"driver/src/conv_driver.cpp" did not exist on "31ded4ac4bc524acdbf897ffff094d7e7cbed991"
Unverified Commit 7c788e10 authored by Anthony Chang's avatar Anthony Chang Committed by GitHub
Browse files

Add batched attention special kernel instances (#424)

* sanity check

* add attribution

* add irrgular k tile size for batched attention

* format
parent c6b8b472
...@@ -649,6 +649,9 @@ struct BlockwiseGemmXdlops_v2 ...@@ -649,6 +649,9 @@ struct BlockwiseGemmXdlops_v2
static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerXDL); static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerXDL);
static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerXDL); static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerXDL);
static_assert(KPerThread % KPack == 0,
"Wrong KPack setting; try increasing KPerThread or decreasing KPack");
StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr, StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr,
FloatAcc, FloatAcc,
MRepeat * NRepeat, MRepeat * NRepeat,
......
...@@ -881,9 +881,10 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle ...@@ -881,9 +881,10 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
FloatGemmAcc c_new = FloatGemmAcc c_new =
(running_sum[iM] * math::exp(running_max[iM] - running_max_new[iM]) * c + (running_sum[iM] * math::exp(running_max[iM] - running_max_new[iM]) * c +
math::exp(max[iM] - running_max_new[iM]) * acc1) / math::exp(max[iM] - running_max_new[iM]) * acc1) /
running_sum_new[iM]; // O_new running_sum_new[iM]; // Formula by Dao et al.,
// https://arxiv.org/pdf/2205.14135v2.pdf section 3.1
c_thread_buf(I) = c_new; c_thread_buf(I) = c_new; // O_new
}); });
}); });
......
...@@ -55,6 +55,22 @@ using device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_ ...@@ -55,6 +55,22 @@ using device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_
// clang-format on // clang-format on
>; >;
using device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_irregular_k_instances =
std::tuple<
// clang-format off
//#######################################| ALayout| B0Layout| B1Layout| CLayout| AData| B0Data| B1Data| CData| AccData| CShuffle| A| B0| Acc0| B1| C| GEMM| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#######################################| | | | | Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#######################################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#######################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmPadded, 1, 256, 256, 128, 40, 64, 32, 4, 4, 2, 32, 32, 2, 4, 2, S<2,128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, false, S<2,128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, false, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmPadded, 1, 256, 256, 128, 40, 128, 32, 4, 4, 2, 32, 32, 2, 4, 4, S<2,128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, false, S<2,128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, false, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmPadded, 1, 256, 128, 256, 40, 64, 32, 4, 4, 2, 32, 32, 1, 8, 2, S<2,128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, false, S<2,128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, false, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmPadded, 1, 256, 128, 256, 40, 128, 32, 4, 4, 2, 32, 32, 1, 8, 4, S<2,128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, false, S<2,128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, false, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmPadded, 1, 256, 128, 128, 40, 64, 32, 4, 4, 2, 32, 32, 1, 4, 2, S<2,128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, false, S<2,128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, false, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmPadded, 1, 256, 128, 128, 40, 128, 32, 4, 4, 2, 32, 32, 1, 4, 4, S<2,128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, false, S<2,128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, false, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>
// clang-format on
>;
void add_device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance( void add_device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance(
std::vector<std::unique_ptr<DeviceBatchedGemmSoftmaxGemm<Row, std::vector<std::unique_ptr<DeviceBatchedGemmSoftmaxGemm<Row,
Col, Col,
...@@ -73,6 +89,9 @@ void add_device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_g ...@@ -73,6 +89,9 @@ void add_device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_g
add_device_operation_instances( add_device_operation_instances(
instances, instances,
device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances{}); device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances{});
add_device_operation_instances(
instances,
device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_irregular_k_instances{});
} }
} // namespace instance } // namespace instance
......
...@@ -105,6 +105,19 @@ TYPED_TEST(TestBatchedGemmSoftmaxGemmFP16, DISABLED_Bench_FP16) ...@@ -105,6 +105,19 @@ TYPED_TEST(TestBatchedGemmSoftmaxGemmFP16, DISABLED_Bench_FP16)
this->Run(); this->Run();
} }
TYPED_TEST(TestBatchedGemmSoftmaxGemmFP16, DISABLED_Bench_FP16_IrregularK)
{
this->lengths_ = std::vector<std::vector<int>>{{256, 256, 160, 160, 16},
{256, 64, 160, 64, 16},
{1024, 1024, 80, 80, 16},
{1024, 64, 80, 64, 16},
{4096, 4096, 40, 40, 16},
{4096, 64, 40, 64, 16}};
this->bench_ = true;
this->verify_ = false;
this->Run();
}
using ck::tensor_operation::device::GemmSpecialization; using ck::tensor_operation::device::GemmSpecialization;
// TODO: enable KPadding tests when it is implemented // TODO: enable KPadding tests when it is implemented
......
...@@ -29,14 +29,19 @@ struct TestBatchedGemmSoftmaxGemm : public ::testing::Test ...@@ -29,14 +29,19 @@ struct TestBatchedGemmSoftmaxGemm : public ::testing::Test
using B1Layout = std::tuple_element_t<6, Tuple>; using B1Layout = std::tuple_element_t<6, Tuple>;
using CLayout = std::tuple_element_t<7, Tuple>; using CLayout = std::tuple_element_t<7, Tuple>;
std::vector<std::vector<int>> lengths_ = { std::vector<std::vector<int>> lengths_ = {{256, 256, 64, 64, 4},
{256, 256, 64, 64, 4}, {256, 256, 128, 128, 4},
{256, 256, 128, 128, 4}, {512, 512, 64, 64, 2},
{512, 512, 64, 64, 2}, {512, 512, 128, 128, 2},
{512, 512, 128, 128, 2}, {1024, 1024, 64, 64, 1},
{1024, 1024, 64, 64, 1}, {1024, 1024, 128, 128, 1},
{1024, 1024, 128, 128, 1}, {256, 256, 160, 160, 4},
}; {256, 64, 160, 64, 4},
{1024, 1024, 80, 80, 2},
{1024, 64, 80, 64, 2},
{4096, 4096, 40, 40, 1},
{4096, 64, 40, 64, 1}};
bool bench_ = false; bool bench_ = false;
bool verify_ = true; bool verify_ = true;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment