Commit 25343b48 authored by Chao Liu's avatar Chao Liu
Browse files

adding conv_xdl_bias_relu_add example

parent 66f38a87
...@@ -11,7 +11,6 @@ ...@@ -11,7 +11,6 @@
#include "host_tensor_generator.hpp" #include "host_tensor_generator.hpp"
#include "device_tensor.hpp" #include "device_tensor.hpp"
#include "tensor_layout.hpp" #include "tensor_layout.hpp"
#include "host_conv.hpp"
#include "device_conv_fwd_xdl.hpp" #include "device_conv_fwd_xdl.hpp"
#include "device_conv_fwd_xdl_nhwc_kyxc_nhwk.hpp" #include "device_conv_fwd_xdl_nhwc_kyxc_nhwk.hpp"
......
# Instructions for ```gemm_xdl_bias_add``` Example
## Docker script
```bash
docker run \
-it \
--rm \
--privileged \
--group-add sudo \
-w /root/workspace \
-v ${PATH_TO_LOCAL_WORKSPACE}:/root/workspace \
rocm/tensorflow:rocm4.3.1-tf2.6-dev \
/bin/bash
```
## Build ```gemm_xdl_bias_add```
```bash
mkdir build && cd build
```
```bash
# Need to specify target ID, example below is gfx908
cmake \
-D BUILD_DEV=OFF \
-D CMAKE_BUILD_TYPE=Release \
-D CMAKE_CXX_FLAGS="-DCK_AMD_GPU_GFX908 --amdgpu-target=gfx908 -O3 " \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_PREFIX_PATH=/opt/rocm \
..
```
```bash
make -j gemm_xdl_bias_add
```
## Run ```gemm_xdl_bias_add```
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
./example/gemm_xdl_bias_add 0 1 5 3840 4096 4096 4096 4096 4096
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {1, 4096}
c_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
c0_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
c1_m_n: dim 2, lengths {3840, 4096}, strides {1, 0}
arg.a_grid_desc_k0_m_k1_{512, 3840, 8}
arg.b_grid_desc_k0_n_k1_{512, 4096, 8}
arg.c_grid_desc_m_n_{ 3840, 4096}
arg.c0_grid_desc_m_n_{ 3840, 4096}
arg.c1_grid_desc_m_n_{ 3840, 4096}
launch_and_time_kernel: grid_dim {480, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.27583 ms, 100.992 TFlops, 73.9688 GB/s
```
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "example/4_conv_xdl_bias_relu_add/include/device_conv_fwd_xdl_two_extra_source_reduce.hpp"
#include "example/4_conv_xdl_bias_relu_add/include/device_conv_fwd_xdl_two_extra_source_reduce_nhwc_kyxc_nhwk.hpp"
struct PassThrough
{
template <typename T>
__host__ __device__ constexpr T operator()(T v) const
{
return v;
}
};
struct Relu
{
template <typename T>
__host__ __device__ constexpr T operator()(T v) const
{
T tmp = 0.1 * v;
return tmp > 0 ? tmp : 0;
}
};
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::NHWC;
using WeiLayout = ck::tensor_layout::convolution::KYXC;
using OutLayout = ck::tensor_layout::convolution::NHWK;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = Relu;
using DeviceConvFwdInstance =
// clang-format off
//############################################| NDim| InData| WeiData| OutData| AccData| In| Wei| Out| In| Wei| Out| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
//############################################| Spatial| Type| Type| Type| Type| Layout| Layout| Layout| Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN|
//############################################| | | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | |
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceConvFwdXdl_two_extra_source_reduce< 2, InDataType, WeiDataType, OutDataType, AccDataType, InLayout, WeiLayout, OutLayout, InElementOp, WeiElementOp, OutElementOp, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 2, 8>, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, S<1, 4, 8>, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 7, 1, true, true>;
// clang-format on
template <typename TIn,
typename TWei,
typename TOut,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp>
void host_verify(const Tensor<TIn>& in,
const Tensor<TWei>& wei,
Tensor<TOut>& out,
const std::vector<ck::index_t>& conv_strides,
const std::vector<ck::index_t>& conv_dilations,
const std::vector<ck::index_t>& in_left_pads,
const std::vector<ck::index_t>&,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
auto f_nchw = [&](auto n, auto k, auto ho, auto wo) {
double v = 0;
for(int c = 0; c < wei.mDesc.GetLengths()[1]; ++c)
{
for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y)
{
int hi = ho * conv_strides[0] + y * conv_dilations[0] - in_left_pads[0];
for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x)
{
int wi = wo * conv_strides[1] + x * conv_dilations[1] - in_left_pads[1];
if(hi >= 0 && hi < in.mDesc.GetLengths()[2] && wi >= 0 &&
wi < in.mDesc.GetLengths()[3])
{
v += in_element_op(static_cast<const double>(in(n, c, hi, wi))) *
wei_element_op(static_cast<const double>(wei(k, c, y, x)));
}
}
}
}
out(n, k, ho, wo) = out_element_op(v);
};
make_ParallelTensorFunctor(f_nchw,
out.mDesc.GetLengths()[0],
out.mDesc.GetLengths()[1],
out.mDesc.GetLengths()[2],
out.mDesc.GetLengths()[3])(std::thread::hardware_concurrency());
}
int main(int argc, char* argv[])
{
if(argc != 4)
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: run kernel # of times (>1)\n");
exit(0);
}
const bool do_verification = std::stoi(argv[1]);
const int init_method = std::stoi(argv[2]);
const int nrepeat = std::stoi(argv[3]);
// Conv shape
const ck::index_t N = 128;
const ck::index_t K = 256;
const ck::index_t C = 192;
const ck::index_t Y = 3;
const ck::index_t X = 3;
const ck::index_t Hi = 71;
const ck::index_t Wi = 71;
const ck::index_t conv_stride_h = 2;
const ck::index_t conv_stride_w = 2;
const ck::index_t conv_dilation_h = 1;
const ck::index_t conv_dilation_w = 1;
const ck::index_t in_left_pad_h = 1;
const ck::index_t in_left_pad_w = 1;
const ck::index_t in_right_pad_h = 1;
const ck::index_t in_right_pad_w = 1;
const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
const std::vector<ck::index_t> conv_filter_strides{{conv_stride_h, conv_stride_w}};
const std::vector<ck::index_t> conv_filter_dilations{{conv_dilation_h, conv_dilation_w}};
const std::vector<ck::index_t> input_left_pads{{in_left_pad_h, in_left_pad_w}};
const std::vector<ck::index_t> input_right_pads{{in_right_pad_h, in_right_pad_w}};
// tensor layout
auto f_host_tensor_descriptor = [](std::size_t N_,
std::size_t C_,
std::size_t H,
std::size_t W,
auto layout) {
if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value ||
ck::is_same<decltype(layout), ck::tensor_layout::convolution::KCYX>::value ||
ck::is_same<decltype(layout), ck::tensor_layout::convolution::NKHW>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
}
else if constexpr(ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NHWC>::value ||
ck::is_same<decltype(layout),
ck::tensor_layout::convolution::KYXC>::value ||
ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NHWK>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
}
};
Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X, WeiLayout{}));
Tensor<OutDataType> out_n_k_ho_wo_host_result(
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
Tensor<OutDataType> out_n_k_ho_wo_device_result(
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
default:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_k_ho_wo_device_result.mDesc.GetElementSpace());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());
// do GEMM
auto conv = DeviceConvFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
N,
K,
C,
std::vector<ck::index_t>{{Hi, Wi}},
std::vector<ck::index_t>{{Y, X}},
std::vector<ck::index_t>{{Ho, Wo}},
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float ave_time = invoker.Run(argument, nrepeat);
std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;
std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) +
sizeof(WeiDataType) * (K * C * Y * X) +
sizeof(OutDataType) * (N * K * Ho * Wo);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
if(do_verification)
{
host_verify(in_n_c_hi_wi,
wei_k_c_y_x,
out_n_k_ho_wo_host_result,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data());
check_error(out_n_k_ho_wo_host_result, out_n_k_ho_wo_device_result);
}
}
#ifndef DEVICE_CONV_FWD_XDL_TWO_EXTRA_SOURCE_REDUCE_HPP
#define DEVICE_CONV_FWD_XDL_TWO_EXTRA_SOURCE_REDUCE_HPP
#include <iostream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_conv.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename AccDataType,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadSliceLengths_K0_M_K1,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
typename BBlockTransferThreadSliceLengths_K0_N_K1,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
ck::index_t CThreadTransferSrcDstVectorDim,
ck::index_t CThreadTransferDstScalarPerVector,
bool ABlockLdsAddExtraM,
bool BBlockLdsAddExtraN>
struct DeviceConvFwdXdl_two_extra_source_reduce;
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
...@@ -14,11 +14,14 @@ include_directories(BEFORE ...@@ -14,11 +14,14 @@ include_directories(BEFORE
set(GEMM_XDL_SOURCE 1_gemm_xdl/gemm_xdl.cpp) set(GEMM_XDL_SOURCE 1_gemm_xdl/gemm_xdl.cpp)
set(GEMM_XDL_BIAS_ADD_SOURCE 2_gemm_xdl_bias_add/gemm_xdl_bias_add.cpp) set(GEMM_XDL_BIAS_ADD_SOURCE 2_gemm_xdl_bias_add/gemm_xdl_bias_add.cpp)
set(CONV_XDL_SOURCE 3_conv_xdl/conv_xdl.cpp) set(CONV_XDL_SOURCE 3_conv_xdl/conv_xdl.cpp)
set(CONV_XDL_BIAS_RELU_ADD_SOURCE 4_conv_xdl_bias_relu_add/conv_xdl_bias_relu_add.cpp)
add_executable(gemm_xdl ${GEMM_XDL_SOURCE}) add_executable(gemm_xdl ${GEMM_XDL_SOURCE})
add_executable(gemm_xdl_bias_add ${GEMM_XDL_BIAS_ADD_SOURCE}) add_executable(gemm_xdl_bias_add ${GEMM_XDL_BIAS_ADD_SOURCE})
add_executable(conv_xdl ${CONV_XDL_SOURCE}) add_executable(conv_xdl ${CONV_XDL_SOURCE})
add_executable(conv_xdl_bias_relu_add ${CONV_XDL_BIAS_RELU_ADD_SOURCE})
target_link_libraries(gemm_xdl PRIVATE host_tensor) target_link_libraries(gemm_xdl PRIVATE host_tensor)
target_link_libraries(gemm_xdl_bias_add PRIVATE host_tensor) target_link_libraries(gemm_xdl_bias_add PRIVATE host_tensor)
target_link_libraries(conv_xdl PRIVATE host_tensor) target_link_libraries(conv_xdl PRIVATE host_tensor)
target_link_libraries(conv_xdl_bias_relu_add PRIVATE host_tensor)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment