Commit 5a79ff1e authored by Chao Liu's avatar Chao Liu
Browse files

add conv+bias+relu+add, but has register spill issue

parent 25343b48
......@@ -51,11 +51,11 @@ using OutElementOp = Relu;
using DeviceConvFwdInstance =
// clang-format off
//############################################| NDim| InData| WeiData| OutData| AccData| In| Wei| Out| In| Wei| Out| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
//############################################| Spatial| Type| Type| Type| Type| Layout| Layout| Layout| Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN|
//############################################| | | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | |
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceConvFwdXdl< 2, InDataType, WeiDataType, OutDataType, AccDataType, InLayout, WeiLayout, OutLayout, InElementOp, WeiElementOp, OutElementOp, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 2, 8>, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, S<1, 4, 8>, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 7, 1, true, true>;
//############################################| NDim| InData| WeiData| OutData| AccData| In| Wei| Out| In| Wei| Out| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
//############################################| Spatial| Type| Type| Type| Type| Layout| Layout| Layout| Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN|
//############################################| | | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | |
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceConvFwdXdl< 2, InDataType, WeiDataType, OutDataType, AccDataType, InLayout, WeiLayout, OutLayout, InElementOp, WeiElementOp, OutElementOp, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 2, 8>, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, S<1, 4, 8>, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 7, 1, true, true>;
// clang-format on
template <typename TIn,
......
......@@ -11,8 +11,8 @@
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "example/4_conv_xdl_bias_relu_add/include/device_conv_fwd_xdl_two_extra_source_reduce.hpp"
#include "example/4_conv_xdl_bias_relu_add/include/device_conv_fwd_xdl_two_extra_source_reduce_nhwc_kyxc_nhwk.hpp"
#include "example/4_conv_xdl_bias_relu_add/include/device_conv_fwd_xdl_bias_activation_add.hpp"
#include "example/4_conv_xdl_bias_relu_add/include/device_conv_fwd_xdl_bias_activation_add_nhwc_kyxc_nhwk.hpp"
struct PassThrough
{
......@@ -23,13 +23,17 @@ struct PassThrough
}
};
struct Relu
struct BiasReluAdd
{
template <typename T>
__host__ __device__ constexpr T operator()(T v) const
template <typename T1, typename T2>
__host__ __device__ constexpr float operator()(float v0, T1 v1, T2 v2) const
{
T tmp = 0.1 * v;
return tmp > 0 ? tmp : 0;
float a = v0 + v1;
float b = float(0.1) * a;
float c = b > 0 ? b : 0;
float d = c + v2;
return d;
}
};
......@@ -47,15 +51,15 @@ using OutLayout = ck::tensor_layout::convolution::NHWK;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = Relu;
using OutElementOp = BiasReluAdd;
using DeviceConvFwdInstance =
// clang-format off
//############################################| NDim| InData| WeiData| OutData| AccData| In| Wei| Out| In| Wei| Out| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
//############################################| Spatial| Type| Type| Type| Type| Layout| Layout| Layout| Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN|
//############################################| | | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | |
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceConvFwdXdl_two_extra_source_reduce< 2, InDataType, WeiDataType, OutDataType, AccDataType, InLayout, WeiLayout, OutLayout, InElementOp, WeiElementOp, OutElementOp, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 2, 8>, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, S<1, 4, 8>, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 7, 1, true, true>;
//################################################################| NDim| InData| WeiData| OutData| AccData| In| Wei| Out| In| Wei| Out| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
//################################################################| Spatial| Type| Type| Type| Type| Layout| Layout| Layout| Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN|
//################################################################| | | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | |
//################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceConvFwdXdl_bias_activation_add< 2, InDataType, WeiDataType, OutDataType, AccDataType, InLayout, WeiLayout, OutLayout, InElementOp, WeiElementOp, OutElementOp, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 2, 8>, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, S<1, 4, 8>, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 7, 1, true, true>;
// clang-format on
template <typename TIn,
......@@ -64,54 +68,58 @@ template <typename TIn,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp>
void host_verify(const Tensor<TIn>& in,
const Tensor<TWei>& wei,
Tensor<TOut>& out,
const std::vector<ck::index_t>& conv_strides,
const std::vector<ck::index_t>& conv_dilations,
const std::vector<ck::index_t>& in_left_pads,
const std::vector<ck::index_t>&,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
void host_reference_calculation(const Tensor<TIn>& in_n_c_hi_wi,
const Tensor<TWei>& wei_k_c_y_x,
Tensor<TOut>& out_n_k_ho_wo,
const Tensor<TOut>& bias_k,
const Tensor<TOut>& resi_n_k_ho_wo,
const std::vector<ck::index_t>& conv_strides,
const std::vector<ck::index_t>& conv_dilations,
const std::vector<ck::index_t>& in_left_pads,
const std::vector<ck::index_t>&,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
auto f_nchw = [&](auto n, auto k, auto ho, auto wo) {
double v = 0;
for(int c = 0; c < wei.mDesc.GetLengths()[1]; ++c)
for(int c = 0; c < wei_k_c_y_x.mDesc.GetLengths()[1]; ++c)
{
for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y)
for(int y = 0; y < wei_k_c_y_x.mDesc.GetLengths()[2]; ++y)
{
int hi = ho * conv_strides[0] + y * conv_dilations[0] - in_left_pads[0];
for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x)
for(int x = 0; x < wei_k_c_y_x.mDesc.GetLengths()[3]; ++x)
{
int wi = wo * conv_strides[1] + x * conv_dilations[1] - in_left_pads[1];
if(hi >= 0 && hi < in.mDesc.GetLengths()[2] && wi >= 0 &&
wi < in.mDesc.GetLengths()[3])
if(hi >= 0 && hi < in_n_c_hi_wi.mDesc.GetLengths()[2] && wi >= 0 &&
wi < in_n_c_hi_wi.mDesc.GetLengths()[3])
{
v += in_element_op(static_cast<const double>(in(n, c, hi, wi))) *
wei_element_op(static_cast<const double>(wei(k, c, y, x)));
v += in_element_op(static_cast<const double>(in_n_c_hi_wi(n, c, hi, wi))) *
wei_element_op(static_cast<const double>(wei_k_c_y_x(k, c, y, x)));
}
}
}
}
out(n, k, ho, wo) = out_element_op(v);
out_n_k_ho_wo(n, k, ho, wo) = out_element_op(v, bias_k(k), resi_n_k_ho_wo(n, k, ho, wo));
};
make_ParallelTensorFunctor(f_nchw,
out.mDesc.GetLengths()[0],
out.mDesc.GetLengths()[1],
out.mDesc.GetLengths()[2],
out.mDesc.GetLengths()[3])(std::thread::hardware_concurrency());
out_n_k_ho_wo.mDesc.GetLengths()[0],
out_n_k_ho_wo.mDesc.GetLengths()[1],
out_n_k_ho_wo.mDesc.GetLengths()[2],
out_n_k_ho_wo.mDesc.GetLengths()[3])(
std::thread::hardware_concurrency());
}
int main(int argc, char* argv[])
{
if(argc != 4)
// if(argc != 4)
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: run kernel # of times (>1)\n");
exit(0);
// exit(0);
}
const bool do_verification = std::stoi(argv[1]);
......@@ -119,6 +127,7 @@ int main(int argc, char* argv[])
const int nrepeat = std::stoi(argv[3]);
// Conv shape
#if 0
const ck::index_t N = 128;
const ck::index_t K = 256;
const ck::index_t C = 192;
......@@ -134,6 +143,23 @@ int main(int argc, char* argv[])
const ck::index_t in_left_pad_w = 1;
const ck::index_t in_right_pad_h = 1;
const ck::index_t in_right_pad_w = 1;
#else
const ck::index_t N = std::stoi(argv[4]);
const ck::index_t K = std::stoi(argv[5]);
const ck::index_t C = std::stoi(argv[6]);
const ck::index_t Y = std::stoi(argv[7]);
const ck::index_t X = std::stoi(argv[8]);
const ck::index_t Hi = std::stoi(argv[9]);
const ck::index_t Wi = std::stoi(argv[10]);
const ck::index_t conv_stride_h = std::stoi(argv[11]);
const ck::index_t conv_stride_w = std::stoi(argv[12]);
const ck::index_t conv_dilation_h = std::stoi(argv[13]);
const ck::index_t conv_dilation_w = std::stoi(argv[14]);
const ck::index_t in_left_pad_h = std::stoi(argv[15]);
const ck::index_t in_left_pad_w = std::stoi(argv[16]);
const ck::index_t in_right_pad_h = std::stoi(argv[17]);
const ck::index_t in_right_pad_w = std::stoi(argv[18]);
#endif
const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;
......@@ -178,9 +204,18 @@ int main(int argc, char* argv[])
Tensor<OutDataType> out_n_k_ho_wo_device_result(
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
// bias: assume contiguous 1d vector
Tensor<OutDataType> bias_k(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(K)})));
// residual: assume same layout as output tensor
Tensor<OutDataType> resi_n_k_ho_wo(f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo_host_result.mDesc << std::endl;
std::cout << "bias_k: " << bias_k.mDesc << std::endl;
std::cout << "resi_n_k_ho_wo: " << resi_n_k_ho_wo.mDesc << std::endl;
switch(init_method)
{
......@@ -188,39 +223,49 @@ int main(int argc, char* argv[])
case 1:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
bias_k.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
resi_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
break;
default:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
bias_k.GenerateTensorValue(GeneratorTensor_3<OutDataType>{-0.5, 0.5});
resi_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_3<OutDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_k_ho_wo_device_result.mDesc.GetElementSpace());
DeviceMem bias_device_buf(sizeof(OutDataType) * bias_k.mDesc.GetElementSpace());
DeviceMem resi_device_buf(sizeof(OutDataType) * resi_n_k_ho_wo.mDesc.GetElementSpace());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());
// do GEMM
auto conv = DeviceConvFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
N,
K,
C,
std::vector<ck::index_t>{{Hi, Wi}},
std::vector<ck::index_t>{{Y, X}},
std::vector<ck::index_t>{{Ho, Wo}},
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
bias_device_buf.ToDevice(bias_k.mData.data());
resi_device_buf.ToDevice(resi_n_k_ho_wo.mData.data());
auto conv = DeviceConvFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument =
conv.MakeArgument(static_cast<const InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<const WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<const OutDataType*>(bias_device_buf.GetDeviceBuffer()),
static_cast<const OutDataType*>(resi_device_buf.GetDeviceBuffer()),
N,
K,
C,
std::vector<ck::index_t>{{Hi, Wi}},
std::vector<ck::index_t>{{Y, X}},
std::vector<ck::index_t>{{Ho, Wo}},
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
if(!conv.IsSupportedArgument(argument))
{
......@@ -246,16 +291,18 @@ int main(int argc, char* argv[])
if(do_verification)
{
host_verify(in_n_c_hi_wi,
wei_k_c_y_x,
out_n_k_ho_wo_host_result,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
host_reference_calculation(in_n_c_hi_wi,
wei_k_c_y_x,
out_n_k_ho_wo_host_result,
bias_k,
resi_n_k_ho_wo,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data());
......
#ifndef DEVICE_CONV_FWD_XDL_TWO_EXTRA_SOURCE_REDUCE_HPP
#define DEVICE_CONV_FWD_XDL_TWO_EXTRA_SOURCE_REDUCE_HPP
#ifndef DEVICE_CONV_FWD_XDL_BIAS_ACTIVATION_ADD_HPP
#define DEVICE_CONV_FWD_XDL_BIAS_ACTIVATION_ADD_HPP
#include <iostream>
#include "device.hpp"
......@@ -53,7 +53,7 @@ template <ck::index_t NDimSpatial,
ck::index_t CThreadTransferDstScalarPerVector,
bool ABlockLdsAddExtraM,
bool BBlockLdsAddExtraN>
struct DeviceConvFwdXdl_two_extra_source_reduce;
struct DeviceConvFwdXdl_bias_activation_add;
} // namespace device
} // namespace tensor_operation
......
#ifndef DEVICE_CONV_FWD_XDL_TWO_EXTRA_SOURCE_REDUCE_NHWC_KYXC_NHWK_HPP
#define DEVICE_CONV_FWD_XDL_TWO_EXTRA_SOURCE_REDUCE_NHWC_KYXC_NHWK_HPP
#ifndef DEVICE_CONV_FWD_XDL_BIAS_ACTIVATION_ADD_NHWC_KYXC_NHWK_HPP
#define DEVICE_CONV_FWD_XDL_BIAS_ACTIVATION_ADD_NHWC_KYXC_NHWK_HPP
#include <iostream>
#include "device.hpp"
......@@ -9,8 +9,8 @@
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"
#include "example/4_conv_xdl_bias_relu_add/include/device_conv_fwd_xdl_two_extra_source_reduce.hpp"
#include "gridwise_gemm_xdlops_v2r5.hpp"
#include "example/4_conv_xdl_bias_relu_add/include/device_conv_fwd_xdl_bias_activation_add.hpp"
namespace ck {
namespace tensor_operation {
......@@ -51,7 +51,7 @@ template <typename InDataType,
ck::index_t CThreadTransferDstScalarPerVector,
bool ABlockLdsAddExtraM,
bool BBlockLdsAddExtraN>
struct DeviceConvFwdXdl_two_extra_source_reduce<
struct DeviceConvFwdXdl_bias_activation_add<
2, // ck::index_t NDimSpatial,
InDataType, // typename InDataType,
WeiDataType, // typename WeiDataType,
......@@ -108,6 +108,7 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto K1Number = Number<K1>{};
static constexpr auto GemmK1Number = K1Number;
......@@ -153,6 +154,8 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
const auto GemmMPad = math::integer_least_multiple(GemmMRaw, MPerBlock) - GemmMRaw;
const auto GemmM = GemmMRaw + GemmMPad;
assert(GemmK % GemmK1Number == 0);
const index_t GemmK0 = GemmK / GemmK1Number;
......@@ -236,9 +239,18 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
// C0: bias tensor: assume a contiguous vector
const auto bias_grid_desc_gemmm_gemmn =
make_naive_tensor_descriptor(make_tuple(GemmM, GemmN), make_tuple(0, 1));
// C1: residual tensor: assume same layout as output tensor
const auto resi_grid_desc_gemmm_gemmn = out_gemmm_gemmn_grid_desc;
return make_tuple(in_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
out_gemmm_gemmn_grid_desc);
out_gemmm_gemmn_grid_desc,
bias_grid_desc_gemmm_gemmn,
resi_grid_desc_gemmm_gemmn);
}
using ABCGridDescs = decltype(MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
......@@ -247,6 +259,8 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I0])>;
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
using C0GridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I3])>;
using C1GridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I4])>;
// TODO remove these hacks
static constexpr auto a_k0_m_k1_grid_step_hacks = make_tuple(
......@@ -289,7 +303,7 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
static constexpr auto b_k0_n_k1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0, 0, 0>{};
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3<
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r5<
BlockSize,
ABDataType, // TODO: distinguish A/B datatype
AccDataType,
......@@ -298,6 +312,8 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
C0GridDesc_M_N,
C1GridDesc_M_N,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
......@@ -340,6 +356,12 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
using CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(CGridDesc_M_N{}));
using C0GridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(C0GridDesc_M_N{}));
using C1GridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(C1GridDesc_M_N{}));
using Block2CTileMap = decltype(GridwiseGemm::MakeBlock2CTileMap(CGridDesc_M_N{}, 1, 1));
// Argument
......@@ -348,6 +370,8 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
Argument(const InDataType* p_in_grid,
const WeiDataType* p_wei_grid,
OutDataType* p_out_grid,
const OutDataType* p_bias_grid,
const OutDataType* p_resi_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
......@@ -366,10 +390,16 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
: p_a_grid_{p_in_grid},
p_b_grid_{p_wei_grid},
p_c_grid_{p_out_grid},
p_c0_grid_{p_bias_grid},
p_c1_grid_{p_resi_grid},
a_grid_desc_k0_m_k1_{},
b_grid_desc_k0_n_k1_{},
c_grid_desc_m_n_{},
c0_grid_desc_m_n_{},
c1_grid_desc_m_n_{},
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
block_2_ctile_map_{},
M01_{M01},
N01_{N01},
......@@ -377,7 +407,7 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
wei_element_op_{wei_element_op},
out_element_op_{out_element_op}
{
const auto descs = DeviceConvFwdXdl_two_extra_source_reduce::
const auto descs = DeviceConvFwdXdl_bias_activation_add::
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(N,
K,
C,
......@@ -392,6 +422,8 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
a_grid_desc_k0_m_k1_ = descs[I0];
b_grid_desc_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2];
c0_grid_desc_m_n_ = descs[I3];
c1_grid_desc_m_n_ = descs[I4];
if(GridwiseGemm::CheckValidity(
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_))
......@@ -399,6 +431,12 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);
c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c0_grid_desc_m_n_);
c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c1_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
}
}
......@@ -407,10 +445,16 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
const CDataType* p_c0_grid_;
const CDataType* p_c1_grid_;
AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_;
C0GridDesc_M_N c0_grid_desc_m_n_;
C1GridDesc_M_N c1_grid_desc_m_n_;
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
C0GridDesc_M0_N0_M1_N1_M2_M3_M4_N2 c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
C1GridDesc_M0_N0_M1_N1_M2_M3_M4_N2 c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
Block2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
......@@ -422,7 +466,7 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceConvFwdXdl_two_extra_source_reduce::Argument;
using Argument = DeviceConvFwdXdl_bias_activation_add::Argument;
float Run(const Argument& arg, int nrepeat = 1)
{
......@@ -437,6 +481,12 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
std::cout << "arg.c0_grid_desc_m_n_{ " << arg.c0_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c0_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
std::cout << "arg.c1_grid_desc_m_n_{ " << arg.c1_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c1_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
......@@ -446,7 +496,7 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
arg.N01_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r5 has invalid setting");
}
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_);
......@@ -459,18 +509,22 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
if(has_main_k0_block_loop)
{
const auto kernel = kernel_gemm_xdlops_v2r3<
const auto kernel = kernel_gemm_xdlops_v2r5<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceConvFwdXdl_two_extra_source_reduce::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceConvFwdXdl_two_extra_source_reduce::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceConvFwdXdl_two_extra_source_reduce::
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
remove_reference_t<DeviceConvFwdXdl_bias_activation_add::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceConvFwdXdl_bias_activation_add::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceConvFwdXdl_bias_activation_add::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
remove_reference_t<
DeviceConvFwdXdl_bias_activation_add::C0GridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
remove_reference_t<
DeviceConvFwdXdl_bias_activation_add::C1GridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<DeviceConvFwdXdl_two_extra_source_reduce::Block2CTileMap>,
remove_reference_t<DeviceConvFwdXdl_bias_activation_add::Block2CTileMap>,
true>;
ave_time = launch_and_time_kernel(kernel,
......@@ -481,9 +535,13 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.p_c0_grid_,
arg.p_c1_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.in_element_op_,
arg.wei_element_op_,
arg.out_element_op_,
......@@ -491,18 +549,22 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
}
else
{
const auto kernel = kernel_gemm_xdlops_v2r3<
const auto kernel = kernel_gemm_xdlops_v2r5<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceConvFwdXdl_two_extra_source_reduce::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceConvFwdXdl_two_extra_source_reduce::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceConvFwdXdl_two_extra_source_reduce::
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
remove_reference_t<DeviceConvFwdXdl_bias_activation_add::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceConvFwdXdl_bias_activation_add::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceConvFwdXdl_bias_activation_add::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
remove_reference_t<
DeviceConvFwdXdl_bias_activation_add::C0GridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
remove_reference_t<
DeviceConvFwdXdl_bias_activation_add::C1GridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<DeviceConvFwdXdl_two_extra_source_reduce::Block2CTileMap>,
remove_reference_t<DeviceConvFwdXdl_bias_activation_add::Block2CTileMap>,
false>;
ave_time = launch_and_time_kernel(kernel,
......@@ -513,9 +575,13 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.p_c0_grid_,
arg.p_c1_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.in_element_op_,
arg.wei_element_op_,
arg.out_element_op_,
......@@ -556,6 +622,8 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
static auto MakeArgument(const InDataType* p_in_grid,
const WeiDataType* p_wei_grid,
OutDataType* p_out_grid,
const OutDataType* p_bias_grid,
const OutDataType* p_resi_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
......@@ -573,6 +641,8 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
return Argument{p_in_grid,
p_wei_grid,
p_out_grid,
p_bias_grid,
p_resi_grid,
N,
K,
C,
......@@ -591,51 +661,6 @@ struct DeviceConvFwdXdl_two_extra_source_reduce<
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in_grid,
const void* p_wei_grid,
void* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
{
return std::make_unique<Argument>(static_cast<const InDataType*>(p_in_grid),
static_cast<const WeiDataType*>(p_wei_grid),
static_cast<OutDataType*>(p_out_grid),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
}; // namespace device
} // namespace device
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment