Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
31d2d52a
Commit
31d2d52a
authored
Sep 20, 2022
by
wangshaojie6
Browse files
merge develop
parents
5718bc14
7c788e10
Changes
43
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
908 additions
and
1051 deletions
+908
-1051
client_example/CMakeLists.txt
client_example/CMakeLists.txt
+7
-6
example/24_batched_gemm_e_permute/batched_gemm_e_permute_xdl_fp16.cpp
...atched_gemm_e_permute/batched_gemm_e_permute_xdl_fp16.cpp
+0
-258
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp
+3
-3
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
+3
-3
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp
+3
-3
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_int4.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_int4.cpp
+3
-3
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_int8.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_int8.cpp
+3
-3
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
+6
-6
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
...gemm/batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
+2
-2
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
...softmax_gemm/batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
+6
-5
example/32_batched_gemm_scale_softmax_gemm/grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
...gemm/grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
+444
-0
example/38_grouped_conv_bwd_data_bias_relu/CMakeLists.txt
example/38_grouped_conv_bwd_data_bias_relu/CMakeLists.txt
+1
-0
example/38_grouped_conv_bwd_data_bias_relu/grouped_conv_bwd_data_bias_relu_common.hpp
...data_bias_relu/grouped_conv_bwd_data_bias_relu_common.hpp
+199
-0
example/38_grouped_conv_bwd_data_bias_relu/grouped_conv_bwd_data_bias_relu_fp16.cpp
...d_data_bias_relu/grouped_conv_bwd_data_bias_relu_fp16.cpp
+174
-0
example/CMakeLists.txt
example/CMakeLists.txt
+7
-33
include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
...e/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
+3
-0
include/ck/tensor_operation/gpu/device/device_batched_contraction_multiple_d_xdl_cshuffle.hpp
...ce/device_batched_contraction_multiple_d_xdl_cshuffle.hpp
+15
-13
include/ck/tensor_operation/gpu/device/device_batched_gemm_e_permute_xdl.hpp
...peration/gpu/device/device_batched_gemm_e_permute_xdl.hpp
+0
-682
include/ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp
...tion/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp
+2
-6
include/ck/tensor_operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp
..._operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp
+27
-25
No files found.
client_example/CMakeLists.txt
View file @
31d2d52a
...
@@ -6,9 +6,10 @@ find_package(composable_kernel 1.0.0 COMPONENTS device_operations)
...
@@ -6,9 +6,10 @@ find_package(composable_kernel 1.0.0 COMPONENTS device_operations)
find_package
(
hip REQUIRED PATHS /opt/rocm
)
find_package
(
hip REQUIRED PATHS /opt/rocm
)
message
(
STATUS
"Build with HIP
${
hip_VERSION
}
"
)
message
(
STATUS
"Build with HIP
${
hip_VERSION
}
"
)
add_subdirectory
(
01_gemm
)
# add all example subdir
add_subdirectory
(
02_gemm_add_add_fastgelu
)
file
(
GLOB dir_list LIST_DIRECTORIES true *
)
add_subdirectory
(
03_gemm_layernorm
)
FOREACH
(
subdir
${
dir_list
}
)
add_subdirectory
(
04_contraction
)
IF
(
IS_DIRECTORY
"
${
subdir
}
"
)
add_subdirectory
(
05_layernorm
)
add_subdirectory
(
${
subdir
}
)
add_subdirectory
(
06_softmax
)
ENDIF
()
ENDFOREACH
()
example/24_batched_gemm_e_permute/batched_gemm_e_permute_xdl_fp16.cpp
deleted
100644 → 0
View file @
5718bc14
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_e_permute_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmEPermuteXdl
// clang-format off
//######| ALayout| BLayout| ELayout| AData| BData| AccData| CShuffle| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| DataType| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
const
int
M
=
256
;
const
int
N
=
128
;
const
int
K
=
64
;
const
int
stride_A
=
K
;
const
int
stride_B
=
K
;
const
int
batch_stride_A
=
M
*
K
;
const
int
batch_stride_B
=
K
*
N
;
const
int
G0
=
16
;
const
int
G1
=
8
;
const
int
batch_count
=
G0
*
G1
;
// output layout - [G0, M, G1, N]
const
int
stride_G0
=
M
*
G1
*
N
;
const
int
stride_G1
=
N
;
const
int
stride_M
=
G1
*
N
;
const
int
stride_N
=
1
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
exit
(
0
);
}
// GEMM shape
ck
::
tensor_operation
::
device
::
BatchedGemmEPermuteDesc
batched_gemm_e_permute_desc
{
G0
,
G1
,
M
,
N
,
stride_G0
,
stride_G1
,
stride_M
,
stride_N
};
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count_
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count_
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count_
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
batch_count
,
M
,
K
,
stride_A
,
batch_stride_A
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
batch_count
,
K
,
N
,
stride_B
,
batch_stride_B
,
BLayout
{}));
auto
f_host_e_tensor_descriptor
=
[](
std
::
size_t
G0_
,
std
::
size_t
G1_
,
std
::
size_t
M_
,
std
::
size_t
N_
,
std
::
size_t
stride_G0_
,
std
::
size_t
stride_G1_
,
std
::
size_t
stride_M_
,
std
::
size_t
stride_N_
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
G0_
,
G1_
,
M_
,
N_
}),
std
::
vector
<
std
::
size_t
>
({
stride_G0_
,
stride_G1_
,
stride_M_
,
stride_N_
}));
};
Tensor
<
EDataType
>
e_g0_g1_m_n_host_result
(
f_host_e_tensor_descriptor
(
G0
,
G1
,
M
,
N
,
stride_G0
,
stride_G1
,
stride_M
,
stride_N
));
Tensor
<
EDataType
>
e_g0_g1_m_n_device_result
(
f_host_e_tensor_descriptor
(
G0
,
G1
,
M
,
N
,
stride_G0
,
stride_G1
,
stride_M
,
stride_N
));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_g0_g1_m_n: "
<<
e_g0_g1_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_g0_g1_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
// do GEM
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
EDataType
*>
(
e_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
stride_A
,
stride_B
,
batch_stride_A
,
batch_stride_B
,
batched_gemm_e_permute_desc
,
batch_count
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
batch_count
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
batch_count
*
M
*
K
+
sizeof
(
BDataType
)
*
batch_count
*
K
*
N
+
sizeof
(
EDataType
)
*
batch_count
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
e_device_buf
.
FromDevice
(
e_g0_g1_m_n_device_result
.
mData
.
data
());
auto
ref_batched_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_invoker
=
ref_batched_gemm
.
MakeInvoker
();
Tensor
<
EDataType
>
c_g_m_n_host_result
=
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
M
,
N
}),
std
::
vector
<
std
::
size_t
>
({
M
*
N
,
N
,
1
}));
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n
,
c_g_m_n_host_result
,
a_element_op
,
b_element_op
,
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
for
(
int
g0
=
0
;
g0
<
G0
;
g0
++
)
{
for
(
int
g1
=
0
;
g1
<
G1
;
g1
++
)
{
for
(
int
m
=
0
;
m
<
M
;
m
++
)
{
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
int
g
=
g0
*
G1
+
g1
;
e_g0_g1_m_n_host_result
(
g0
,
g1
,
m
,
n
)
=
c_g_m_n_host_result
(
g
,
m
,
n
);
}
}
}
}
pass
=
ck
::
utils
::
check_err
(
e_g0_g1_m_n_host_result
.
mData
,
e_g0_g1_m_n_device_result
.
mData
,
"Error: Incorrect results c"
);
}
return
pass
?
0
:
1
;
}
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp
View file @
31d2d52a
...
@@ -137,7 +137,7 @@ int main(int argc, char* argv[])
...
@@ -137,7 +137,7 @@ int main(int argc, char* argv[])
{
{
using
InLayout
=
ctc
::
G_NW_C
;
using
InLayout
=
ctc
::
G_NW_C
;
using
WeiLayout
=
ctc
::
G_K_X_C
;
using
WeiLayout
=
ctc
::
G_K_X_C
;
using
BiasLayout
=
ctc
::
G_
NW_
K
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NW_K
;
using
ResidualLayout
=
ctc
::
G_NW_K
;
using
OutLayout
=
ctc
::
G_NW_K
;
using
OutLayout
=
ctc
::
G_NW_K
;
...
@@ -220,7 +220,7 @@ int main(int argc, char* argv[])
...
@@ -220,7 +220,7 @@ int main(int argc, char* argv[])
{
{
using
InLayout
=
ctc
::
G_NHW_C
;
using
InLayout
=
ctc
::
G_NHW_C
;
using
WeiLayout
=
ctc
::
G_K_YX_C
;
using
WeiLayout
=
ctc
::
G_K_YX_C
;
using
BiasLayout
=
ctc
::
G_
NHW_
K
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NHW_K
;
using
ResidualLayout
=
ctc
::
G_NHW_K
;
using
OutLayout
=
ctc
::
G_NHW_K
;
using
OutLayout
=
ctc
::
G_NHW_K
;
...
@@ -332,7 +332,7 @@ int main(int argc, char* argv[])
...
@@ -332,7 +332,7 @@ int main(int argc, char* argv[])
{
{
using
InLayout
=
ctc
::
G_NDHW_C
;
using
InLayout
=
ctc
::
G_NDHW_C
;
using
WeiLayout
=
ctc
::
G_K_ZYX_C
;
using
WeiLayout
=
ctc
::
G_K_ZYX_C
;
using
BiasLayout
=
ctc
::
G_
NDHW_
K
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NDHW_K
;
using
ResidualLayout
=
ctc
::
G_NDHW_K
;
using
OutLayout
=
ctc
::
G_NDHW_K
;
using
OutLayout
=
ctc
::
G_NDHW_K
;
...
...
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
View file @
31d2d52a
...
@@ -137,7 +137,7 @@ int main(int argc, char* argv[])
...
@@ -137,7 +137,7 @@ int main(int argc, char* argv[])
{
{
using
InLayout
=
ctc
::
G_NW_C
;
using
InLayout
=
ctc
::
G_NW_C
;
using
WeiLayout
=
ctc
::
G_K_X_C
;
using
WeiLayout
=
ctc
::
G_K_X_C
;
using
BiasLayout
=
ctc
::
G_
NW_
K
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NW_K
;
using
ResidualLayout
=
ctc
::
G_NW_K
;
using
OutLayout
=
ctc
::
G_NW_K
;
using
OutLayout
=
ctc
::
G_NW_K
;
...
@@ -220,7 +220,7 @@ int main(int argc, char* argv[])
...
@@ -220,7 +220,7 @@ int main(int argc, char* argv[])
{
{
using
InLayout
=
ctc
::
G_NHW_C
;
using
InLayout
=
ctc
::
G_NHW_C
;
using
WeiLayout
=
ctc
::
G_K_YX_C
;
using
WeiLayout
=
ctc
::
G_K_YX_C
;
using
BiasLayout
=
ctc
::
G_
NHW_
K
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NHW_K
;
using
ResidualLayout
=
ctc
::
G_NHW_K
;
using
OutLayout
=
ctc
::
G_NHW_K
;
using
OutLayout
=
ctc
::
G_NHW_K
;
...
@@ -332,7 +332,7 @@ int main(int argc, char* argv[])
...
@@ -332,7 +332,7 @@ int main(int argc, char* argv[])
{
{
using
InLayout
=
ctc
::
G_NDHW_C
;
using
InLayout
=
ctc
::
G_NDHW_C
;
using
WeiLayout
=
ctc
::
G_K_ZYX_C
;
using
WeiLayout
=
ctc
::
G_K_ZYX_C
;
using
BiasLayout
=
ctc
::
G_
NDHW_
K
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NDHW_K
;
using
ResidualLayout
=
ctc
::
G_NDHW_K
;
using
OutLayout
=
ctc
::
G_NDHW_K
;
using
OutLayout
=
ctc
::
G_NDHW_K
;
...
...
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp
View file @
31d2d52a
...
@@ -137,7 +137,7 @@ int main(int argc, char* argv[])
...
@@ -137,7 +137,7 @@ int main(int argc, char* argv[])
{
{
using
InLayout
=
ctc
::
G_NW_C
;
using
InLayout
=
ctc
::
G_NW_C
;
using
WeiLayout
=
ctc
::
G_K_X_C
;
using
WeiLayout
=
ctc
::
G_K_X_C
;
using
BiasLayout
=
ctc
::
G_
NW_
K
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NW_K
;
using
ResidualLayout
=
ctc
::
G_NW_K
;
using
OutLayout
=
ctc
::
G_NW_K
;
using
OutLayout
=
ctc
::
G_NW_K
;
...
@@ -220,7 +220,7 @@ int main(int argc, char* argv[])
...
@@ -220,7 +220,7 @@ int main(int argc, char* argv[])
{
{
using
InLayout
=
ctc
::
G_NHW_C
;
using
InLayout
=
ctc
::
G_NHW_C
;
using
WeiLayout
=
ctc
::
G_K_YX_C
;
using
WeiLayout
=
ctc
::
G_K_YX_C
;
using
BiasLayout
=
ctc
::
G_
NHW_
K
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NHW_K
;
using
ResidualLayout
=
ctc
::
G_NHW_K
;
using
OutLayout
=
ctc
::
G_NHW_K
;
using
OutLayout
=
ctc
::
G_NHW_K
;
...
@@ -332,7 +332,7 @@ int main(int argc, char* argv[])
...
@@ -332,7 +332,7 @@ int main(int argc, char* argv[])
{
{
using
InLayout
=
ctc
::
G_NDHW_C
;
using
InLayout
=
ctc
::
G_NDHW_C
;
using
WeiLayout
=
ctc
::
G_K_ZYX_C
;
using
WeiLayout
=
ctc
::
G_K_ZYX_C
;
using
BiasLayout
=
ctc
::
G_
NDHW_
K
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NDHW_K
;
using
ResidualLayout
=
ctc
::
G_NDHW_K
;
using
OutLayout
=
ctc
::
G_NDHW_K
;
using
OutLayout
=
ctc
::
G_NDHW_K
;
...
...
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_int4.cpp
View file @
31d2d52a
...
@@ -137,7 +137,7 @@ int main(int argc, char* argv[])
...
@@ -137,7 +137,7 @@ int main(int argc, char* argv[])
{
{
using
InLayout
=
ctc
::
G_NW_C
;
using
InLayout
=
ctc
::
G_NW_C
;
using
WeiLayout
=
ctc
::
G_K_X_C
;
using
WeiLayout
=
ctc
::
G_K_X_C
;
using
BiasLayout
=
ctc
::
G_
NW_
K
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NW_K
;
using
ResidualLayout
=
ctc
::
G_NW_K
;
using
OutLayout
=
ctc
::
G_NW_K
;
using
OutLayout
=
ctc
::
G_NW_K
;
...
@@ -220,7 +220,7 @@ int main(int argc, char* argv[])
...
@@ -220,7 +220,7 @@ int main(int argc, char* argv[])
{
{
using
InLayout
=
ctc
::
G_NHW_C
;
using
InLayout
=
ctc
::
G_NHW_C
;
using
WeiLayout
=
ctc
::
G_K_YX_C
;
using
WeiLayout
=
ctc
::
G_K_YX_C
;
using
BiasLayout
=
ctc
::
G_
NHW_
K
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NHW_K
;
using
ResidualLayout
=
ctc
::
G_NHW_K
;
using
OutLayout
=
ctc
::
G_NHW_K
;
using
OutLayout
=
ctc
::
G_NHW_K
;
...
@@ -332,7 +332,7 @@ int main(int argc, char* argv[])
...
@@ -332,7 +332,7 @@ int main(int argc, char* argv[])
{
{
using
InLayout
=
ctc
::
G_NDHW_C
;
using
InLayout
=
ctc
::
G_NDHW_C
;
using
WeiLayout
=
ctc
::
G_K_ZYX_C
;
using
WeiLayout
=
ctc
::
G_K_ZYX_C
;
using
BiasLayout
=
ctc
::
G_
NDHW_
K
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NDHW_K
;
using
ResidualLayout
=
ctc
::
G_NDHW_K
;
using
OutLayout
=
ctc
::
G_NDHW_K
;
using
OutLayout
=
ctc
::
G_NDHW_K
;
...
...
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_int8.cpp
View file @
31d2d52a
...
@@ -137,7 +137,7 @@ int main(int argc, char* argv[])
...
@@ -137,7 +137,7 @@ int main(int argc, char* argv[])
{
{
using
InLayout
=
ctc
::
G_NW_C
;
using
InLayout
=
ctc
::
G_NW_C
;
using
WeiLayout
=
ctc
::
G_K_X_C
;
using
WeiLayout
=
ctc
::
G_K_X_C
;
using
BiasLayout
=
ctc
::
G_
NW_
K
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NW_K
;
using
ResidualLayout
=
ctc
::
G_NW_K
;
using
OutLayout
=
ctc
::
G_NW_K
;
using
OutLayout
=
ctc
::
G_NW_K
;
...
@@ -220,7 +220,7 @@ int main(int argc, char* argv[])
...
@@ -220,7 +220,7 @@ int main(int argc, char* argv[])
{
{
using
InLayout
=
ctc
::
G_NHW_C
;
using
InLayout
=
ctc
::
G_NHW_C
;
using
WeiLayout
=
ctc
::
G_K_YX_C
;
using
WeiLayout
=
ctc
::
G_K_YX_C
;
using
BiasLayout
=
ctc
::
G_
NHW_
K
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NHW_K
;
using
ResidualLayout
=
ctc
::
G_NHW_K
;
using
OutLayout
=
ctc
::
G_NHW_K
;
using
OutLayout
=
ctc
::
G_NHW_K
;
...
@@ -332,7 +332,7 @@ int main(int argc, char* argv[])
...
@@ -332,7 +332,7 @@ int main(int argc, char* argv[])
{
{
using
InLayout
=
ctc
::
G_NDHW_C
;
using
InLayout
=
ctc
::
G_NDHW_C
;
using
WeiLayout
=
ctc
::
G_K_ZYX_C
;
using
WeiLayout
=
ctc
::
G_K_ZYX_C
;
using
BiasLayout
=
ctc
::
G_
NDHW_
K
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NDHW_K
;
using
ResidualLayout
=
ctc
::
G_NDHW_K
;
using
OutLayout
=
ctc
::
G_NDHW_K
;
using
OutLayout
=
ctc
::
G_NDHW_K
;
...
...
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
View file @
31d2d52a
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_
padded_batch
ed_gemm_scale_softmax_gemm_xdl_fp16
padded_batch
ed_gemm_scale_softmax_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_
group
ed_gemm_scale_softmax_gemm_
permute_
xdl_fp16
group
ed_gemm_scale_softmax_gemm_
permute_
xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_custom_target
(
example_
batched_
gemm_scale_softmax_gemm
)
add_custom_target
(
example_gemm_scale_softmax_gemm
)
add_dependencies
(
example_
batched_
gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16
)
add_dependencies
(
example_
batched_
gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_
batched_
gemm_scale_softmax_gemm example_
padded_batch
ed_gemm_scale_softmax_gemm_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_
group
ed_gemm_scale_softmax_gemm_
permute_
xdl_fp16
)
add_dependencies
(
example_
batched_
gemm_scale_softmax_gemm example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16
)
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
View file @
31d2d52a
...
@@ -150,8 +150,8 @@ int main(int argc, char* argv[])
...
@@ -150,8 +150,8 @@ int main(int argc, char* argv[])
// GEMM shape for A/B0/B1/C
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck
::
index_t
M
=
12
8
;
ck
::
index_t
M
=
12
0
;
ck
::
index_t
N
=
10
24
;
ck
::
index_t
N
=
10
00
;
ck
::
index_t
K
=
64
;
ck
::
index_t
K
=
64
;
ck
::
index_t
O
=
128
;
ck
::
index_t
O
=
128
;
ck
::
index_t
StrideA
=
-
1
;
ck
::
index_t
StrideA
=
-
1
;
...
...
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
View file @
31d2d52a
...
@@ -55,7 +55,7 @@ using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
...
@@ -55,7 +55,7 @@ using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using
B1ElementOp
=
PassThrough
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
Gemm
Default
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
Gemm
Spec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
ALayout
,
ALayout
,
...
@@ -73,7 +73,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmSoftma
...
@@ -73,7 +73,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmSoftma
Acc0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
B1ElementOp
,
CElementOp
,
CElementOp
,
Gemm
Default
,
Gemm
Spec
,
1
,
1
,
256
,
256
,
128
,
// MPerBlock
128
,
// MPerBlock
...
@@ -113,7 +113,8 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmSoftma
...
@@ -113,7 +113,8 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmSoftma
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleMXdlPerWavePerShuffle
2
,
// CShuffleNXdlPerWavePerShuffle
2
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
>
;
// CShuffleBlockTransferScalarPerVector_NPerBlock
8
,
// CShuffleBlockTransferScalarPerVector_NPerBlock
false
>
;
// Ref Gemm0: fp16 in, fp32 out
// Ref Gemm0: fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
...
@@ -144,8 +145,8 @@ int main(int argc, char* argv[])
...
@@ -144,8 +145,8 @@ int main(int argc, char* argv[])
bool
time_kernel
=
false
;
bool
time_kernel
=
false
;
// GEMM shape
// GEMM shape
ck
::
index_t
M
=
102
4
;
ck
::
index_t
M
=
102
0
;
ck
::
index_t
N
=
102
4
;
ck
::
index_t
N
=
102
0
;
ck
::
index_t
K
=
64
;
ck
::
index_t
K
=
64
;
ck
::
index_t
O
=
128
;
ck
::
index_t
O
=
128
;
ck
::
index_t
BatchCount
=
4
;
ck
::
index_t
BatchCount
=
4
;
...
...
example/32_batched_gemm_scale_softmax_gemm/
padded_batch
ed_gemm_scale_softmax_gemm_xdl_fp16.cpp
→
example/32_batched_gemm_scale_softmax_gemm/
group
ed_gemm_scale_softmax_gemm_
permute_
xdl_fp16.cpp
View file @
31d2d52a
...
@@ -16,7 +16,8 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g
...
@@ -16,7 +16,8 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
...
@@ -47,7 +48,9 @@ using CDataType = F16;
...
@@ -47,7 +48,9 @@ using CDataType = F16;
using
ALayout
=
Row
;
using
ALayout
=
Row
;
using
B0Layout
=
Col
;
using
B0Layout
=
Col
;
using
B1Layout
=
Row
;
using
B1Layout
=
Row
;
using
CLayout
=
Row
;
using
CPermuteNumDims_G_M_O
=
S
<
1
,
1
,
1
>
;
// "using CLayout = Row" has been replaced by CPermuteNumDims_M_O
using
AElementOp
=
PassThrough
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
...
@@ -55,65 +58,67 @@ using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
...
@@ -55,65 +58,67 @@ using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using
B1ElementOp
=
PassThrough
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
MNPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
using
DeviceGemmInstance
=
ALayout
,
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
B0Layout
,
ALayout
,
B1Layout
,
B0Layout
,
CLayout
,
B1Layout
,
ADataType
,
CPermuteNumDims_G_M_O
,
B0DataType
,
ADataType
,
B1DataType
,
B0DataType
,
CDataType
,
B1DataType
,
AccDataType
,
CDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
CShuffleDataType
,
B0ElementOp
,
AElementOp
,
Acc0ElementOp
,
B0ElementOp
,
B1ElementOp
,
Acc0ElementOp
,
CElementOp
,
B1ElementOp
,
MNPadding
,
CElementOp
,
1
,
GemmSpec
,
256
,
1
,
128
,
// MPerBlock
256
,
128
,
// NPerBlock
128
,
// MPerBlock
32
,
// KPerBlock
128
,
// NPerBlock
64
,
// Gemm1NPerBlock
32
,
// KPerBlock
32
,
// Gemm1KPerBlock
64
,
// Gemm1NPerBlock
8
,
// AK1
32
,
// Gemm1KPerBlock
8
,
// BK1
8
,
// AK1
2
,
// B1K1
8
,
// BK1
32
,
// MPerXDL
2
,
// B1K1
32
,
// NPerXDL
32
,
// MPerXDL
1
,
// MXdlPerWave
32
,
// NPerXDL
4
,
// NXdlPerWave
1
,
// MXdlPerWave
2
,
// Gemm1NXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
2
,
// Gemm1NXdlPerWave
S
<
1
,
0
,
2
>
,
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
S
<
1
,
0
,
2
>
,
8
,
2
,
8
,
8
,
true
,
8
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
true
,
S
<
1
,
0
,
2
>
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
S
<
1
,
0
,
2
>
,
8
,
2
,
8
,
8
,
true
,
8
,
S
<
16
,
16
,
1
>
,
// B1BlockTransfer
true
,
S
<
0
,
2
,
1
>
,
S
<
16
,
16
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
S
<
0
,
2
,
1
>
,
4
,
1
,
2
,
4
,
false
,
2
,
1
,
// CShuffleMXdlPerWavePerShuffle
false
,
2
,
// CShuffleNXdlPerWavePerShuffle
1
,
// CShuffleMXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
2
,
// CShuffleNXdlPerWavePerShuffle
8
>
;
// CShuffleBlockTransferScalarPerVector_NPerBlock
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
,
// CShuffleBlockTransferScalarPerVector_NPerBlock
false
>
;
// Ref Gemm0: fp16 in, fp32 out
// Ref Gemm0: fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
...
@@ -143,22 +148,6 @@ int main(int argc, char* argv[])
...
@@ -143,22 +148,6 @@ int main(int argc, char* argv[])
int
init_method
=
1
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
1020
;
ck
::
index_t
N
=
1020
;
ck
::
index_t
K
=
64
;
ck
::
index_t
O
=
128
;
ck
::
index_t
BatchCount
=
4
;
ck
::
index_t
StrideA
=
-
1
;
ck
::
index_t
StrideB0
=
-
1
;
ck
::
index_t
StrideB1
=
-
1
;
ck
::
index_t
StrideC
=
-
1
;
ck
::
index_t
BatchStrideA
=
-
1
;
ck
::
index_t
BatchStrideB0
=
-
1
;
ck
::
index_t
BatchStrideB1
=
-
1
;
ck
::
index_t
BatchStrideC
=
-
1
;
float
alpha
=
1
;
if
(
argc
==
1
)
if
(
argc
==
1
)
{
{
// use default case
// use default case
...
@@ -169,74 +158,58 @@ int main(int argc, char* argv[])
...
@@ -169,74 +158,58 @@ int main(int argc, char* argv[])
init_method
=
std
::
stoi
(
argv
[
2
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
}
else
if
(
argc
==
9
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
BatchCount
=
std
::
stoi
(
argv
[
8
]);
}
else
if
(
argc
==
18
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
BatchCount
=
std
::
stoi
(
argv
[
8
]);
StrideA
=
std
::
stoi
(
argv
[
9
]);
StrideB0
=
std
::
stoi
(
argv
[
10
]);
StrideB1
=
std
::
stoi
(
argv
[
11
]);
StrideC
=
std
::
stoi
(
argv
[
12
]);
BatchStrideA
=
std
::
stoi
(
argv
[
13
]);
BatchStrideB0
=
std
::
stoi
(
argv
[
14
]);
BatchStrideB1
=
std
::
stoi
(
argv
[
15
]);
BatchStrideC
=
std
::
stoi
(
argv
[
16
]);
alpha
=
std
::
stof
(
argv
[
17
]);
}
else
else
{
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 16: M, N, K, O, Batch, StrideA, StrideB0, StrideB1, StrideC, BatchStrideA, "
"BatchStrideB0, BatchStrideB1, BatchStrideC
\n
"
);
printf
(
"arg17: scale (alpha)
\n
"
);
exit
(
0
);
exit
(
0
);
}
}
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
float
alpha
=
1
;
// scaling after 1st gemm
const
int
DefaultStrideB0
=
ck
::
is_same_v
<
B0Layout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideB1
=
ck
::
is_same_v
<
B1Layout
,
Row
>
?
O
:
N
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
O
:
M
;
StrideA
=
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
;
std
::
size_t
group_count
=
13
;
StrideB0
=
(
StrideB0
<
0
)
?
DefaultStrideB0
:
StrideB0
;
StrideB1
=
(
StrideB1
<
0
)
?
DefaultStrideB1
:
StrideB1
;
StrideC
=
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
;
const
int
DefaultBatchStrideA
=
(
ck
::
is_same_v
<
ALayout
,
Col
>
?
K
:
M
)
*
StrideA
;
// Problem descs
const
int
DefaultBatchStrideB0
=
(
ck
::
is_same_v
<
B0Layout
,
Col
>
?
N
:
K
)
*
StrideB0
;
std
::
vector
<
DeviceGemmInstance
::
ProblemDesc
>
problem_descs
;
const
int
DefaultBatchStrideB1
=
(
ck
::
is_same_v
<
B1Layout
,
Col
>
?
O
:
N
)
*
StrideB1
;
std
::
vector
<
const
void
*>
p_a
;
const
int
DefaultBatchStrideC
=
(
ck
::
is_same_v
<
CLayout
,
Col
>
?
O
:
M
)
*
StrideC
;
std
::
vector
<
const
void
*>
p_b0
;
std
::
vector
<
const
void
*>
p_b1
;
std
::
vector
<
void
*>
p_c
;
BatchStrideA
=
BatchStrideA
<
0
?
DefaultBatchStrideA
:
BatchStrideA
;
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
BatchStrideB0
=
BatchStrideB0
<
0
?
DefaultBatchStrideB0
:
BatchStrideB0
;
{
BatchStrideB1
=
BatchStrideB1
<
0
?
DefaultBatchStrideB1
:
BatchStrideB1
;
int
M
=
128
*
(
rand
()
%
8
+
1
);
BatchStrideC
=
BatchStrideC
<
0
?
DefaultBatchStrideC
:
BatchStrideC
;
int
N
=
128
*
(
rand
()
%
8
+
1
);
int
K
=
40
;
int
O
=
40
*
(
rand
()
%
2
+
1
);
int
Batch
=
rand
()
%
8
+
1
;
const
int
StrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
StrideB0
=
ck
::
is_same_v
<
B0Layout
,
Row
>
?
N
:
K
;
const
int
StrideB1
=
ck
::
is_same_v
<
B1Layout
,
Row
>
?
O
:
N
;
const
int
BatchStrideA
=
(
ck
::
is_same_v
<
ALayout
,
Col
>
?
K
:
M
)
*
StrideA
;
const
int
BatchStrideB0
=
(
ck
::
is_same_v
<
B0Layout
,
Col
>
?
N
:
K
)
*
StrideB0
;
const
int
BatchStrideB1
=
(
ck
::
is_same_v
<
B1Layout
,
Col
>
?
O
:
N
)
*
StrideB1
;
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
Batch
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
{
O
,
Batch
*
O
,
1
};
problem_descs
.
push_back
({
M
,
N
,
K
,
O
,
Batch
,
StrideA
,
StrideB0
,
StrideB1
,
BatchStrideA
,
BatchStrideB0
,
BatchStrideB1
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
});
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
row
,
...
@@ -256,56 +229,108 @@ int main(int argc, char* argv[])
...
@@ -256,56 +229,108 @@ int main(int argc, char* argv[])
}
}
};
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
Tensor
<
ADataType
>
a_g_m_k
(
std
::
vector
<
Tensor
<
B0DataType
>>
b0_tensors
;
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
std
::
vector
<
Tensor
<
B1DataType
>>
b1_tensors
;
Tensor
<
B0DataType
>
b0_g_k_n
(
std
::
vector
<
Tensor
<
CDataType
>>
c_tensors
;
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB0
,
BatchStrideB0
,
B0Layout
{}));
Tensor
<
B1DataType
>
b1_g_n_o
(
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
f_host_tensor_descriptor
(
BatchCount
,
N
,
O
,
StrideB1
,
BatchStrideB1
,
B1Layout
{}));
Tensor
<
CDataType
>
c_g_m_o_host_result
(
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
;
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
std
::
vector
<
DeviceMemPtr
>
b0_tensors_device
;
Tensor
<
CDataType
>
c_g_m_o_device_result
(
std
::
vector
<
DeviceMemPtr
>
b1_tensors_device
;
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
std
::
vector
<
DeviceMemPtr
>
c_tensors_device
;
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
size_t
flop
=
0
,
num_byte
=
0
;
std
::
cout
<<
"b0_g_k_n: "
<<
b0_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_g_n_o: "
<<
b1_g_n_o
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"group count "
<<
group_count
<<
". printing first 4 groups
\n
"
;
std
::
cout
<<
"c_g_m_o: "
<<
c_g_m_o_host_result
.
mDesc
<<
std
::
endl
;
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
switch
(
init_method
)
{
{
case
0
:
break
;
const
auto
&
M
=
problem_descs
[
i
].
M
;
case
1
:
const
auto
&
N
=
problem_descs
[
i
].
N
;
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
const
auto
&
K
=
problem_descs
[
i
].
K
;
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
const
auto
&
O
=
problem_descs
[
i
].
O
;
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
5
,
5
});
const
auto
&
Batch
=
problem_descs
[
i
].
Batch
;
break
;
const
auto
&
StrideA
=
problem_descs
[
i
].
StrideA
;
case
2
:
const
auto
&
StrideB0
=
problem_descs
[
i
].
StrideB0
;
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
const
auto
&
StrideB1
=
problem_descs
[
i
].
StrideB1
;
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
const
auto
&
BatchStrideA
=
problem_descs
[
i
].
BatchStrideA
;
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
const
auto
&
BatchStrideB0
=
problem_descs
[
i
].
BatchStrideB0
;
break
;
const
auto
&
BatchStrideB1
=
problem_descs
[
i
].
BatchStrideB1
;
case
3
:
const
auto
&
c_gs_ms_os_lengths
=
problem_descs
[
i
].
c_gs_ms_os_lengths
;
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
const
auto
&
c_gs_ms_os_strides
=
problem_descs
[
i
].
c_gs_ms_os_strides
;
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
// C_m_o = A_m_k * B0_k_n * B1_n_o
break
;
Tensor
<
ADataType
>
a_g_m_k
(
default:
f_host_tensor_descriptor
(
Batch
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
Tensor
<
B0DataType
>
b0_g_k_n
(
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
f_host_tensor_descriptor
(
Batch
,
K
,
N
,
StrideB0
,
BatchStrideB0
,
B0Layout
{}));
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
Tensor
<
B1DataType
>
b1_g_n_o
(
}
f_host_tensor_descriptor
(
Batch
,
N
,
O
,
StrideB1
,
BatchStrideB1
,
B1Layout
{}));
Tensor
<
CDataType
>
c_gs_ms_os_device_result
(
std
::
vector
<
std
::
size_t
>
(
c_gs_ms_os_lengths
.
begin
(),
c_gs_ms_os_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
c_gs_ms_os_strides
.
begin
(),
c_gs_ms_os_strides
.
end
()));
flop
+=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
Batch
;
num_byte
+=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
)
*
Batch
;
if
(
i
<
4
)
{
std
::
cout
<<
"a_g_m_k["
<<
i
<<
"]: "
<<
a_g_m_k
.
mDesc
<<
", "
<<
"b0_g_k_n["
<<
i
<<
"]: "
<<
b0_g_k_n
.
mDesc
<<
", "
<<
"b1_g_n_o["
<<
i
<<
"]: "
<<
b1_g_n_o
.
mDesc
<<
", "
<<
"c_gs_ms_os["
<<
i
<<
"]: "
<<
c_gs_ms_os_device_result
.
mDesc
<<
std
::
endl
;
}
DeviceMem
a_g_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
switch
(
init_method
)
DeviceMem
b0_g_k_n_device_buf
(
sizeof
(
B0DataType
)
*
b0_g_k_n
.
mDesc
.
GetElementSpaceSize
());
{
DeviceMem
b1_g_n_o_device_buf
(
sizeof
(
B1DataType
)
*
b1_g_n_o
.
mDesc
.
GetElementSpaceSize
());
case
0
:
break
;
DeviceMem
c_g_m_o_device_buf
(
sizeof
(
CDataType
)
*
case
1
:
c_g_m_o_device_result
.
mDesc
.
GetElementSpaceSize
());
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
case
2
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
a_g_m_k_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
a_tensors
.
push_back
(
a_g_m_k
);
b0_g_k_n_device_buf
.
ToDevice
(
b0_g_k_n
.
mData
.
data
());
b0_tensors
.
push_back
(
b0_g_k_n
);
b1_g_n_o_device_buf
.
ToDevice
(
b1_g_n_o
.
mData
.
data
());
b1_tensors
.
push_back
(
b1_g_n_o
);
c_tensors
.
push_back
(
c_gs_ms_os_device_result
);
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
()));
b0_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
B0DataType
)
*
b0_g_k_n
.
mDesc
.
GetElementSpaceSize
()));
b1_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
B1DataType
)
*
b1_g_n_o
.
mDesc
.
GetElementSpaceSize
()));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
CDataType
)
*
c_gs_ms_os_device_result
.
mDesc
.
GetElementSpaceSize
()));
a_tensors_device
[
i
]
->
ToDevice
(
a_g_m_k
.
mData
.
data
());
b0_tensors_device
[
i
]
->
ToDevice
(
b0_g_k_n
.
mData
.
data
());
b1_tensors_device
[
i
]
->
ToDevice
(
b1_g_n_o
.
mData
.
data
());
p_a
.
push_back
(
a_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_b0
.
push_back
(
b0_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_b1
.
push_back
(
b1_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_c
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
}
auto
a_element_op
=
AElementOp
{};
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
...
@@ -314,31 +339,23 @@ int main(int argc, char* argv[])
...
@@ -314,31 +339,23 @@ int main(int argc, char* argv[])
auto
c_element_op
=
CElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
auto
argument
=
gemm
.
MakeArgument
(
p_a
,
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_g_m_k_device_buf
.
GetDeviceBuffer
()),
p_b0
,
static_cast
<
B0DataType
*>
(
b0_g_k_n_device_buf
.
GetDeviceBuffer
()),
p_b1
,
static_cast
<
B1DataType
*>
(
b1_g_n_o_device_buf
.
GetDeviceBuffer
()),
p_c
,
static_cast
<
CDataType
*>
(
c_g_m_o_device_buf
.
GetDeviceBuffer
()),
problem_descs
,
M
,
a_element_op
,
N
,
b0_element_op
,
K
,
acc0_element_op
,
O
,
b1_element_op
,
BatchCount
,
c_element_op
);
StrideA
,
StrideB0
,
// specify workspace for problem_desc
StrideB1
,
DeviceMem
problem_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
StrideC
,
BatchStrideA
,
gemm
.
SetWorkSpacePointer
(
&
argument
,
problem_desc_workspace
.
GetDeviceBuffer
());
BatchStrideB0
,
BatchStrideB1
,
BatchStrideC
,
a_element_op
,
b0_element_op
,
acc0_element_op
,
b1_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
{
...
@@ -349,49 +366,79 @@ int main(int argc, char* argv[])
...
@@ -349,49 +366,79 @@ int main(int argc, char* argv[])
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
BatchCount
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_bt
yp
e
/
1.E6
/
ave_time
;
float
gb_per_sec
=
num_b
y
te
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
c_g_m_o_device_buf
.
FromDevice
(
c_g_m_o_device_result
.
mData
.
data
());
bool
pass
=
true
;
if
(
do_verification
)
if
(
do_verification
)
{
{
// Output of Gemm0 is input A of Gemm1
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
Tensor
<
AccDataType
>
acc0_g_m_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
{
const
auto
&
M
=
problem_descs
[
i
].
M
;
const
auto
&
N
=
problem_descs
[
i
].
N
;
const
auto
&
O
=
problem_descs
[
i
].
O
;
const
auto
&
Batch
=
problem_descs
[
i
].
Batch
;
const
auto
&
c_gs_ms_os_lengths
=
problem_descs
[
i
].
c_gs_ms_os_lengths
;
const
auto
&
c_gs_ms_os_strides
=
problem_descs
[
i
].
c_gs_ms_os_strides
;
const
auto
&
a_g_m_k
=
a_tensors
[
i
];
const
auto
&
b0_g_k_n
=
b0_tensors
[
i
];
const
auto
&
b1_g_n_o
=
b1_tensors
[
i
];
auto
&
c_gs_ms_os_device_result
=
c_tensors
[
i
];
auto
&
c_gs_ms_os_device_buf
=
*
c_tensors_device
[
i
];
Tensor
<
CDataType
>
c_gs_ms_os_host_result
(
std
::
vector
<
std
::
size_t
>
(
c_gs_ms_os_lengths
.
begin
(),
c_gs_ms_os_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
c_gs_ms_os_strides
.
begin
(),
c_gs_ms_os_strides
.
end
()));
Tensor
<
ADataType
>
a1
_g_m
_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}
));
c
_g
s
_m
s_os_device_buf
.
FromDevice
(
c_gs_ms_os_device_result
.
mData
.
data
(
));
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
// Output of Gemm0 is input A of Gemm1
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
Tensor
<
AccDataType
>
acc0_m_n
(
f_host_tensor_descriptor
(
Batch
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
acc0_g_m_n
,
a_element_op
,
b0_element_op
,
acc0_element_op
);
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
Tensor
<
ADataType
>
a1_g_m_n
(
f_host_tensor_descriptor
(
Batch
,
M
,
N
,
N
,
M
*
N
,
Row
{})
);
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
Tensor
<
CDataType
>
c_g_m_o_host_result
(
std
::
vector
<
int
>
{
Batch
,
M
,
O
},
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
std
::
vector
<
int
>
{
M
*
O
,
O
,
1
});
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
acc0_g_m_n
,
a1_g_m_n
,
1
,
0
,
{
2
});
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
acc0_m_n
,
a_element_op
,
b0_element_op
,
acc0_element_op
);
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
acc0_m_n
,
a1_g_m_n
,
1
,
0
,
{
2
});
return
ck
::
utils
::
check_err
(
c_g_m_o_device_result
.
mData
,
c_g_m_o_host_result
.
mData
)
?
0
:
1
;
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
// Note: in this example, we merely permute the dimensions by changing underlying
// strides so we simply access data as-is
c_gs_ms_os_host_result
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
c_g_m_o_host_result
(
idx
);
});
bool
pass_
=
ck
::
utils
::
check_err
(
c_gs_ms_os_device_result
.
mData
,
c_gs_ms_os_host_result
.
mData
);
pass
&=
pass_
;
}
}
}
return
0
;
return
pass
?
0
:
1
;
}
}
example/38_grouped_conv_bwd_data_bias_relu/CMakeLists.txt
0 → 100644
View file @
31d2d52a
add_example_executable
(
example_grouped_conv_bwd_data_bias_relu_fp16 grouped_conv_bwd_data_bias_relu_fp16.cpp
)
example/38_grouped_conv_bwd_data_bias_relu/grouped_conv_bwd_data_bias_relu_common.hpp
0 → 100644
View file @
31d2d52a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp"
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
template
<
ck
::
index_t
NDimSpatial
,
typename
OutDataType
,
typename
WeiDataType
,
typename
BiasDataType
,
typename
InDataType
,
typename
OutElementOp
,
typename
WeiElementOp
,
typename
InElementOp
,
typename
DeviceInstance
>
int
run_conv_bwd_data_bias_relu
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
bias_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
OutElementOp
&
out_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
InElementOp
&
in_element_op
)
{
Tensor
<
OutDataType
>
out
(
out_g_n_k_wos_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
BiasDataType
>
bias
(
bias_g_n_c_wis_desc
);
Tensor
<
InDataType
>
in_host
(
in_g_n_c_wis_desc
);
Tensor
<
InDataType
>
in_device
(
in_g_n_c_wis_desc
);
std
::
cout
<<
"out: "
<<
out
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias: "
<<
bias
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"in: "
<<
in_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
out
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
BiasDataType
>
{
-
5
,
5
});
break
;
default:
out
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
bias
.
GenerateTensorValue
(
GeneratorTensor_3
<
BiasDataType
>
{
0.0
,
1.0
});
}
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
BiasDataType
)
*
bias
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_device
.
mDesc
.
GetElementSpaceSize
());
out_device_buf
.
ToDevice
(
out
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias
.
mData
.
data
());
// reset input to zero
in_device_buf
.
SetZero
();
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d0_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d0_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
auto
&
x
,
auto
&
y
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
(),
y
.
begin
());
};
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
a_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
a_g_n_k_wos_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
bias_g_n_c_wis_desc
.
GetLengths
(),
d0_g_n_c_wis_lengths
);
copy
(
bias_g_n_c_wis_desc
.
GetStrides
(),
d0_g_n_c_wis_strides
);
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
e_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
e_g_n_c_wis_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// do conv
auto
conv
=
DeviceInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
out_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
bias_device_buf
.
GetDeviceBuffer
()},
in_device_buf
.
GetDeviceBuffer
(),
a_g_n_k_wos_lengths
,
a_g_n_k_wos_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
1
>
{
d0_g_n_c_wis_lengths
},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
1
>
{
d0_g_n_c_wis_strides
},
e_g_n_c_wis_lengths
,
e_g_n_c_wis_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
out_element_op
,
wei_element_op
,
in_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
printf
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem
\n
"
);
return
1
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// c doesn't physically exist, any layout is fine
Tensor
<
float
>
c_host
(
in_g_n_c_wis_desc
);
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdData
<
NDimSpatial
,
float
,
WeiDataType
,
OutDataType
,
PassThrough
,
WeiElementOp
,
OutElementOp
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
c_host
,
wei
,
out
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
PassThrough
{},
wei_element_op
,
out_element_op
);
ref_invoker
.
Run
(
ref_argument
);
// TODO: implement elementwise operation for host
in_host
.
ForEach
(
[
&
](
auto
&
,
auto
idx
)
{
in_element_op
(
in_host
(
idx
),
c_host
(
idx
),
bias
(
idx
));
});
in_device_buf
.
FromDevice
(
in_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
in_device
.
mData
,
in_host
.
mData
)
?
0
:
1
;
}
return
0
;
}
example/38_grouped_conv_bwd_data_bias_relu/grouped_conv_bwd_data_bias_relu_fp16.cpp
0 → 100644
View file @
31d2d52a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "grouped_conv_bwd_data_bias_relu_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
OutDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
half_t
;
using
BiasDataType
=
ck
::
half_t
;
// bias
using
InDataType
=
ck
::
half_t
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
BiasLayout
=
ck
::
tensor_layout
::
convolution
::
G_C
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CBiasInElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
static
constexpr
auto
ConvBwdDataDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
Default
;
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvNdBwdDataInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
OutLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
>
,
InLayout
,
OutDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasDataType
>
,
InDataType
,
OutElementOp
,
WeiElementOp
,
CBiasInElementOp
,
ConvBwdDataDefault
,
true
,
// DoPadGemmM
true
,
// DoPadGemmN
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
ck
::
utils
::
conv
::
ConvParam
conv_param
{
2
,
2
,
128
,
256
,
256
,
{
3
,
3
},
{
14
,
14
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
}
const
auto
in_element_op
=
CBiasInElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
if
(
conv_param
.
num_dim_spatial_
==
2
)
{
// output image: GNHWK
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
// weight: GKYXC
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
// input image bias: G_C
const
auto
bias_g_n_c_wis_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
],
conv_param
.
input_spatial_lengths_
[
1
]},
{
conv_param
.
C_
,
// g
0
,
// n
1
,
// c
0
,
// hi
0
// wi
});
// input image: GNHWC
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
using
DeviceInstance
=
DeviceConvNdBwdDataInstance
<
2
>
;
run_conv_bwd_data_bias_relu
<
2
,
OutDataType
,
WeiDataType
,
BiasDataType
,
InDataType
,
OutElementOp
,
WeiElementOp
,
CBiasInElementOp
,
DeviceInstance
>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
out_g_n_k_wos_desc
,
wei_g_k_c_xs_desc
,
bias_g_n_c_wis_desc
,
in_g_n_c_wis_desc
,
wei_element_op
,
out_element_op
,
in_element_op
);
}
return
0
;
}
example/CMakeLists.txt
View file @
31d2d52a
...
@@ -21,36 +21,10 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME)
...
@@ -21,36 +21,10 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME)
add_dependencies
(
examples
${
EXAMPLE_NAME
}
)
add_dependencies
(
examples
${
EXAMPLE_NAME
}
)
endfunction
(
add_example_executable_no_testing EXAMPLE_NAME
)
endfunction
(
add_example_executable_no_testing EXAMPLE_NAME
)
add_subdirectory
(
01_gemm
)
# add all example subdir
add_subdirectory
(
02_gemm_bilinear
)
file
(
GLOB dir_list LIST_DIRECTORIES true *
)
add_subdirectory
(
03_gemm_bias_relu
)
FOREACH
(
subdir
${
dir_list
}
)
add_subdirectory
(
04_gemm_add_add_fastgelu
)
IF
(
IS_DIRECTORY
"
${
subdir
}
"
)
add_subdirectory
(
09_convnd_fwd
)
add_subdirectory
(
${
subdir
}
)
add_subdirectory
(
10_convnd_fwd_multiple_d_multiple_reduce
)
ENDIF
()
add_subdirectory
(
12_reduce
)
ENDFOREACH
()
add_subdirectory
(
13_pool2d_fwd
)
add_subdirectory
(
14_gemm_xdl_requant_relu_requant
)
add_subdirectory
(
15_grouped_gemm
)
add_subdirectory
(
16_gemm_multi_d_multi_reduces
)
add_subdirectory
(
17_convnd_bwd_data
)
add_subdirectory
(
18_batched_gemm_reduce
)
add_subdirectory
(
19_binary_elementwise
)
add_subdirectory
(
20_convnd_bwd_weight
)
add_subdirectory
(
21_gemm_layernorm
)
add_subdirectory
(
22_cgemm
)
add_subdirectory
(
23_softmax
)
add_subdirectory
(
24_batched_gemm
)
add_subdirectory
(
25_gemm_bias_e_permute
)
add_subdirectory
(
26_contraction
)
add_subdirectory
(
27_layernorm
)
add_subdirectory
(
28_grouped_gemm_bias_e_permute
)
add_subdirectory
(
29_batched_gemm_bias_e_permute
)
add_subdirectory
(
30_grouped_convnd_fwd_bias_relu_add
)
add_subdirectory
(
31_batched_gemm_gemm
)
add_subdirectory
(
32_batched_gemm_scale_softmax_gemm
)
add_subdirectory
(
33_multiple_reduce
)
add_subdirectory
(
34_batchnorm
)
add_subdirectory
(
35_splitK_gemm
)
add_subdirectory
(
36_sparse_embedding
)
add_subdirectory
(
37_batched_gemm_add_add_relu_gemm_add
)
add_subdirectory
(
41_grouped_conv_conv_fwd
)
include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
View file @
31d2d52a
...
@@ -649,6 +649,9 @@ struct BlockwiseGemmXdlops_v2
...
@@ -649,6 +649,9 @@ struct BlockwiseGemmXdlops_v2
static
constexpr
index_t
MWaves
=
MPerBlock
/
(
MRepeat
*
MPerXDL
);
static
constexpr
index_t
MWaves
=
MPerBlock
/
(
MRepeat
*
MPerXDL
);
static
constexpr
index_t
NWaves
=
NPerBlock
/
(
NRepeat
*
NPerXDL
);
static
constexpr
index_t
NWaves
=
NPerBlock
/
(
NRepeat
*
NPerXDL
);
static_assert
(
KPerThread
%
KPack
==
0
,
"Wrong KPack setting; try increasing KPerThread or decreasing KPack"
);
StaticBufferTupleOfVector
<
AddressSpaceEnum
::
Vgpr
,
StaticBufferTupleOfVector
<
AddressSpaceEnum
::
Vgpr
,
FloatAcc
,
FloatAcc
,
MRepeat
*
NRepeat
,
MRepeat
*
NRepeat
,
...
...
include/ck/tensor_operation/gpu/device/device_batched_contraction_multiple_d_xdl_cshuffle.hpp
View file @
31d2d52a
...
@@ -549,10 +549,6 @@ struct DeviceBatchedContractionMultipleD_Xdl_CShuffle
...
@@ -549,10 +549,6 @@ struct DeviceBatchedContractionMultipleD_Xdl_CShuffle
BElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_M_K
,
BGridDesc_N_K
,
DsGridDesc_M_N
,
EGridDesc_M_N
,
NumGemmKPrefetchStage
,
NumGemmKPrefetchStage
,
BlockSize
,
BlockSize
,
MPerBlock
,
MPerBlock
,
...
@@ -586,12 +582,19 @@ struct DeviceBatchedContractionMultipleD_Xdl_CShuffle
...
@@ -586,12 +582,19 @@ struct DeviceBatchedContractionMultipleD_Xdl_CShuffle
CDEBlockTransferScalarPerVector_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
LoopSched
>
;
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
// desc for blockwise copy
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}))
>
;
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}))
>
;
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}))
>
;
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}))
>
;
using
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
DsGridDesc_M_N
{}))
>
;
using
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
EGridDesc_M_N
{}))
>
;
using
Block2ETileMap
=
typename
GridwiseGemm
::
DefaultBlock2ETileMap
;
// block-to-e-tile map
using
Block2ETileMap
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
EGridDesc_M_N
{}))
>
;
// Argument
// Argument
struct
Argument
:
public
BaseArgument
struct
Argument
:
public
BaseArgument
...
@@ -719,10 +722,9 @@ struct DeviceBatchedContractionMultipleD_Xdl_CShuffle
...
@@ -719,10 +722,9 @@ struct DeviceBatchedContractionMultipleD_Xdl_CShuffle
// tensor descriptors for block/thread-wise copy
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
typename
GridwiseGemm
::
DsGridDesc
riptor
_MBlock_MPerBlock_NBlock_NPerBlock
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
// block-to-e-tile map
// block-to-e-tile map
Block2ETileMap
block_2_etile_map_
;
Block2ETileMap
block_2_etile_map_
;
...
@@ -786,10 +788,10 @@ struct DeviceBatchedContractionMultipleD_Xdl_CShuffle
...
@@ -786,10 +788,10 @@ struct DeviceBatchedContractionMultipleD_Xdl_CShuffle
CDEElementwiseOperation
,
CDEElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
DsGridDesc
riptor
_MBlock_MPerBlock_NBlock_NPerBlock
,
DeviceOp
::
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
EGridDesc
riptor
_MBlock_MPerBlock_NBlock_NPerBlock
,
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
,
ComputePtrOffsetOfStridedBatch
,
typename
GridwiseGemm
::
Default
Block2ETileMap
,
DeviceOp
::
Block2ETileMap
,
has_main_loop
>
;
has_main_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
return
launch_and_time_kernel
(
stream_config
,
...
...
include/ck/tensor_operation/gpu/device/device_batched_gemm_e_permute_xdl.hpp
deleted
100644 → 0
View file @
5718bc14
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_e_permute.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
/*
* \brief Wrapper function of GridwiseGemm::Run to realize BatchedGEMM.
*
* \tparam ComputePtrOffsetOfBatch Class that computes the base pointer offsets of A, B, C matrix
* given the batch. For example, ComputePtrOffsetOfStridedBatch() computes the offsets of evenly
* strided batched, but we can easily extend to other layouts. The returned offset can be either \p
* index_t or \p long_index_t. If it returns \p long_index_t, we are not subject to the 2GB
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
* limitations.
*
* \tparam Block2ETileMap Block2ETileMap::CalculateBottomIndex() takes in id of a workgroup and
* returns the 2D index of the tile that it computes. \see
* GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3::Run().
* \note Using \p ComputePtrOffsetOfBatch gives us the flexibility that 2 workgroups can compute 2
* tiles from different matrices. Keep in mind that these 2 matrices can share the same grid
* descriptor (like in BatchedGEMM), or use their own grid descriptors (in GroupedGemm). \link
* device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk.hpp kernel_gemm_xdlops_v2r3_for_conv3d \endlink for \link
* DeviceConv3d \endlink uses the same concept, but currently does NOT encapsulate the computing of
* pointer offset into \p ComputePtrOffsetOfStridedBatch.
*
* \note \p Block2ETileMap allows customized mapping between a workgroup and the C-tile it computes.
* Together with \p ComputePtrOffsetOfBatch, we can reuse GridwiseGemm (and GridwiseGemm fusion ) to
* realize BatchedGemmCPermute and GroupedGemm (and the corresponding GEMM fusion).
*
*/
template
<
typename
GridwiseGemm
,
typename
ABDataType
,
typename
EDataType
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
ComputePtrOffsetOfBatch
,
typename
Block2ETileMap
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_batched_gemm_e_permute_xdl
(
const
ABDataType
*
__restrict__
p_a_grid
,
const
ABDataType
*
__restrict__
p_b_grid
,
EDataType
*
__restrict__
p_e_grid
,
const
index_t
batch_count
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1
,
const
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
,
const
Block2ETileMap
block_2_etile_map
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
)));
const
long_index_t
e_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetCPtrOffset
(
g_idx
)));
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
+
a_batch_offset
,
p_b_grid
+
b_batch_offset
,
ck
::
Tuple
<>
{},
p_e_grid
+
e_batch_offset
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
ck
::
Tuple
<>
{},
e_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_etile_map
);
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_e_grid
;
ignore
=
batch_count
;
ignore
=
a_grid_desc_ak0_m_ak1
;
ignore
=
b_grid_desc_bk0_n_bk1
;
ignore
=
e_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
cde_element_op
;
ignore
=
compute_ptr_offset_of_batch
;
ignore
=
block_2_etile_map
;
#endif
}
template
<
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
NumPrefetch
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_K1
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_K1
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceBatchedGemmEPermuteXdl
:
public
DeviceBatchedGemmEPermute
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceBatchedGemmEPermuteXdl
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
static
auto
MakeAGridDescriptor_M_K
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA
));
}
}();
return
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
}
static
auto
MakeBGridDescriptor_N_K
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
return
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
}
static
auto
MakeEGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
stride_M
,
index_t
stride_N
)
{
const
auto
e_grid_desc_mraw_nraw
=
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
stride_M
,
stride_N
));
return
matrix_padder
.
PadCDescriptor_M_N
(
e_grid_desc_mraw_nraw
);
}
static
auto
MakeEGridDescriptor_G0_G1_M_N
(
index_t
G0
,
index_t
G1
,
index_t
MRaw
,
index_t
NRaw
,
index_t
stride_G0
,
index_t
stride_G1
,
index_t
stride_M
,
index_t
stride_N
)
{
const
auto
e_grid_desc_g0_g1_mraw_nraw
=
[
&
]()
{
return
make_naive_tensor_descriptor
(
make_tuple
(
G0
,
G1
,
MRaw
,
NRaw
),
make_tuple
(
stride_G0
,
stride_G1
,
stride_M
,
stride_N
));
}();
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
NPad
=
N
-
NRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad M and N
return
transform_tensor_descriptor
(
e_grid_desc_g0_g1_mraw_nraw
,
make_tuple
(
make_pass_through_transform
(
G0
),
make_pass_through_transform
(
G1
),
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad M, but not N
return
transform_tensor_descriptor
(
e_grid_desc_g0_g1_mraw_nraw
,
make_tuple
(
make_pass_through_transform
(
G0
),
make_pass_through_transform
(
G1
),
make_right_pad_transform
(
MRaw
,
MPad
),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad N, but not M
return
transform_tensor_descriptor
(
e_grid_desc_g0_g1_mraw_nraw
,
make_tuple
(
make_pass_through_transform
(
G0
),
make_pass_through_transform
(
G1
),
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
}
else
{
// not pad M or N
return
e_grid_desc_g0_g1_mraw_nraw
;
}
}
using
AGridDesc_M_K
=
decltype
(
MakeAGridDescriptor_M_K
(
1
,
1
,
1
));
using
BGridDesc_N_K
=
decltype
(
MakeBGridDescriptor_N_K
(
1
,
1
,
1
));
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
(
1
,
1
,
1
,
1
));
using
EGridDesc_G0_G1_M_N
=
decltype
(
MakeEGridDescriptor_G0_G1_M_N
(
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
));
struct
ComputePtrOffsetOfStridedBatch
{
ComputePtrOffsetOfStridedBatch
(
index_t
Batchstride_A
,
index_t
Batchstride_B
,
EGridDesc_G0_G1_M_N
e_grid_desc_g0_g1_m_n
)
:
Batchstride_A_
(
Batchstride_A
),
Batchstride_B_
(
Batchstride_B
),
e_grid_desc_g0_g1_m_n_
(
e_grid_desc_g0_g1_m_n
)
{
}
__host__
__device__
constexpr
long_index_t
GetAPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
Batchstride_A_
);
}
__host__
__device__
constexpr
long_index_t
GetBPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
Batchstride_B_
);
}
__host__
__device__
constexpr
long_index_t
GetCPtrOffset
(
index_t
g_idx
)
const
{
const
index_t
G1
=
e_grid_desc_g0_g1_m_n_
.
GetLength
(
I1
);
index_t
b0
=
g_idx
/
G1
;
index_t
b1
=
g_idx
-
b0
*
G1
;
// g_idx % G1
return
e_grid_desc_g0_g1_m_n_
.
CalculateOffset
(
make_multi_index
(
b0
,
b1
,
0
,
0
));
}
private:
index_t
Batchstride_A_
;
index_t
Batchstride_B_
;
EGridDesc_G0_G1_M_N
e_grid_desc_g0_g1_m_n_
;
};
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
// DsDataType,
EDataType
,
// EDataType,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_M_K
,
BGridDesc_N_K
,
Tuple
<>
,
EGridDesc_M_N
,
NumPrefetch
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}))
>
;
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}))
>
;
using
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
decltype
(
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
EGridDesc_M_N
{}));
using
Block2ETileMap
=
typename
GridwiseGemm
::
DefaultBlock2ETileMap
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
EDataType
*
p_e_grid
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
stride_A
,
index_t
stride_B
,
index_t
batch_stride_A
,
index_t
batch_stride_B
,
BatchedGemmEPermuteDesc
batched_gemm_e_permute_desc
,
index_t
BatchCount
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
p_a_grid_
{
p_a_grid
},
p_b_grid_
{
p_b_grid
},
p_e_grid_
{
p_e_grid
},
BatchCount_
(
BatchCount
),
a_grid_desc_m_k_
{
DeviceOp
::
MakeAGridDescriptor_M_K
(
M
,
K
,
stride_A
)},
b_grid_desc_n_k_
{
DeviceOp
::
MakeBGridDescriptor_N_K
(
K
,
N
,
stride_B
)},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
(
batched_gemm_e_permute_desc
.
M_
,
batched_gemm_e_permute_desc
.
N_
,
batched_gemm_e_permute_desc
.
stride_M_
,
batched_gemm_e_permute_desc
.
stride_N_
)},
a_grid_desc_ak0_m_ak1_
{
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k_
)},
b_grid_desc_bk0_n_bk1_
{
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
b_grid_desc_n_k_
)},
e_grid_desc_mblock_mperblock_nblock_nperblock
{},
e_grid_desc_g0_g1_m_n_
{
DeviceOp
::
MakeEGridDescriptor_G0_G1_M_N
(
batched_gemm_e_permute_desc
.
G0_
,
batched_gemm_e_permute_desc
.
G1_
,
batched_gemm_e_permute_desc
.
M_
,
batched_gemm_e_permute_desc
.
N_
,
batched_gemm_e_permute_desc
.
stride_G0_
,
batched_gemm_e_permute_desc
.
stride_G1_
,
batched_gemm_e_permute_desc
.
stride_M_
,
batched_gemm_e_permute_desc
.
stride_N_
)},
compute_ptr_offset_of_batch_
{
batch_stride_A
,
batch_stride_B
,
e_grid_desc_g0_g1_m_n_
},
block_2_etile_map_
{
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
e_grid_desc_m_n_
)},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_m_k_
,
b_grid_desc_n_k_
,
ck
::
Tuple
<>
{},
e_grid_desc_m_n_
,
block_2_etile_map_
))
{
e_grid_desc_mblock_mperblock_nblock_nperblock
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n_
);
}
}
void
Print
()
const
{
std
::
cout
<<
"A[M, K]: "
<<
a_grid_desc_m_k_
<<
std
::
endl
;
std
::
cout
<<
"B[N, K]: "
<<
b_grid_desc_n_k_
<<
std
::
endl
;
std
::
cout
<<
"C[M, N]: "
<<
e_grid_desc_m_n_
<<
std
::
endl
;
}
// private:
// pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
EDataType
*
p_e_grid_
;
// batch count
index_t
BatchCount_
;
// tensor descriptors for problem definiton
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_N_K
b_grid_desc_n_k_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock
;
EGridDesc_G0_G1_M_N
e_grid_desc_g0_g1_m_n_
;
// for calculating Batch offset
ComputePtrOffsetOfStridedBatch
compute_ptr_offset_of_batch_
;
// block-to-e-tile map
Block2ETileMap
block_2_etile_map_
;
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
ck
::
Tuple
<>
{},
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseBatchedGemmCPermute_km_kn_m0m1n0n1_xdlops_v2r3 has invalid "
"setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_etile_map_
.
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
)
*
arg
.
BatchCount_
;
const
auto
K
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
)
{
const
auto
kernel
=
kernel_batched_gemm_e_permute_xdl
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
EDataType
,
remove_reference_t
<
DeviceOp
::
AGridDesc_AK0_M_AK1
>
,
remove_reference_t
<
DeviceOp
::
BGridDesc_BK0_N_BK1
>
,
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
ComputePtrOffsetOfStridedBatch
,
remove_reference_t
<
Block2ETileMap
>
,
has_main_k_block_loop_
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_e_grid_
,
arg
.
BatchCount_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
compute_ptr_offset_of_batch_
,
arg
.
block_2_etile_map_
);
};
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
ck
::
Tuple
<>
{},
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
EDataType
*
p_e
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
stride_A
,
index_t
stride_B
,
index_t
batch_stride_A
,
index_t
batch_stride_B
,
BatchedGemmEPermuteDesc
batched_gemm_e_permute_desc
,
index_t
BatchCount
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_e
,
M
,
N
,
K
,
stride_A
,
stride_B
,
batch_stride_A
,
batch_stride_B
,
batched_gemm_e_permute_desc
,
BatchCount
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_e
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
stride_A
,
index_t
stride_B
,
index_t
batch_stride_A
,
index_t
batch_stride_B
,
BatchedGemmEPermuteDesc
batched_gemm_e_permute_desc
,
index_t
BatchCount
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
static_cast
<
EDataType
*>
(
p_e
),
M
,
N
,
K
,
stride_A
,
stride_B
,
batch_stride_A
,
batch_stride_B
,
batched_gemm_e_permute_desc
,
BatchCount
,
a_element_op
,
b_element_op
,
cde_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceBatchedGemmEPermuteXdl"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp
View file @
31d2d52a
...
@@ -503,13 +503,9 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
...
@@ -503,13 +503,9 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
if
(
!
DeviceOp
::
IsSupportedArgument
(
arg
))
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
b1_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
))
{
{
throw
std
::
runtime_error
(
"wrong!
GridwiseGemm has invalid setting
"
);
throw
std
::
runtime_error
(
"wrong!
unsupported argument
"
);
}
}
const
index_t
grid_size
=
const
index_t
grid_size
=
...
...
include/ck/tensor_operation/gpu/device/device_batched_gemm_multi_d_xdl.hpp
View file @
31d2d52a
...
@@ -333,10 +333,6 @@ struct DeviceBatchedGemmMultiD_Xdl : public DeviceBatchedGemmMultiD<ALayout,
...
@@ -333,10 +333,6 @@ struct DeviceBatchedGemmMultiD_Xdl : public DeviceBatchedGemmMultiD<ALayout,
BElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_M_K
,
BGridDesc_N_K
,
DsGridDesc_M_N
,
EGridDesc_M_N
,
NumGemmKPrefetchStage
,
NumGemmKPrefetchStage
,
BlockSize
,
BlockSize
,
MPerBlock
,
MPerBlock
,
...
@@ -370,12 +366,19 @@ struct DeviceBatchedGemmMultiD_Xdl : public DeviceBatchedGemmMultiD<ALayout,
...
@@ -370,12 +366,19 @@ struct DeviceBatchedGemmMultiD_Xdl : public DeviceBatchedGemmMultiD<ALayout,
CDEBlockTransferScalarPerVector_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
LoopSched
>
;
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
// desc for blockwise copy
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}))
>
;
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}))
>
;
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}))
>
;
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}))
>
;
using
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
DsGridDesc_M_N
{}))
>
;
using
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
EGridDesc_M_N
{}))
>
;
using
Block2ETileMap
=
typename
GridwiseGemm
::
DefaultBlock2ETileMap
;
// block-to-e-tile map
using
Block2ETileMap
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
EGridDesc_M_N
{}))
>
;
// Argument
// Argument
struct
Argument
:
public
BaseArgument
struct
Argument
:
public
BaseArgument
...
@@ -478,10 +481,9 @@ struct DeviceBatchedGemmMultiD_Xdl : public DeviceBatchedGemmMultiD<ALayout,
...
@@ -478,10 +481,9 @@ struct DeviceBatchedGemmMultiD_Xdl : public DeviceBatchedGemmMultiD<ALayout,
// tensor descriptors for block/thread-wise copy
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
typename
GridwiseGemm
::
DsGridDesc
riptor
_MBlock_MPerBlock_NBlock_NPerBlock
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
// for calculating batch offset
// for calculating batch offset
ComputePtrOffsetOfStridedBatch
compute_ptr_offset_of_batch_
;
ComputePtrOffsetOfStridedBatch
compute_ptr_offset_of_batch_
;
...
@@ -520,21 +522,21 @@ struct DeviceBatchedGemmMultiD_Xdl : public DeviceBatchedGemmMultiD<ALayout,
...
@@ -520,21 +522,21 @@ struct DeviceBatchedGemmMultiD_Xdl : public DeviceBatchedGemmMultiD<ALayout,
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
)
{
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
const
auto
kernel
=
kernel_batched_gemm_xdl
<
const
auto
kernel
=
GridwiseGemm
,
kernel_batched_gemm_xdl
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
ADataType
,
// TODO: distiguish A/B datatype
typename
GridwiseGemm
::
DsGridPointer
,
typename
GridwiseGemm
::
DsGridPointer
,
EDataType
,
EDataType
,
AElementwiseOperation
,
AElementwiseOperation
,
BElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
CDEElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
DsGridDesc
riptor
_MBlock_MPerBlock_NBlock_NPerBlock
,
DeviceOp
::
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
EGridDesc
riptor
_MBlock_MPerBlock_NBlock_NPerBlock
,
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
,
ComputePtrOffsetOfStridedBatch
,
Block2ETileMap
,
Block2ETileMap
,
has_main_loop
>
;
has_main_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
return
launch_and_time_kernel
(
stream_config
,
kernel
,
kernel
,
...
...
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment