Commit 27040268 authored by rocking's avatar rocking
Browse files

Add gemm quantization instance

parent 82086918
......@@ -18,10 +18,15 @@ set(CONV2D_BIAS_PERCHANNEL_QUANT_SRC
conv2d_fwd/device_conv2d_xdl_bias_perchannel_quantization_int8_instance.cpp
)
set(GEMM_QUANT_SRC
gemm/device_gemm_quantization_dl_c_shuffle_i8_i8_i8_instance.cpp
gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_instance.cpp
)
add_instance_library(device_quantization_instance
${CONV2D_PERLAYER_QUANT_SRC}
${CONV2D_PERCHANNEL_QUANT_SRC}
${CONV2D_BIAS_PERLAYER_QUANT_SRC}
${CONV2D_BIAS_PERCHANNEL_QUANT_SRC}
${GEMM_QUANT_SRC}
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_quantization_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_dl.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <typename OutElementOp>
using device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_kn_mn_instances = std::tuple<
// clang-format off
//####################| A| B| Ds| E| AData| BData| AccData| DsData| EData| A| B| CDE| GEMM| Block| MPer| NPer| KPer| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
//####################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | ThreadM| Thread| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
//####################| | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
//####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Dl< Col, Row, Empty_Tuple, Row, int8_t, int8_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, MNKPadding, 256, 128, 128, 16, 4, 4, 4, 1, S<8, 2>, S<8, 2>, S<2, 1, 4, 4>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 4>, S<2, 1, 4, 4>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 4>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
template <typename OutElementOp>
using device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_nk_mn_instances = std::tuple<
// clang-format off
//####################| A| B| Ds| E| AData| BData| AccData| DsData| EData| A| B| CDE| GEMM| Block| MPer| NPer| KPer| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
//####################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | ThreadM| Thread| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
//####################| | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
//####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Dl< Col, Col, Empty_Tuple, Row, int8_t, int8_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, MNKPadding, 256, 128, 128, 16, 4, 4, 4, 1, S<8, 2>, S<8, 2>, S<2, 1, 4, 4>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 4>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
template <typename OutElementOp>
using device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_kn_mn_instances = std::tuple<
// clang-format off
//####################| A| B| Ds| E| AData| BData| AccData| DsData| EData| A| B| CDE| GEMM| Block| MPer| NPer| KPer| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
//####################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | ThreadM| Thread| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
//####################| | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
//####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Dl< Row, Row, Empty_Tuple, Row, int8_t, int8_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, MNKPadding, 256, 128, 128, 16, 4, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<2, 1, 4, 4>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 4>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
template <typename OutElementOp>
using device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_nk_mn_instances = std::tuple<
// clang-format off
//####################| A| B| Ds| E| AData| BData| AccData| DsData| EData| A| B| CDE| GEMM| Block| MPer| NPer| KPer| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
//####################| Layout| Layout| Layout| Layout| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | ThreadM| Thread| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
//####################| | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
//####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Dl< Row, Col, Empty_Tuple, Row, int8_t, int8_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, MNKPadding, 256, 128, 128, 16, 4, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<8, 1, 1, 4>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 4>, S<1, 2, 0, 3>, S<1, 1, 1, 4>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
void add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul_Clamp>>>& instances)
{
add_device_operation_instances(
instances, device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_kn_mn_instances<Mul_Clamp>{});
}
void add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Col,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul_Clamp>>>& instances)
{
add_device_operation_instances(
instances, device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_nk_mn_instances<Mul_Clamp>{});
}
void add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul_Clamp>>>& instances)
{
add_device_operation_instances(
instances, device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_kn_mn_instances<Mul_Clamp>{});
}
void add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul_Clamp>>>& instances)
{
add_device_operation_instances(
instances, device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_nk_mn_instances<Mul_Clamp>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_quantization_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <typename OutElementOp, LoopScheduler GemmLoopScheduler, PipelineVersion GemmPipeline>
using device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances = std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Empty_Tuple, Row, int8_t, int8_t, int32_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, MNKPadding, 1, 256, 256, 128, 64, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 64, 1, 4>, 16, GemmLoopScheduler, GemmPipeline>
// clang-format on
>;
template <typename OutElementOp, LoopScheduler GemmLoopScheduler, PipelineVersion GemmPipeline>
using device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances = std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Empty_Tuple, Row, int8_t, int8_t, int32_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, MNKPadding, 1, 256, 256, 128, 64, 4, 16, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 16, GemmLoopScheduler, GemmPipeline>
// clang-format on
>;
template <typename OutElementOp, LoopScheduler GemmLoopScheduler, PipelineVersion GemmPipeline>
using device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances = std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Empty_Tuple, Row, int8_t, int8_t, int32_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, MNKPadding, 1, 256, 256, 128, 64, 16, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, 0, 1, 1, S<1, 64, 1, 4>, 16, GemmLoopScheduler, GemmPipeline>
// clang-format on
>;
template <typename OutElementOp, LoopScheduler GemmLoopScheduler, PipelineVersion GemmPipeline>
using device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances = std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Empty_Tuple, Row, int8_t, int8_t, int32_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, MNKPadding, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 16, GemmLoopScheduler, GemmPipeline>
// clang-format on
>;
// Layout(A, B, C) = [Col, Row, Row]
void add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul_Clamp>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances<Mul_Clamp,
LoopScheduler::Default,
PipelineVersion::v1>{});
}
// Layout(A, B, C) = [Col, Col, Row]
void add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Col,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul_Clamp>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances<Mul_Clamp,
LoopScheduler::Default,
PipelineVersion::v1>{});
}
// Layout(A, B, C) = [Row, Row, Row]
void add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul_Clamp>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances<Mul_Clamp,
LoopScheduler::Default,
PipelineVersion::v1>{});
}
// Layout(A, B, C) = [Row, Col, Row]
void add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul_Clamp>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances<Mul_Clamp,
LoopScheduler::Default,
PipelineVersion::v1>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Empty_Tuple = ck::Tuple<>;
using Row_Row_Tuple = ck::Tuple<Row, Row>;
using Col_Col_Tuple = ck::Tuple<Col, Col>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Relu = ck::tensor_operation::element_wise::Relu;
using Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<PassThrough>;
using Relu_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Relu>;
using Add_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<PassThrough>;
using Add_Relu_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<Relu>;
static constexpr auto MNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment