Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
a245b8f3
Unverified
Commit
a245b8f3
authored
Nov 15, 2023
by
Illia Silin
Committed by
GitHub
Nov 15, 2023
Browse files
Merge branch 'develop' into lwpck-1026
parents
702228b0
f2398f61
Changes
247
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
391 additions
and
107 deletions
+391
-107
client_example/24_grouped_convnd_fwd_scaleadd_ab/CMakeLists.txt
..._example/24_grouped_convnd_fwd_scaleadd_ab/CMakeLists.txt
+11
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab.inc
...d_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab.inc
+221
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
+13
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
+13
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
+13
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
+13
-0
example/09_convnd_fwd/convnd_fwd_xdl_bf16.cpp
example/09_convnd_fwd/convnd_fwd_xdl_bf16.cpp
+2
-2
example/09_convnd_fwd/convnd_fwd_xdl_fp16.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp16.cpp
+2
-2
example/09_convnd_fwd/convnd_fwd_xdl_fp32.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp32.cpp
+2
-2
example/09_convnd_fwd/convnd_fwd_xdl_fp64.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp64.cpp
+2
-2
example/09_convnd_fwd/convnd_fwd_xdl_int8.cpp
example/09_convnd_fwd/convnd_fwd_xdl_int8.cpp
+2
-2
example/27_layernorm/CMakeLists.txt
example/27_layernorm/CMakeLists.txt
+0
-2
example/27_layernorm/layernorm_fp16.cpp
example/27_layernorm/layernorm_fp16.cpp
+0
-44
example/27_layernorm/layernorm_splitk_fp16.cpp
example/27_layernorm/layernorm_splitk_fp16.cpp
+0
-45
example/27_layernorm2d_fwd/CMakeLists.txt
example/27_layernorm2d_fwd/CMakeLists.txt
+2
-0
example/27_layernorm2d_fwd/common.hpp
example/27_layernorm2d_fwd/common.hpp
+2
-2
example/27_layernorm2d_fwd/layernorm2d_fwd_fp16.cpp
example/27_layernorm2d_fwd/layernorm2d_fwd_fp16.cpp
+44
-0
example/27_layernorm2d_fwd/layernorm2d_fwd_splitk_fp16.cpp
example/27_layernorm2d_fwd/layernorm2d_fwd_splitk_fp16.cpp
+45
-0
example/27_layernorm2d_fwd/run_layernorm_example.inc
example/27_layernorm2d_fwd/run_layernorm_example.inc
+3
-3
example/30_grouped_conv_fwd_multiple_d/README.md
example/30_grouped_conv_fwd_multiple_d/README.md
+1
-1
No files found.
client_example/24_grouped_convnd_fwd_scaleadd_ab/CMakeLists.txt
0 → 100644
View file @
a245b8f3
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_fp32 grouped_conv_fwd_scaleadd_ab_fp32.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_fp32 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_fp16 grouped_conv_fwd_scaleadd_ab_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_fp16 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_bf16 grouped_conv_fwd_scaleadd_ab_bf16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_bf16 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_int8 grouped_conv_fwd_scaleadd_ab_int8.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_int8 PRIVATE composable_kernel::device_operations
)
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab.inc
0 → 100644
View file @
a245b8f3
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_scaleadd_ab.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ScaleAdd
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
64
;
// batch size
static
constexpr
ck
::
index_t
K
=
64
;
// output channel
static
constexpr
ck
::
index_t
C
=
32
;
// input channel (per group)
static
constexpr
ck
::
index_t
Z
=
3
;
// filter D
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Di
=
14
;
// input D
static
constexpr
ck
::
index_t
Hi
=
14
;
// input H
static
constexpr
ck
::
index_t
Wi
=
14
;
// input W
static
constexpr
ck
::
index_t
Do
=
14
;
// output D
static
constexpr
ck
::
index_t
Ho
=
14
;
// output H
static
constexpr
ck
::
index_t
Wo
=
14
;
// output W
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
execute_conv_fwd_scaleadd_ab
()
{
constexpr
ck
::
index_t
NumAs
=
2
;
constexpr
ck
::
index_t
NumBs
=
2
;
constexpr
float
scale
=
1.5
f
;
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space.
// However, CK's API only accepts lengths and strides with order of GNCDHW/GKCZYX/GNKDHW.
// Hence, we need to adjust the order of strides.
std
::
array
<
ck
::
index_t
,
6
>
in_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
6
>
in_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
6
>
wei_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
6
>
wei_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
6
>
out_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
6
>
out_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
using
InputDtype
=
ck
::
tuple_element_t
<
0
,
InDataType
>
;
using
InputBiasDtype
=
ck
::
tuple_element_t
<
1
,
InDataType
>
;
using
WeightDtype
=
ck
::
tuple_element_t
<
0
,
WeiDataType
>
;
using
WeightBiasDtype
=
ck
::
tuple_element_t
<
1
,
WeiDataType
>
;
SimpleDeviceMem
in
(
sizeof
(
InputDtype
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
);
SimpleDeviceMem
in_bias
(
sizeof
(
InputBiasDtype
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeightDtype
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
wei_bias
(
sizeof
(
WeightBiasDtype
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
ScaleAdd
,
ScaleAdd
,
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
std
::
array
<
const
void
*
,
NumAs
>
as
=
{
in
.
GetDeviceBuffer
(),
in_bias
.
GetDeviceBuffer
()};
std
::
array
<
const
void
*
,
NumBs
>
bs
=
{
wei
.
GetDeviceBuffer
(),
wei_bias
.
GetDeviceBuffer
()};
std
::
array
<
const
void
*
,
0
>
ds
{};
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
as
,
bs
,
ds
,
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{},
{},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
ScaleAdd
{
scale
},
ScaleAdd
{
scale
},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Do
*
Ho
*
Wo
*
Z
*
Y
*
X
+
N
*
Di
*
Hi
*
Wi
*
G
*
C
+
G
*
K
*
Z
*
Y
*
X
*
C
;
std
::
size_t
num_bytes
=
2
*
sizeof
(
InDataType
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
+
2
*
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
as
,
bs
,
ds
,
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{},
{},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
ScaleAdd
{
scale
},
ScaleAdd
{
scale
},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
0 → 100644
View file @
a245b8f3
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
Tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
>
;
using
WeiDataType
=
ck
::
Tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
>
;
using
OutDataType
=
ck
::
bhalf_t
;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_ab
();
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
0 → 100644
View file @
a245b8f3
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
Tuple
<
ck
::
half_t
,
ck
::
half_t
>
;
using
WeiDataType
=
ck
::
Tuple
<
ck
::
half_t
,
ck
::
half_t
>
;
using
OutDataType
=
ck
::
half_t
;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_ab
();
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
0 → 100644
View file @
a245b8f3
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
Tuple
<
float
,
float
>
;
using
WeiDataType
=
ck
::
Tuple
<
float
,
float
>
;
using
OutDataType
=
float
;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_ab
();
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
0 → 100644
View file @
a245b8f3
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
Tuple
<
int8_t
,
int8_t
>
;
using
WeiDataType
=
ck
::
Tuple
<
int8_t
,
int8_t
>
;
using
OutDataType
=
int8_t
;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_ab
();
}
example/09_convnd_fwd/convnd_fwd_xdl_bf16.cpp
View file @
a245b8f3
...
...
@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
...
...
example/09_convnd_fwd/convnd_fwd_xdl_fp16.cpp
View file @
a245b8f3
...
...
@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
...
...
example/09_convnd_fwd/convnd_fwd_xdl_fp32.cpp
View file @
a245b8f3
...
...
@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
...
...
example/09_convnd_fwd/convnd_fwd_xdl_fp64.cpp
View file @
a245b8f3
...
...
@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
...
...
example/09_convnd_fwd/convnd_fwd_xdl_int8.cpp
View file @
a245b8f3
...
...
@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
...
...
example/27_layernorm/CMakeLists.txt
deleted
100644 → 0
View file @
702228b0
add_example_executable
(
example_layernorm_fp16 layernorm_fp16.cpp
)
add_example_executable
(
example_layernorm_splitk_fp16 layernorm_splitk_fp16.cpp
)
example/27_layernorm/layernorm_fp16.cpp
deleted
100644 → 0
View file @
702228b0
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
float
;
using
ComputeDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
#define SAVE_MEAN_INV_STD
constexpr
int
Rank
=
2
;
constexpr
int
NumReduceDim
=
1
;
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationImpl
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// ClusterM
32
,
// ClusterK
1
,
// SliceM
8
,
// SliceK
1
,
// XYVectorDim (0=M, 1=K)
8
,
// SrcScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
8
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
8
,
// BetaScalarPerVector
8
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_layernorm_example.inc"
int
main
()
{
return
run_groupnorm_example
<
DeviceInstance
>
();
}
example/27_layernorm/layernorm_splitk_fp16.cpp
deleted
100644 → 0
View file @
702228b0
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
float
;
using
ComputeDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
#define SAVE_MEAN_INV_STD
constexpr
int
Rank
=
2
;
constexpr
int
NumReduceDim
=
1
;
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationSplitKImpl
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// ClusterM
32
,
// ClusterK
1
,
// SliceM
8
,
// SliceK
1
,
// XYVectorDim (0=M, 1=K)
8
,
// XScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
8
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
8
,
// BetaScalarPerVector
8
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_layernorm_example.inc"
int
main
()
{
return
run_groupnorm_example
<
DeviceInstance
>
();
}
example/27_layernorm2d_fwd/CMakeLists.txt
0 → 100644
View file @
a245b8f3
add_example_executable
(
example_layernorm2d_fwd_fp16 layernorm2d_fwd_fp16.cpp
)
add_example_executable
(
example_layernorm2d_fwd_splitk_fp16 layernorm2d_fwd_splitk_fp16.cpp
)
example/27_layernorm/common.hpp
→
example/27_layernorm
2d_fwd
/common.hpp
View file @
a245b8f3
...
...
@@ -10,8 +10,8 @@
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_splitk_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_
fwd_
impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_
fwd_
splitk_impl.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
example/27_layernorm2d_fwd/layernorm2d_fwd_fp16.cpp
0 → 100644
View file @
a245b8f3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
float
;
using
ComputeDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
#define SAVE_MEAN_INV_STD
constexpr
int
Rank
=
2
;
constexpr
int
NumReduceDim
=
1
;
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationFwdImpl
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// ClusterM
32
,
// ClusterK
1
,
// SliceM
8
,
// SliceK
1
,
// XYVectorDim (0=M, 1=K)
8
,
// SrcScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
8
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
8
,
// BetaScalarPerVector
8
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_layernorm_example.inc"
int
main
()
{
return
run_layernorm2d_fwd_example
<
DeviceInstance
>
();
}
example/27_layernorm2d_fwd/layernorm2d_fwd_splitk_fp16.cpp
0 → 100644
View file @
a245b8f3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
float
;
using
ComputeDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
#define SAVE_MEAN_INV_STD
constexpr
int
Rank
=
2
;
constexpr
int
NumReduceDim
=
1
;
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationFwdSplitKImpl
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// ClusterM
32
,
// ClusterK
1
,
// SliceM
8
,
// SliceK
1
,
// XYVectorDim (0=M, 1=K)
8
,
// XScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
8
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
8
,
// BetaScalarPerVector
8
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_layernorm_example.inc"
int
main
()
{
return
run_layernorm2d_fwd_example
<
DeviceInstance
>
();
}
example/27_layernorm/run_layernorm_example.inc
→
example/27_layernorm
2d_fwd
/run_layernorm_example.inc
View file @
a245b8f3
...
...
@@ -4,7 +4,7 @@
#pragma once
template
<
typename
DeviceInstance
>
int
run_
groupnorm
_example
()
int
run_
layernorm2d_fwd
_example
()
{
bool
time_kernel
=
false
;
...
...
@@ -44,9 +44,9 @@ int run_groupnorm_example()
{
0
,
1
},
std
::
vector
<
ck
::
index_t
>
{
y
.
mDesc
.
GetStrides
()
.
begin
(),
y
.
mDesc
.
GetStrides
()
.
end
()},
std
::
vector
<
ck
::
index_t
>
{
save_mean
.
mDesc
.
GetStrides
()
.
begin
(),
save_mean
.
mDesc
.
GetStrides
()
.
end
()},
save_mean
.
mDesc
.
GetStrides
()
.
end
()},
std
::
vector
<
ck
::
index_t
>
{
save_mean
.
mDesc
.
GetStrides
()
.
begin
(),
save_mean
.
mDesc
.
GetStrides
()
.
end
()},
save_mean
.
mDesc
.
GetStrides
()
.
end
()},
{
1
},
1
e
-
4
,
x_dev
.
GetDeviceBuffer
(),
...
...
example/30_grouped_conv_fwd_multiple_d/README.md
View file @
a245b8f3
...
...
@@ -26,5 +26,5 @@ out: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 331776, 1, 9216, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 1.55981 ms, 94.0927 TFlops, 213.868 GB/s, DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<256, 128, 256, 16, Default>
Perf: 1.55981 ms, 94.0927 TFlops, 213.868 GB/s, DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle<256, 128, 256, 16, Default>
```
Prev
1
2
3
4
5
6
…
13
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment