Commit 2267283c authored by rocking's avatar rocking
Browse files

Add external api and client example

parent 27040268
...@@ -9,3 +9,6 @@ target_link_libraries(client_conv2d_fwd_perchannel_quantization PRIVATE composab ...@@ -9,3 +9,6 @@ target_link_libraries(client_conv2d_fwd_perchannel_quantization PRIVATE composab
add_executable(client_conv2d_fwd_perlayer_quantization conv2d_fwd_perlayer_quantization.cpp) add_executable(client_conv2d_fwd_perlayer_quantization conv2d_fwd_perlayer_quantization.cpp)
target_link_libraries(client_conv2d_fwd_perlayer_quantization PRIVATE composable_kernel::device_operations) target_link_libraries(client_conv2d_fwd_perlayer_quantization PRIVATE composable_kernel::device_operations)
add_executable(client_gemm_quantization gemm_quantization.cpp)
target_link_libraries(client_gemm_quantization PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/quantization/gemm_quantization.hpp"
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using ActivationOp = PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<ActivationOp>;
using ADataType = int8_t;
using BDataType = int8_t;
using EDataType = int8_t;
using ALayout = Row;
using BLayout = Col;
using ELayout = Row;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t K = 1024;
ck::index_t StrideA = 1024;
ck::index_t StrideB = 1024;
ck::index_t StrideE = 1024;
float requant_scale = 0.03;
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, ck::tensor_layout::gemm::RowMajor>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{}));
SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{}));
SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{}));
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleD<ALayout,
BLayout,
ck::Tuple<>,
ELayout,
ADataType,
BDataType,
ck::Tuple<>,
EDataType,
AElementOp,
BElementOp,
CDEElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{requant_scale, ActivationOp{}};
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
{},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
{},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_bytes =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id != -1)
{
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
{},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
{},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Layout(A, B, C) = [Col, Row, Row]
void add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Col, Col, Row]
void add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Col,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Row, Row, Row]
void add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Row, Col, Row]
void add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Col, Row, Row]
void add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Col, Col, Row]
void add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Col,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Row, Row, Row]
void add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Row, Col, Row]
void add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
template <typename ALayout,
typename BLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename EDataType,
typename Activation>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
Empty_Tuple,
ELayout,
ADataType,
BDataType,
Empty_Tuple,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
Activation_Mul_Clamp<Activation>>>
{
using DeviceOp = DeviceGemmMultipleD<ALayout,
BLayout,
Empty_Tuple,
ELayout,
ADataType,
BDataType,
Empty_Tuple,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
Activation_Mul_Clamp<Activation>>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, int8_t> && is_same_v<BDataType, int8_t> &&
is_same_v<EDataType, int8_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
if constexpr(is_same_v<Activation, PassThrough>)
{
add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(op_ptrs);
add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
if constexpr(is_same_v<Activation, PassThrough>)
{
add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(op_ptrs);
add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
if constexpr(is_same_v<Activation, PassThrough>)
{
add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_kn_mn_instances(op_ptrs);
add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
if constexpr(is_same_v<Activation, PassThrough>)
{
add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_nk_mn_instances(op_ptrs);
add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances(op_ptrs);
}
}
return op_ptrs;
}
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment