"git@developer.sourcefind.cn:modelzoo/resnet50_tensorflow.git" did not exist on "0ff25f6bdc3596dd58415b677c2e126770e19c64"
Commit 2113ce2e authored by Jing Zhang's avatar Jing Zhang
Browse files

add bias example

parent 100c4bb3
add_example_executable(example_grouped_gemm_xdl_fp16 grouped_gemm_xdl_fp16.cpp)
add_example_executable(example_grouped_gemm_bias_xdl_fp16 grouped_gemm_bias_xdl_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F16;
using D0DataType = F16;
using DsDataType = ck::Tuple<D0DataType>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = Add;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemmXdl
// clang-format off
//######| ALayout| BLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
exit(0);
}
int group_count = rand() % 16 + 1;
// GEMM shape
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
std::vector<const void*> p_a, p_b;
std::vector<std::vector<const void*>> p_ds;
std::vector<void*> p_c;
gemm_descs.reserve(group_count);
for(int i = 0; i < group_count; i++)
{
int M = 256 + 256 * i;
int N = 128 + 128 * i;
int K = 64 + 64 * i;
int stride_A = K;
int stride_B = K;
int stride_C = N;
std::vector<ck::index_t> stride_Ds = {0};
gemm_descs.push_back({M, N, K, stride_A, stride_B, stride_C, stride_Ds});
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
std::vector<Tensor<ADataType>> a_tensors;
std::vector<Tensor<BDataType>> b_tensors;
std::vector<Tensor<D0DataType>> d0_tensors;
std::vector<Tensor<EDataType>> e_host_tensors;
std::vector<Tensor<EDataType>> e_device_tensors;
a_tensors.reserve(group_count);
b_tensors.reserve(group_count);
d0_tensors.reserve(group_count);
e_host_tensors.reserve(group_count);
e_device_tensors.reserve(group_count);
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_tensors_device, b_tensors_device, d0_tensors_device,
e_tensors_device;
a_tensors_device.reserve(group_count);
b_tensors_device.reserve(group_count);
d0_tensors_device.reserve(group_count);
e_tensors_device.reserve(group_count);
std::size_t flop = 0, num_btype = 0;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
a_tensors.push_back(Tensor<ADataType>(f_host_tensor_descriptor(
gemm_descs[i].M_, gemm_descs[i].K_, gemm_descs[i].stride_A_, ALayout{})));
b_tensors.push_back(Tensor<BDataType>(f_host_tensor_descriptor(
gemm_descs[i].K_, gemm_descs[i].N_, gemm_descs[i].stride_B_, BLayout{})));
d0_tensors.push_back(Tensor<D0DataType>(f_host_tensor_descriptor(
gemm_descs[i].M_, gemm_descs[i].N_, gemm_descs[i].stride_Ds_[0], ELayout{})));
e_host_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
gemm_descs[i].M_, gemm_descs[i].N_, gemm_descs[i].stride_C_, ELayout{})));
e_device_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
gemm_descs[i].M_, gemm_descs[i].N_, gemm_descs[i].stride_C_, ELayout{})));
std::cout << "gemm[" << i << "] a_m_k: " << a_tensors[i].mDesc
<< " b_k_n: " << b_tensors[i].mDesc << " c_m_n: " << e_device_tensors[i].mDesc
<< std::endl;
flop += std::size_t(2) * gemm_descs[i].M_ * gemm_descs[i].K_ * gemm_descs[i].N_;
num_btype += sizeof(ADataType) * a_tensors[i].mDesc.GetElementSize() +
sizeof(BDataType) * b_tensors[i].mDesc.GetElementSize() +
sizeof(EDataType) * e_device_tensors[i].mDesc.GetElementSize();
switch(init_method)
{
case 0: break;
case 1:
a_tensors[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_tensors[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d0_tensors[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
case 2:
a_tensors[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d0_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
d0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
}
}
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
a_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(ADataType) * a_tensors[i].mDesc.GetElementSpace()));
b_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(BDataType) * b_tensors[i].mDesc.GetElementSpace()));
d0_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(D0DataType) * d0_tensors[i].mDesc.GetElementSpace()));
e_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(EDataType) * e_device_tensors[i].mDesc.GetElementSpace()));
a_tensors_device[i]->ToDevice(a_tensors[i].mData.data());
b_tensors_device[i]->ToDevice(b_tensors[i].mData.data());
d0_tensors_device[i]->ToDevice(d0_tensors[i].mData.data());
p_a.push_back(a_tensors_device[i]->GetDeviceBuffer());
p_b.push_back(b_tensors_device[i]->GetDeviceBuffer());
p_ds.push_back({d0_tensors_device[i]->GetDeviceBuffer()});
p_c.push_back(e_tensors_device[i]->GetDeviceBuffer());
}
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
// do GEMM
auto argument = gemm.MakeArgument(
p_a, p_b, p_ds, p_c, gemm_descs, a_element_op, b_element_op, cde_element_op);
DeviceMem gemm_desc_workspace(gemm.GetWorkSpaceSize(&argument));
gemm.SetWorkSpacePointer(&argument, gemm_desc_workspace.GetDeviceBuffer());
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
bool pass = true;
if(do_verification)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
EDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
e_tensors_device[i]->FromDevice(e_device_tensors[i].mData.data());
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_tensors[i],
b_tensors[i],
e_host_tensors[i],
a_element_op,
b_element_op,
PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < gemm_descs[i].M_; ++m)
{
for(int n = 0; n < gemm_descs[i].N_; ++n)
{
cde_element_op(
e_host_tensors[i](m, n), e_host_tensors[i](m, n), d0_tensors[i](m, n));
}
}
pass &= ck::utils::check_err(e_device_tensors[i].mData, e_host_tensors[i].mData);
}
}
return pass ? 0 : 1;
}
......@@ -66,7 +66,7 @@ __global__ void
GridwiseGemm::template Run<HasMainKBlockLoop>(
gemm_desc_ptr[group_id].a_ptr_,
gemm_desc_ptr[group_id].b_ptr_,
ck::Tuple<>{},
gemm_desc_ptr[group_id].ds_ptr_,
gemm_desc_ptr[group_id].e_ptr_,
p_shared,
a_element_op,
......@@ -74,9 +74,7 @@ __global__ void
c_element_op,
gemm_desc_ptr[group_id].a_grid_desc_k0_m_k1_,
gemm_desc_ptr[group_id].b_grid_desc_k0_n_k1_,
ck::StaticallyIndexedArray<
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
0>{},
gemm_desc_ptr[group_id].ds_grid_desc_mblock_mperblock_nblock_nperblock_,
gemm_desc_ptr[group_id].e_grid_desc_mblock_mperblock_nblock_nperblock_,
gemm_desc_ptr[group_id].block_2_ctile_map_);
#else
......@@ -354,7 +352,7 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
}
}
static auto MakeCGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideE)
static auto MakeEGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideE)
{
const auto c_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, DELayout>::value)
......@@ -414,7 +412,7 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1(1, 1, 1));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1(1, 1, 1));
using EGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N(1, 1, 1));
// GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle<
......@@ -571,7 +569,7 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
DeviceGroupedGemmXdl::MakeBGridDescriptor_BK0_N_BK1(K, N, StrideB);
const auto e_grid_desc_m_n_ =
DeviceGroupedGemmXdl::MakeCGridDescriptor_M_N(M, N, StrideC);
DeviceGroupedGemmXdl::MakeEGridDescriptor_M_N(M, N, StrideC);
const index_t grid_size_grp =
GroupedGemmBlock2ETileMap(e_grid_desc_m_n_, 0)
......@@ -599,23 +597,20 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
ds_grid_desc_mblock_mperblock_nblock_nperblock_; // FIXME: Ds desc may be of
// different
typename GridwiseGemm::DsGridPointer p_ds_grid_;
typename GridwiseGemm::DsGridPointer p_ds_grid_{};
if constexpr(NumDTensor > 0)
{
static_for<0, NumDTensor, 1>{}([&](auto j) {
using DDataType = remove_cvref_t<tuple_element_t<j.value, DsDataType>>;
static_for<0, NumDTensor, 1>{}([&](auto j) {
using DDataType = remove_cvref_t<tuple_element_t<j.value, DsDataType>>;
p_ds_grid_(i) = static_cast<const DDataType*>(p_Ds[i][j]);
p_ds_grid_(j) = static_cast<const DDataType*>(p_Ds[i][j]);
const auto d_grid_desc_m_n = GridwiseGemm::MakeEGridDescriptor_M_N(
M, N, gemm_descs[i].stride_Ds_[j]);
const auto d_grid_desc_m_n = DeviceGroupedGemmXdl::MakeEGridDescriptor_M_N(
M, N, gemm_descs[i].stride_Ds_[j]);
ds_grid_desc_mblock_mperblock_nblock_nperblock_(j) =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
d_grid_desc_m_n);
});
}
ds_grid_desc_mblock_mperblock_nblock_nperblock_(j) =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
d_grid_desc_m_n);
});
gemm_desc_kernel_arg_.push_back(
GemmBiasTransKernelArg{a_grid_desc_k0_m_k1_,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment