpck-1026
parents
702228b0
f2398f61
Changes
247
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
442 additions
and
117 deletions
+442
-117
example/30_grouped_conv_fwd_multiple_d/common.hpp
example/30_grouped_conv_fwd_multiple_d/common.hpp
+1
-1
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
...multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
+1
-1
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_example.inc
...uped_conv_fwd_multiple_d/run_grouped_conv_fwd_example.inc
+1
-1
example/40_conv2d_fwd_quantization/conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
...conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
+2
-2
example/40_conv2d_fwd_quantization/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
...n/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
+2
-2
example/40_conv2d_fwd_quantization/conv2d_fwd_xdl_perchannel_quantization_int8.cpp
...ntization/conv2d_fwd_xdl_perchannel_quantization_int8.cpp
+2
-2
example/40_conv2d_fwd_quantization/conv2d_fwd_xdl_perlayer_quantization_int8.cpp
...uantization/conv2d_fwd_xdl_perlayer_quantization_int8.cpp
+2
-2
example/42_groupnorm/CMakeLists.txt
example/42_groupnorm/CMakeLists.txt
+0
-3
example/42_groupnorm/groupnorm_splitk_fp16.cpp
example/42_groupnorm/groupnorm_splitk_fp16.cpp
+0
-45
example/42_groupnorm/groupnorm_swish_fp16.cpp
example/42_groupnorm/groupnorm_swish_fp16.cpp
+0
-45
example/42_groupnorm_fwd/CMakeLists.txt
example/42_groupnorm_fwd/CMakeLists.txt
+3
-0
example/42_groupnorm_fwd/common.hpp
example/42_groupnorm_fwd/common.hpp
+2
-2
example/42_groupnorm_fwd/groupnorm_fwd_sigmoid_mul_fp16.cpp
example/42_groupnorm_fwd/groupnorm_fwd_sigmoid_mul_fp16.cpp
+65
-0
example/42_groupnorm_fwd/groupnorm_fwd_splitk_fp16.cpp
example/42_groupnorm_fwd/groupnorm_fwd_splitk_fp16.cpp
+45
-0
example/42_groupnorm_fwd/groupnorm_fwd_swish_fp16.cpp
example/42_groupnorm_fwd/groupnorm_fwd_swish_fp16.cpp
+45
-0
example/42_groupnorm_fwd/run_groupnorm_fwd_example.inc
example/42_groupnorm_fwd/run_groupnorm_fwd_example.inc
+3
-3
example/44_elementwise_permute/CMakeLists.txt
example/44_elementwise_permute/CMakeLists.txt
+6
-0
example/44_elementwise_permute/elementwise_permute.cpp
example/44_elementwise_permute/elementwise_permute.cpp
+135
-0
example/44_elementwise_permute/elementwise_permute_3d.cpp
example/44_elementwise_permute/elementwise_permute_3d.cpp
+120
-0
example/44_elementwise_permute/elementwise_permute_4D_fp16.cpp
...le/44_elementwise_permute/elementwise_permute_4D_fp16.cpp
+7
-8
No files found.
example/30_grouped_conv_fwd_multiple_d/common.hpp
View file @
a245b8f3
...
...
@@ -12,7 +12,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
...
...
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
View file @
a245b8f3
...
...
@@ -34,7 +34,7 @@ using ResidualLayout = typename LayoutSettingSelector<NDimSpatial>::ResidualLayo
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
InputLayout
<
NDimSpatial
>
,
WeightLayout
<
NDimSpatial
>
,
...
...
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_example.inc
View file @
a245b8f3
...
...
@@ -3,7 +3,7 @@
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
InputLayout
<
NDimSpatial
>
,
WeightLayout
<
NDimSpatial
>
,
...
...
example/40_conv2d_fwd_quantization/conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
View file @
a245b8f3
...
...
@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
...
...
@@ -33,7 +33,7 @@ template <ck::index_t NDimSpatial,
typename
RequantScaleLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
...
...
example/40_conv2d_fwd_quantization/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
View file @
a245b8f3
...
...
@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
...
...
@@ -31,7 +31,7 @@ template <ck::index_t NDimSpatial,
typename
BiasLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
...
...
example/40_conv2d_fwd_quantization/conv2d_fwd_xdl_perchannel_quantization_int8.cpp
View file @
a245b8f3
...
...
@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
...
...
@@ -31,7 +31,7 @@ template <ck::index_t NDimSpatial,
typename
RequantScaleLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
...
...
example/40_conv2d_fwd_quantization/conv2d_fwd_xdl_perlayer_quantization_int8.cpp
View file @
a245b8f3
...
...
@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
...
...
@@ -26,7 +26,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
...
...
example/42_groupnorm/CMakeLists.txt
deleted
100644 → 0
View file @
702228b0
add_example_executable
(
example_groupnorm_sigmoid_mul_fp16 groupnorm_sigmoid_mul_fp16.cpp
)
add_example_executable
(
example_groupnorm_splitk_fp16 groupnorm_splitk_fp16.cpp
)
add_example_executable
(
example_groupnorm_swish_fp16 groupnorm_swish_fp16.cpp
)
example/42_groupnorm/groupnorm_splitk_fp16.cpp
deleted
100644 → 0
View file @
702228b0
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
float
;
using
ComputeDataType
=
float
;
using
YElementOp
=
ck
::
tensor_operation
::
element_wise
::
Swish
;
#define SAVE_MEAN_INV_STD
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationSplitKImpl
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
YElementOp
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
1
,
// ClusterM
256
,
// ClusterK
1
,
// SliceM
16
,
// SliceK
1
,
// SrcVecDim (0=M, 1=K)
2
,
// SrcScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
2
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
2
,
// BetaScalarPerVector
2
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_groupnorm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
run_groupnorm_example
(
argc
,
argv
);
}
example/42_groupnorm/groupnorm_swish_fp16.cpp
deleted
100644 → 0
View file @
702228b0
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
float
;
using
ComputeDataType
=
float
;
using
YElementOp
=
ck
::
tensor_operation
::
element_wise
::
Swish
;
#define SAVE_MEAN_INV_STD
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationImpl
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
YElementOp
,
Rank
,
NumReduceDim
,
1024
,
// BlockSize
1
,
// ClusterM
1024
,
// ClusterK
1
,
// SliceM
32
,
// SliceK
1
,
// SrcVecDim (0=M, 1=K)
2
,
// SrcScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
2
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
2
,
// BetaScalarPerVector
2
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_groupnorm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
run_groupnorm_example
(
argc
,
argv
);
}
example/42_groupnorm_fwd/CMakeLists.txt
0 → 100644
View file @
a245b8f3
add_example_executable
(
example_groupnorm_fwd_sigmoid_mul_fp16 groupnorm_fwd_sigmoid_mul_fp16.cpp
)
add_example_executable
(
example_groupnorm_fwd_splitk_fp16 groupnorm_fwd_splitk_fp16.cpp
)
add_example_executable
(
example_groupnorm_fwd_swish_fp16 groupnorm_fwd_swish_fp16.cpp
)
example/42_groupnorm/common.hpp
→
example/42_groupnorm
_fwd
/common.hpp
View file @
a245b8f3
...
...
@@ -11,8 +11,8 @@
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_splitk_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_
fwd_
impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_
fwd_
splitk_impl.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/library/utility/fill.hpp"
...
...
example/42_groupnorm/groupnorm_sigmoid_mul_fp16.cpp
→
example/42_groupnorm
_fwd
/groupnorm_
fwd_
sigmoid_mul_fp16.cpp
View file @
a245b8f3
...
...
@@ -37,29 +37,29 @@ struct YElementOp
};
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationImpl
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
YElementOp
,
Rank
,
NumReduceDim
,
1024
,
// BlockSize
1
,
// ClusterM
1024
,
// ClusterK
1
,
// SliceM
32
,
// SliceK
1
,
// SrcVecDim (0=M, 1=K)
2
,
// SrcScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
2
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
2
,
// BetaScalarPerVector
2
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
ck
::
tensor_operation
::
device
::
DeviceNormalization
Fwd
Impl
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
YElementOp
,
Rank
,
NumReduceDim
,
1024
,
// BlockSize
1
,
// ClusterM
1024
,
// ClusterK
1
,
// SliceM
32
,
// SliceK
1
,
// SrcVecDim (0=M, 1=K)
2
,
// SrcScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
2
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
2
,
// BetaScalarPerVector
2
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_groupnorm_example.inc"
#include "run_groupnorm_
fwd_
example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
run_groupnorm_example
(
argc
,
argv
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
run_groupnorm_
fwd_
example
(
argc
,
argv
);
}
example/42_groupnorm_fwd/groupnorm_fwd_splitk_fp16.cpp
0 → 100644
View file @
a245b8f3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
float
;
using
ComputeDataType
=
float
;
using
YElementOp
=
ck
::
tensor_operation
::
element_wise
::
Swish
;
#define SAVE_MEAN_INV_STD
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationFwdSplitKImpl
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
YElementOp
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
1
,
// ClusterM
256
,
// ClusterK
1
,
// SliceM
16
,
// SliceK
1
,
// SrcVecDim (0=M, 1=K)
2
,
// SrcScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
2
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
2
,
// BetaScalarPerVector
2
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_groupnorm_fwd_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
run_groupnorm_fwd_example
(
argc
,
argv
);
}
example/42_groupnorm_fwd/groupnorm_fwd_swish_fp16.cpp
0 → 100644
View file @
a245b8f3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
float
;
using
ComputeDataType
=
float
;
using
YElementOp
=
ck
::
tensor_operation
::
element_wise
::
Swish
;
#define SAVE_MEAN_INV_STD
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationFwdImpl
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
YElementOp
,
Rank
,
NumReduceDim
,
1024
,
// BlockSize
1
,
// ClusterM
1024
,
// ClusterK
1
,
// SliceM
32
,
// SliceK
1
,
// SrcVecDim (0=M, 1=K)
2
,
// SrcScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
2
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
2
,
// BetaScalarPerVector
2
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_groupnorm_fwd_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
run_groupnorm_fwd_example
(
argc
,
argv
);
}
example/42_groupnorm/run_groupnorm_example.inc
→
example/42_groupnorm
_fwd
/run_groupnorm_
fwd_
example.inc
View file @
a245b8f3
...
...
@@ -3,7 +3,7 @@
#pragma once
int
run_groupnorm_example
(
int
argc
,
char
*
argv
[])
int
run_groupnorm_
fwd_
example
(
int
argc
,
char
*
argv
[])
{
ck
::
index_t
N
=
32
;
ck
::
index_t
H
=
16
;
...
...
@@ -65,9 +65,9 @@ int run_groupnorm_example(int argc, char* argv[])
{
0
,
0
,
0
,
C
,
1
},
std
::
vector
<
ck
::
index_t
>
{
y
.
mDesc
.
GetStrides
()
.
begin
(),
y
.
mDesc
.
GetStrides
()
.
end
()},
std
::
vector
<
ck
::
index_t
>
{
save_mean
.
mDesc
.
GetStrides
()
.
begin
(),
save_mean
.
mDesc
.
GetStrides
()
.
end
()},
save_mean
.
mDesc
.
GetStrides
()
.
end
()},
std
::
vector
<
ck
::
index_t
>
{
save_mean
.
mDesc
.
GetStrides
()
.
begin
(),
save_mean
.
mDesc
.
GetStrides
()
.
end
()},
save_mean
.
mDesc
.
GetStrides
()
.
end
()},
{
1
,
2
,
4
},
// reduction dimension: [H, W, C]
1
e
-
6
,
x_dev
.
GetDeviceBuffer
(),
...
...
example/44_elementwise_permute/CMakeLists.txt
View file @
a245b8f3
add_example_executable
(
example_elementwise_permute_4D_fp16 elementwise_permute_4D_fp16.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_2d elementwise_permute_4D_fp16_2d.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp32_row elementwise_permute_4D_fp32_row.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_row elementwise_permute_4D_fp16_row.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp32_col elementwise_permute_4D_fp32_col.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_col elementwise_permute_4D_fp16_col.cpp
)
add_example_executable
(
example_elementwise_permute elementwise_permute.cpp
)
add_example_executable
(
example_elementwise_permute_3d elementwise_permute_3d.cpp
)
example/44_elementwise_permute/elementwise_permute.cpp
0 → 100644
View file @
a245b8f3
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
PassThrough
,
// ElementwiseOp
5
,
// NumDim
8
,
// MPerThread
ck
::
Sequence
<
1
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
1
>>
;
// OutScalarPerVectorSeq
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
Functor
>
void
host_elementwise4D
(
HostTensorB
&
B_ndhwc
,
const
HostTensorA
&
A_ncdhw
,
Functor
functor
)
{
for
(
std
::
size_t
n
=
0
;
n
<
A_ncdhw
.
mDesc
.
GetLengths
()[
0
];
++
n
)
for
(
std
::
size_t
c
=
0
;
c
<
A_ncdhw
.
mDesc
.
GetLengths
()[
1
];
++
c
)
for
(
std
::
size_t
d
=
0
;
d
<
A_ncdhw
.
mDesc
.
GetLengths
()[
2
];
++
d
)
for
(
std
::
size_t
h
=
0
;
h
<
A_ncdhw
.
mDesc
.
GetLengths
()[
3
];
++
h
)
for
(
std
::
size_t
w
=
0
;
w
<
A_ncdhw
.
mDesc
.
GetLengths
()[
4
];
++
w
)
{
auto
a_val
=
A_ncdhw
(
n
,
c
,
d
,
h
,
w
);
functor
(
B_ndhwc
(
n
,
d
,
h
,
w
,
c
),
a_val
);
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
std
::
vector
<
std
::
size_t
>
ncdhw
=
{
16
,
8
,
8
,
8
,
8
};
std
::
vector
<
std
::
size_t
>
ndhwc
=
{
16
,
8
,
8
,
8
,
8
};
Tensor
<
ADataType
>
a
(
ncdhw
);
Tensor
<
BDataType
>
b
(
ndhwc
);
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
5
>
ab_lengths
;
/**std::array<ck::index_t, 5> a_strides = {
static_cast<int>(ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]),
static_cast<int>(ncdhw[2] * ncdhw[3] * ncdhw[4]),
static_cast<int>(ncdhw[3] * ncdhw[4]),
static_cast<int>(ncdhw[4]),
1};
std::array<ck::index_t, 5> b_strides = {
static_cast<int>(ndhwc[1] * ndhwc[2] * ndhwc[3] * ndhwc[4]),
static_cast<int>(ndhwc[2] * ndhwc[3] * ndhwc[4]),
1,
static_cast<int>(ndhwc[3] * ndhwc[4]),
static_cast<int>(ndhwc[4])};**/
std
::
array
<
ck
::
index_t
,
5
>
a_strides
=
{
static_cast
<
int
>
(
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
]),
static_cast
<
int
>
(
ncdhw
[
3
]
*
ncdhw
[
4
]),
static_cast
<
int
>
(
ncdhw
[
4
]),
1
,
static_cast
<
int
>
(
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
])};
std
::
array
<
ck
::
index_t
,
5
>
b_strides
=
{
static_cast
<
int
>
(
ndhwc
[
1
]
*
ndhwc
[
2
]
*
ndhwc
[
3
]
*
ndhwc
[
4
]),
static_cast
<
int
>
(
ndhwc
[
2
]
*
ndhwc
[
3
]
*
ndhwc
[
4
]),
static_cast
<
int
>
(
ndhwc
[
3
]
*
ndhwc
[
4
]),
static_cast
<
int
>
(
ndhwc
[
4
]),
1
};
ck
::
ranges
::
copy
(
ncdhw
,
ab_lengths
.
begin
());
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A (ncdhw): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (ndhwc): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
];
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
])
+
sizeof
(
BDataType
)
*
(
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
Tensor
<
BDataType
>
host_b
(
ndhwc
);
host_elementwise4D
(
host_b
,
a
,
PassThrough
{});
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/44_elementwise_permute/elementwise_permute_3d.cpp
0 → 100644
View file @
a245b8f3
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise3dImpl
<
ck
::
Tuple
<
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
PassThrough
,
// ElementwiseOp
2
,
// NumDim_m, {N, C}
2
,
// NumDim_n, {H, W}
1
,
// NumDim_k, {D}
8
,
// MPerThread
8
,
// NPerThread
8
,
// KPerThread
ck
::
Sequence
<
8
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
4
>>
;
// OutScalarPerVectorSeq
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
Functor
>
void
host_elementwise4D
(
HostTensorB
&
B_ndhwc
,
const
HostTensorA
&
A_ncdhw
,
Functor
functor
)
{
for
(
std
::
size_t
n
=
0
;
n
<
A_ncdhw
.
mDesc
.
GetLengths
()[
0
];
++
n
)
for
(
std
::
size_t
c
=
0
;
c
<
A_ncdhw
.
mDesc
.
GetLengths
()[
1
];
++
c
)
for
(
std
::
size_t
d
=
0
;
d
<
A_ncdhw
.
mDesc
.
GetLengths
()[
2
];
++
d
)
for
(
std
::
size_t
h
=
0
;
h
<
A_ncdhw
.
mDesc
.
GetLengths
()[
3
];
++
h
)
for
(
std
::
size_t
w
=
0
;
w
<
A_ncdhw
.
mDesc
.
GetLengths
()[
4
];
++
w
)
{
auto
a_val
=
A_ncdhw
(
n
,
c
,
d
,
h
,
w
);
functor
(
B_ndhwc
(
n
,
d
,
h
,
w
,
c
),
a_val
);
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
const
int
N
=
4
;
const
int
C
=
16
;
const
int
H
=
32
;
const
int
W
=
5
;
const
int
D
=
16
;
std
::
vector
<
std
::
size_t
>
ncdhw
=
{
N
,
C
,
D
,
H
,
W
};
std
::
vector
<
std
::
size_t
>
ndhwc
=
{
N
,
D
,
H
,
W
,
C
};
Tensor
<
ADataType
>
a
(
ncdhw
);
Tensor
<
BDataType
>
b
(
ndhwc
);
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
5
>
ab_lengths
{
N
,
C
,
H
,
W
,
D
};
std
::
array
<
ck
::
index_t
,
5
>
a_strides
=
{
C
*
D
*
H
*
W
,
H
*
W
,
W
,
1
,
D
*
H
*
W
};
// N, C, D, H, W
std
::
array
<
ck
::
index_t
,
5
>
b_strides
=
{
C
*
H
*
W
*
D
,
H
*
W
*
D
,
W
*
D
,
D
,
1
};
// N, D, H, W, C
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A (ncdhw): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (ndhwc): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
];
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
])
+
sizeof
(
BDataType
)
*
(
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
Tensor
<
BDataType
>
host_b
(
ndhwc
);
host_elementwise4D
(
host_b
,
a
,
PassThrough
{});
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/44_elementwise_permute/elementwise_permute_4D_fp16.cpp
View file @
a245b8f3
...
...
@@ -19,13 +19,13 @@ using BDataType = F16;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
ADataType
>
,
ck
::
Tuple
<
BDataType
>
,
PassThrough
,
4
,
8
,
ck
::
Sequence
<
8
>
,
ck
::
Sequence
<
1
>>
;
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
PassThrough
,
// Elementwise op
4
,
// NumDim
8
,
// MPerThread
ck
::
Sequence
<
8
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
1
>>
;
// OutScalarPerVectorSeq
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
Functor
>
void
host_elementwise4D
(
HostTensorB
&
B_nhwc
,
const
HostTensorA
&
A_nchw
,
Functor
functor
)
...
...
@@ -99,7 +99,6 @@ int main()
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
...
...
Prev
1
2
3
4
5
6
7
…
13
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment