Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
2113ce2e
Commit
2113ce2e
authored
Jul 17, 2022
by
Jing Zhang
Browse files
add bias example
parent
100c4bb3
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
294 additions
and
20 deletions
+294
-20
example/15_grouped_gemm/CMakeLists.txt
example/15_grouped_gemm/CMakeLists.txt
+1
-0
example/15_grouped_gemm/grouped_gemm_bias_xdl_fp16.cpp
example/15_grouped_gemm/grouped_gemm_bias_xdl_fp16.cpp
+278
-0
include/ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp
...k/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp
+15
-20
No files found.
example/15_grouped_gemm/CMakeLists.txt
View file @
2113ce2e
add_example_executable
(
example_grouped_gemm_xdl_fp16 grouped_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_fp16 grouped_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_bias_xdl_fp16 grouped_gemm_bias_xdl_fp16.cpp
)
example/15_grouped_gemm/grouped_gemm_bias_xdl_fp16.cpp
0 → 100644
View file @
2113ce2e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
D0DataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Add
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmXdl
// clang-format off
//######| ALayout| BLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
exit
(
0
);
}
int
group_count
=
rand
()
%
16
+
1
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
std
::
vector
<
const
void
*>
p_a
,
p_b
;
std
::
vector
<
std
::
vector
<
const
void
*>>
p_ds
;
std
::
vector
<
void
*>
p_c
;
gemm_descs
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
int
M
=
256
+
256
*
i
;
int
N
=
128
+
128
*
i
;
int
K
=
64
+
64
*
i
;
int
stride_A
=
K
;
int
stride_B
=
K
;
int
stride_C
=
N
;
std
::
vector
<
ck
::
index_t
>
stride_Ds
=
{
0
};
gemm_descs
.
push_back
({
M
,
N
,
K
,
stride_A
,
stride_B
,
stride_C
,
stride_Ds
});
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
D0DataType
>>
d0_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
e_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
e_device_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
d0_tensors
.
reserve
(
group_count
);
e_host_tensors
.
reserve
(
group_count
);
e_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
d0_tensors_device
,
e_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
d0_tensors_device
.
reserve
(
group_count
);
e_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
K_
,
gemm_descs
[
i
].
stride_A_
,
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
K_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_B_
,
BLayout
{})));
d0_tensors
.
push_back
(
Tensor
<
D0DataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_Ds_
[
0
],
ELayout
{})));
e_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_C_
,
ELayout
{})));
e_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_C_
,
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
e_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
gemm_descs
[
i
].
M_
*
gemm_descs
[
i
].
K_
*
gemm_descs
[
i
].
N_
;
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
e_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
d0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
}
}
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSpace
()));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSpace
()));
d0_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
D0DataType
)
*
d0_tensors
[
i
].
mDesc
.
GetElementSpace
()));
e_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
e_device_tensors
[
i
].
mDesc
.
GetElementSpace
()));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
());
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
());
d0_tensors_device
[
i
]
->
ToDevice
(
d0_tensors
[
i
].
mData
.
data
());
p_a
.
push_back
(
a_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_b
.
push_back
(
b_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_ds
.
push_back
({
d0_tensors_device
[
i
]
->
GetDeviceBuffer
()});
p_c
.
push_back
(
e_tensors_device
[
i
]
->
GetDeviceBuffer
());
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_a
,
p_b
,
p_ds
,
p_c
,
gemm_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
DeviceMem
gemm_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
());
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
e_tensors_device
[
i
]
->
FromDevice
(
e_device_tensors
[
i
].
mData
.
data
());
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
e_host_tensors
[
i
],
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
gemm_descs
[
i
].
M_
;
++
m
)
{
for
(
int
n
=
0
;
n
<
gemm_descs
[
i
].
N_
;
++
n
)
{
cde_element_op
(
e_host_tensors
[
i
](
m
,
n
),
e_host_tensors
[
i
](
m
,
n
),
d0_tensors
[
i
](
m
,
n
));
}
}
pass
&=
ck
::
utils
::
check_err
(
e_device_tensors
[
i
].
mData
,
e_host_tensors
[
i
].
mData
);
}
}
return
pass
?
0
:
1
;
}
include/ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp
View file @
2113ce2e
...
@@ -66,7 +66,7 @@ __global__ void
...
@@ -66,7 +66,7 @@ __global__ void
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
gemm_desc_ptr
[
group_id
].
a_ptr_
,
gemm_desc_ptr
[
group_id
].
a_ptr_
,
gemm_desc_ptr
[
group_id
].
b_ptr_
,
gemm_desc_ptr
[
group_id
].
b_ptr_
,
ck
::
Tuple
<>
{}
,
gemm_desc_ptr
[
group_id
].
ds_ptr_
,
gemm_desc_ptr
[
group_id
].
e_ptr_
,
gemm_desc_ptr
[
group_id
].
e_ptr_
,
p_shared
,
p_shared
,
a_element_op
,
a_element_op
,
...
@@ -74,9 +74,7 @@ __global__ void
...
@@ -74,9 +74,7 @@ __global__ void
c_element_op
,
c_element_op
,
gemm_desc_ptr
[
group_id
].
a_grid_desc_k0_m_k1_
,
gemm_desc_ptr
[
group_id
].
a_grid_desc_k0_m_k1_
,
gemm_desc_ptr
[
group_id
].
b_grid_desc_k0_n_k1_
,
gemm_desc_ptr
[
group_id
].
b_grid_desc_k0_n_k1_
,
ck
::
StaticallyIndexedArray
<
gemm_desc_ptr
[
group_id
].
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
0
>
{},
gemm_desc_ptr
[
group_id
].
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
gemm_desc_ptr
[
group_id
].
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
gemm_desc_ptr
[
group_id
].
block_2_ctile_map_
);
gemm_desc_ptr
[
group_id
].
block_2_ctile_map_
);
#else
#else
...
@@ -354,7 +352,7 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
...
@@ -354,7 +352,7 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
}
}
}
}
static
auto
Make
C
GridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideE
)
static
auto
Make
E
GridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideE
)
{
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
DELayout
>::
value
)
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
DELayout
>::
value
)
...
@@ -414,7 +412,7 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
...
@@ -414,7 +412,7 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
using
AGridDesc_AK0_M_AK1
=
decltype
(
MakeAGridDescriptor_AK0_M_AK1
(
1
,
1
,
1
));
using
AGridDesc_AK0_M_AK1
=
decltype
(
MakeAGridDescriptor_AK0_M_AK1
(
1
,
1
,
1
));
using
BGridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
(
1
,
1
,
1
));
using
BGridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
(
1
,
1
,
1
));
using
EGridDesc_M_N
=
decltype
(
Make
C
GridDescriptor_M_N
(
1
,
1
,
1
));
using
EGridDesc_M_N
=
decltype
(
Make
E
GridDescriptor_M_N
(
1
,
1
,
1
));
// GridwiseGemm
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
<
using
GridwiseGemm
=
GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
<
...
@@ -571,7 +569,7 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
...
@@ -571,7 +569,7 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
DeviceGroupedGemmXdl
::
MakeBGridDescriptor_BK0_N_BK1
(
K
,
N
,
StrideB
);
DeviceGroupedGemmXdl
::
MakeBGridDescriptor_BK0_N_BK1
(
K
,
N
,
StrideB
);
const
auto
e_grid_desc_m_n_
=
const
auto
e_grid_desc_m_n_
=
DeviceGroupedGemmXdl
::
Make
C
GridDescriptor_M_N
(
M
,
N
,
StrideC
);
DeviceGroupedGemmXdl
::
Make
E
GridDescriptor_M_N
(
M
,
N
,
StrideC
);
const
index_t
grid_size_grp
=
const
index_t
grid_size_grp
=
GroupedGemmBlock2ETileMap
(
e_grid_desc_m_n_
,
0
)
GroupedGemmBlock2ETileMap
(
e_grid_desc_m_n_
,
0
)
...
@@ -599,23 +597,20 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
...
@@ -599,23 +597,20 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
// FIXME: Ds desc may be of
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
// FIXME: Ds desc may be of
// different
// different
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid_
;
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid_
{}
;
if
constexpr
(
NumDTensor
>
0
)
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsDataType
>>
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsDataType
>>
;
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_Ds
[
i
][
j
]);
p_ds_grid_
(
j
)
=
static_cast
<
const
DDataType
*>
(
p_Ds
[
i
][
j
]);
const
auto
d_grid_desc_m_n
=
Gridwise
Gemm
::
MakeEGridDescriptor_M_N
(
const
auto
d_grid_desc_m_n
=
DeviceGrouped
Gemm
Xdl
::
MakeEGridDescriptor_M_N
(
M
,
N
,
gemm_descs
[
i
].
stride_Ds_
[
j
]);
M
,
N
,
gemm_descs
[
i
].
stride_Ds_
[
j
]);
ds_grid_desc_mblock_mperblock_nblock_nperblock_
(
j
)
=
ds_grid_desc_mblock_mperblock_nblock_nperblock_
(
j
)
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
d_grid_desc_m_n
);
d_grid_desc_m_n
);
});
});
}
gemm_desc_kernel_arg_
.
push_back
(
gemm_desc_kernel_arg_
.
push_back
(
GemmBiasTransKernelArg
{
a_grid_desc_k0_m_k1_
,
GemmBiasTransKernelArg
{
a_grid_desc_k0_m_k1_
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment