Commit 1dbdab56 authored by Jing Zhang's avatar Jing Zhang
Browse files

merge develop

parents d2e49b23 bac7df8f
......@@ -8,7 +8,7 @@ list(APPEND CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
enable_testing()
set(ROCM_SYMLINK_LIBS OFF)
find_package(ROCM 0.8 REQUIRED PATHS /opt/rocm)
find_package(ROCM REQUIRED PATHS /opt/rocm)
include(ROCMInstallTargets)
include(ROCMPackageConfigHelpers)
......
......@@ -18,6 +18,89 @@ def runShell(String command){
return (output != "")
}
def getDockerImageName(){
def img = "${env.MIOPEN_IMAGE_URL}:composable_kernels_${params.COMPILER_VERSION}"
return img
}
def getDockerImage(Map conf=[:]){
env.DOCKER_BUILDKIT=1
def prefixpath = conf.get("prefixpath", "/opt/rocm") // prefix:/opt/rocm
def gpu_arch = conf.get("gpu_arch", "gfx908") // prebuilt dockers should have all the architectures enabled so one image can be used for all stages
def no_cache = conf.get("no_cache", false)
def dockerArgs = "--build-arg BUILDKIT_INLINE_CACHE=1 --build-arg PREFIX=${prefixpath} --build-arg compiler_version='${params.COMPILER_VERSION}' "
if(env.CCACHE_HOST)
{
def check_host = sh(script:"""(printf "PING\r\n";) | nc -N ${env.CCACHE_HOST} 6379 """, returnStdout: true).trim()
if(check_host == "+PONG")
{
echo "FOUND CCACHE SERVER: ${CCACHE_HOST}"
}
else
{
echo "CCACHE SERVER: ${CCACHE_HOST} NOT FOUND, got ${check_host} response"
}
dockerArgs = dockerArgs + " --build-arg CCACHE_SECONDARY_STORAGE='redis://${env.CCACHE_HOST}' --build-arg COMPILER_LAUNCHER='ccache' "
env.CCACHE_DIR = """/tmp/ccache_store"""
env.CCACHE_SECONDARY_STORAGE="""redis://${env.CCACHE_HOST}"""
}
if(no_cache)
{
dockerArgs = dockerArgs + " --no-cache "
}
echo "Docker Args: ${dockerArgs}"
def image = getDockerImageName()
//Check if image exists
def retimage
try
{
echo "Pulling down image: ${image}"
retimage = docker.image("${image}")
retimage.pull()
}
catch(Exception ex)
{
error "Unable to locate image: ${image}"
}
return [retimage, image]
}
def buildDocker(install_prefix){
show_node_info()
env.DOCKER_BUILDKIT=1
checkout scm
def image_name = getDockerImageName()
echo "Building Docker for ${image_name}"
def dockerArgs = "--build-arg BUILDKIT_INLINE_CACHE=1 --build-arg PREFIX=${install_prefix} --build-arg compiler_version='${params.COMPILER_VERSION}' "
if(env.CCACHE_HOST)
{
def check_host = sh(script:"""(printf "PING\\r\\n";) | nc -N ${env.CCACHE_HOST} 6379 """, returnStdout: true).trim()
if(check_host == "+PONG")
{
echo "FOUND CCACHE SERVER: ${CCACHE_HOST}"
}
else
{
echo "CCACHE SERVER: ${CCACHE_HOST} NOT FOUND, got ${check_host} response"
}
dockerArgs = dockerArgs + " --build-arg CCACHE_SECONDARY_STORAGE='redis://${env.CCACHE_HOST}' --build-arg COMPILER_LAUNCHER='ccache' "
env.CCACHE_DIR = """/tmp/ccache_store"""
env.CCACHE_SECONDARY_STORAGE="""redis://${env.CCACHE_HOST}"""
}
echo "Build Args: ${dockerArgs}"
try{
echo "Checking for image: ${image_name}"
sh "docker manifest inspect --insecure ${image_name}"
echo "Image: ${image_name} found!! Skipping building image"
}
catch(Exception ex){
echo "Unable to locate image: ${image_name}. Building image now"
retimage = docker.build("${image_name}", dockerArgs + ' .')
retimage.push()
}
}
def cmake_build(Map conf=[:]){
def compiler = conf.get("compiler","/opt/rocm/bin/hipcc")
......@@ -100,9 +183,10 @@ def buildHipClangJob(Map conf=[:]){
// def dockerOpts="--device=/dev/kfd --device=/dev/dri --group-add video --group-add render --cap-add=SYS_PTRACE --security-opt seccomp=unconfined"
def dockerOpts="--device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined"
if (conf.get("enforce_xnack_on", false)) {
dockerOpts = dockerOpts + " --env HSA_XNACK=1"
dockerOpts = dockerOpts + " --env HSA_XNACK=1 --env GPU_ARCH='${gpu_arch}' "
}
def dockerArgs = "--build-arg PREFIX=${prefixpath} --build-arg GPU_ARCH='${gpu_arch}' --build-arg compiler_version='${params.COMPILER_VERSION}' "
//def dockerArgs = "--build-arg PREFIX=${prefixpath} --build-arg GPU_ARCH='${gpu_arch}' --build-arg compiler_version='${params.COMPILER_VERSION}' "
def dockerArgs = "--build-arg PREFIX=${prefixpath} --build-arg compiler_version='${params.COMPILER_VERSION}' "
if (params.COMPILER_VERSION != "release"){
dockerOpts = dockerOpts + " --env HIP_CLANG_PATH='/llvm-project/build/bin' "
}
......@@ -113,7 +197,8 @@ def buildHipClangJob(Map conf=[:]){
gitStatusWrapper(credentialsId: "${status_wrapper_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCmSoftwarePlatform', repo: 'composable_kernel') {
try {
retimage = docker.build("${image}", dockerArgs + '.')
//retimage = docker.build("${image}", dockerArgs + '.')
(retimage, image) = getDockerImage(conf)
withDockerContainer(image: image, args: dockerOpts) {
timeout(time: 5, unit: 'MINUTES'){
sh 'PATH="/opt/rocm/opencl/bin:/opt/rocm/opencl/bin/x86_64:$PATH" clinfo | tee clinfo.log'
......@@ -190,9 +275,9 @@ def runCKProfiler(Map conf=[:]){
// def dockerOpts="--device=/dev/kfd --device=/dev/dri --group-add video --group-add render --cap-add=SYS_PTRACE --security-opt seccomp=unconfined"
def dockerOpts="--device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined"
if (conf.get("enforce_xnack_on", false)) {
dockerOpts = dockerOpts + " --env HSA_XNACK=1"
dockerOpts = dockerOpts + " --env HSA_XNACK=1 --env GPU_ARCH='${gpu_arch}' "
}
def dockerArgs = "--build-arg PREFIX=${prefixpath} --build-arg GPU_ARCH='${gpu_arch}' --build-arg compiler_version='${params.COMPILER_VERSION}' "
def dockerArgs = "--build-arg PREFIX=${prefixpath} --build-arg compiler_version='${params.COMPILER_VERSION}' "
if (params.COMPILER_VERSION != "release"){
dockerOpts = dockerOpts + " --env HIP_CLANG_PATH='/llvm-project/build/bin' "
}
......@@ -202,7 +287,8 @@ def runCKProfiler(Map conf=[:]){
gitStatusWrapper(credentialsId: "${status_wrapper_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCmSoftwarePlatform', repo: 'composable_kernel') {
try {
retimage = docker.build("${image}", dockerArgs + '.')
//retimage = docker.build("${image}", dockerArgs + '.')
(retimage, image) = getDockerImage(conf)
withDockerContainer(image: image, args: dockerOpts) {
timeout(time: 5, unit: 'MINUTES'){
sh 'PATH="/opt/rocm/opencl/bin:/opt/rocm/opencl/bin/x86_64:$PATH" clinfo | tee clinfo.log'
......@@ -248,7 +334,7 @@ def runCKProfiler(Map conf=[:]){
archiveArtifacts "perf_batched_gemm_${gpu_arch}.log"
archiveArtifacts "perf_grouped_gemm_${gpu_arch}.log"
archiveArtifacts "perf_conv_fwd_${gpu_arch}.log"
archiveArtifacts "perf_conv_bwd_${gpu_arch}.log"
archiveArtifacts "perf_conv_bwd_data_${gpu_arch}.log"
archiveArtifacts "perf_gemm_bilinear_${gpu_arch}.log"
archiveArtifacts "perf_reduction_${gpu_arch}.log"
// stash perf files to master
......@@ -258,7 +344,7 @@ def runCKProfiler(Map conf=[:]){
stash name: "perf_batched_gemm_${gpu_arch}.log"
stash name: "perf_grouped_gemm_${gpu_arch}.log"
stash name: "perf_conv_fwd_${gpu_arch}.log"
stash name: "perf_conv_bwd_${gpu_arch}.log"
stash name: "perf_conv_bwd_data_${gpu_arch}.log"
stash name: "perf_gemm_bilinear_${gpu_arch}.log"
stash name: "perf_reduction_${gpu_arch}.log"
//we will process results on the master node
......@@ -308,16 +394,17 @@ def process_results(Map conf=[:]){
// Jenkins is complaining about the render group
def dockerOpts="--cap-add=SYS_PTRACE --security-opt seccomp=unconfined"
if (conf.get("enforce_xnack_on", false)) {
dockerOpts = dockerOpts + " --env HSA_XNACK=1"
dockerOpts = dockerOpts + " --env HSA_XNACK=1 --env GPU_ARCH='${gpu_arch}' "
}
def dockerArgs = "--build-arg PREFIX=${prefixpath} --build-arg GPU_ARCH='${gpu_arch}' --build-arg compiler_version='release' "
def dockerArgs = "--build-arg PREFIX=${prefixpath} --build-arg compiler_version='release' "
def variant = env.STAGE_NAME
def retimage
gitStatusWrapper(credentialsId: "${status_wrapper_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCmSoftwarePlatform', repo: 'composable_kernel') {
try {
retimage = docker.build("${image}", dockerArgs + '.')
//retimage = docker.build("${image}", dockerArgs + '.')
(retimage, image) = getDockerImage(conf)
}
catch (org.jenkinsci.plugins.workflow.steps.FlowInterruptedException e){
echo "The job was cancelled or aborted"
......@@ -337,7 +424,7 @@ def process_results(Map conf=[:]){
unstash "perf_batched_gemm_${gpu_arch}.log"
unstash "perf_grouped_gemm_${gpu_arch}.log"
unstash "perf_conv_fwd_${gpu_arch}.log"
unstash "perf_conv_bwd${gpu_arch}.log"
unstash "perf_conv_bwd_data_${gpu_arch}.log"
unstash "perf_gemm_bilinear_${gpu_arch}.log"
unstash "perf_reduction_${gpu_arch}.log"
sh "./process_qa_data.sh ${gpu_arch}"
......@@ -372,14 +459,22 @@ pipeline {
parallelsAlwaysFailFast()
}
parameters {
booleanParam(
name: "BUILD_DOCKER",
defaultValue: true,
description: "Force building docker image (default: true)")
string(
name: 'COMPILER_VERSION',
defaultValue: 'ck-9110',
description: 'Specify which version of compiler to use: ck-9110 (default), release, or amd-mainline-open.')
description: 'Specify which version of compiler to use: ck-9110 (default), release, or amd-stg-open.')
booleanParam(
name: "RUN_FULL_QA",
defaultValue: false,
description: "Select whether to run small set of performance tests (default) or full QA")
booleanParam(
name: "TEST_NODE_PERFORMANCE",
defaultValue: false,
description: "Test the node GPU performance (default: false)")
}
environment{
dbuser = "${dbuser}"
......@@ -393,7 +488,24 @@ pipeline {
DOCKER_BUILDKIT = "1"
}
stages{
stage("Build Docker"){
when {
expression { params.BUILD_DOCKER.toBoolean() }
}
parallel{
stage('Docker /opt/rocm'){
agent{ label rocmnode("nogpu") }
steps{
buildDocker('/opt/rocm')
}
}
}
}
stage("Static checks") {
when {
beforeAgent true
expression { !params.TEST_NODE_PERFORMANCE.toBoolean() }
}
parallel{
// enable after we move from hipcc to hip-clang
// stage('Tidy') {
......@@ -427,6 +539,10 @@ pipeline {
}
stage("Tests")
{
when {
beforeAgent true
expression { !params.TEST_NODE_PERFORMANCE.toBoolean() }
}
parallel
{
stage("Run Tests: gfx908")
......@@ -457,6 +573,10 @@ pipeline {
}
stage("Client App")
{
when {
beforeAgent true
expression { !params.TEST_NODE_PERFORMANCE.toBoolean() }
}
parallel
{
stage("Run Client App")
......@@ -480,7 +600,7 @@ pipeline {
{
when {
beforeAgent true
expression { !params.RUN_FULL_QA.toBoolean() }
expression { !params.RUN_FULL_QA.toBoolean() && !params.TEST_NODE_PERFORMANCE.toBoolean() }
}
agent{ label rocmnode("gfx908")}
environment{
......@@ -494,7 +614,7 @@ pipeline {
{
when {
beforeAgent true
expression { params.RUN_FULL_QA.toBoolean() }
expression { params.RUN_FULL_QA.toBoolean() || params.TEST_NODE_PERFORMANCE.toBoolean() }
}
agent{ label rocmnode("gfx90a")}
environment{
......@@ -513,7 +633,7 @@ pipeline {
stage("Process results for gfx908"){
when {
beforeAgent true
expression { !params.RUN_FULL_QA.toBoolean() }
expression { !params.RUN_FULL_QA.toBoolean() && !params.TEST_NODE_PERFORMANCE.toBoolean() }
}
agent { label 'mici' }
steps{
......@@ -523,7 +643,7 @@ pipeline {
stage("Process results for gfx90a"){
when {
beforeAgent true
expression { params.RUN_FULL_QA.toBoolean() }
expression { params.RUN_FULL_QA.toBoolean() || params.TEST_NODE_PERFORMANCE.toBoolean() }
}
agent { label 'mici' }
steps{
......
......@@ -128,11 +128,14 @@ bool RunDeviceNormalize2D(normalize_op_ptr& p_op,
std::array<void*, 1> output = {p_y};
auto normalize_functor = ck::tensor_operation::element_wise::Normalize{};
auto argument_ptr = p_op->MakeArgumentPointer(input,
std::array<ck::index_t, 2> xyLengths = {M, N};
std::array<ck::index_t, 2> xyStrides = {StrideX, 1};
auto argument_ptr = p_op->MakeArgumentPointer(xyLengths,
{xyStrides, {1, 0}, {1, 0}, {0, 1}, {0, 1}},
{xyStrides},
input,
output,
{M, N},
{{StrideX, 1}, {1, 0}, {1, 0}, {0, 1}, {0, 1}},
{{StrideX, 1}},
ck::tensor_operation::element_wise::Normalize{});
if(p_op->IsSupportedArgument(argument_ptr.get()))
......
......@@ -4,5 +4,6 @@ add_example_executable(example_gemm_dl_int8 gemm_dl_int8.cpp)
add_example_executable(example_gemm_xdl_fp16 gemm_xdl_fp16.cpp)
add_example_executable(example_gemm_xdl_bf16 gemm_xdl_bf16.cpp)
add_example_executable(example_gemm_xdl_int8 gemm_xdl_int8.cpp)
add_example_executable(example_gemm_xdl_skip_b_lds_fp16 gemm_xdl_skip_b_lds_fp16.cpp)
# FIXME: re-enable this exampe as test when SWDEV-335738 is fixed
add_example_executable_no_testing(example_gemm_xdl_fp64 gemm_xdl_fp64.cpp)
add_example_executable(example_gemm_add_add_fastgelu_xdl_bf16 gemm_add_add_fastgelu_xdl_bf16.cpp)
add_example_executable(example_gemm_add_add_fastgelu_xdl_fp16 gemm_add_add_fastgelu_xdl_fp16.cpp)
add_example_executable(example_gemm_add_add_fastgelu_xdl_fp32 gemm_add_add_fastgelu_xdl_fp32.cpp)
add_example_executable(example_gemm_add_add_fastgelu_xdl_int8 gemm_add_add_fastgelu_xdl_int8.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstddef>
#include <iostream>
#include <stdexcept>
#include <string>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
using ADataType = BF16;
using BDataType = BF16;
using AccDataType = F32;
using CShuffleDataType = F32;
using D0DataType = BF16;
using D1DataType = BF16;
using DsDataType = ck::Tuple<D0DataType, D1DataType>;
using EDataType = BF16;
using ALayout = Row;
using BLayout = Col;
using D0Layout = Row;
using D1Layout = Row;
using DsLayout = ck::Tuple<D0Layout, D1Layout>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddAddFastGelu;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_CShuffle
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on
#include "run_gemm_add_add_fastgelu_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_add_add_fastgelu_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstddef>
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdexcept>
#include <string>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
......@@ -12,11 +12,12 @@
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
......@@ -61,189 +62,6 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_C
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideD0 = 0;
ck::index_t StrideD1 = 4096;
ck::index_t StrideE = 4096;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 12)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideD0 = std::stoi(argv[9]);
StrideD1 = std::stoi(argv[10]);
StrideE = std::stoi(argv[11]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, "
"StrideE\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, D0Layout{}));
Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor(M, N, StrideD1, D1Layout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d0_m_n: " << d0_m_n.mDesc << std::endl;
std::cout << "d1_m_n: " << d1_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d0_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
d1_m_n.GenerateTensorValue(GeneratorTensor_2<D1DataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{0.0, 1.0});
d1_m_n.GenerateTensorValue(GeneratorTensor_3<D1DataType>{0.0, 1.0});
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d0_device_buf(sizeof(D0DataType) * d0_m_n.mDesc.GetElementSpaceSize());
DeviceMem d1_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d0_device_buf.ToDevice(d0_m_n.mData.data());
d1_device_buf.ToDevice(d1_m_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 2>{d0_device_buf.GetDeviceBuffer(),
d1_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, 2>{StrideD0, StrideD1},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error("wrong! this device_op instance does not support this problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(D0DataType) * N + sizeof(D1DataType) * M * N +
sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< device_op.GetTypeString() << std::endl;
if(do_verification)
{
Tensor<AccDataType> c_m_n(HostTensorDescriptor(
std::vector<std::size_t>{static_cast<std::size_t>(M), static_cast<std::size_t>(N)}));
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d0_m_n(m, n), d1_m_n(m, n));
}
}
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(e_m_n_device_result.mData, e_m_n_host_result.mData) ? 0 : 1;
}
#include "run_gemm_add_add_fastgelu_example.inc"
return 0;
}
int main(int argc, char* argv[]) { return !run_gemm_add_add_fastgelu_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstddef>
#include <iostream>
#include <stdexcept>
#include <string>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
using ADataType = F32;
using BDataType = F32;
using AccDataType = F32;
using CShuffleDataType = F32;
using D0DataType = F32;
using D1DataType = F32;
using DsDataType = ck::Tuple<D0DataType, D1DataType>;
using EDataType = F32;
using ALayout = Row;
using BLayout = Col;
using D0Layout = Row;
using D1Layout = Row;
using DsLayout = ck::Tuple<D0Layout, D1Layout>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddAddFastGelu;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_CShuffle
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4>;
// clang-format on
#include "run_gemm_add_add_fastgelu_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_add_add_fastgelu_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstddef>
#include <iostream>
#include <stdexcept>
#include <string>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using I8 = int8_t;
using I32 = int32_t;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
using ADataType = I8;
using BDataType = I8;
using AccDataType = I32;
using CShuffleDataType = I32;
using D0DataType = I8;
using D1DataType = I8;
using DsDataType = ck::Tuple<D0DataType, D1DataType>;
using EDataType = I8;
using ALayout = Row;
using BLayout = Col;
using D0Layout = Row;
using D1Layout = Row;
using DsLayout = ck::Tuple<D0Layout, D1Layout>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddAddFastGelu;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_CShuffle
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 64, 1, 4>, 16>;
// clang-format on
#include "run_gemm_add_add_fastgelu_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_add_add_fastgelu_example(argc, argv); }
#pragma once
struct ProblemSize final
{
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideD0 = 0;
ck::index_t StrideD1 = 4096;
ck::index_t StrideE = 4096;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
};
bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionConfig& config)
{
using namespace ck::literals;
auto& [M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE] = problem_size;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, D0Layout{}));
Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor(M, N, StrideD1, D1Layout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d0_m_n: " << d0_m_n.mDesc << std::endl;
std::cout << "d1_m_n: " << d1_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
switch(config.init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d0_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
d1_m_n.GenerateTensorValue(GeneratorTensor_2<D1DataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{0.0, 1.0});
d1_m_n.GenerateTensorValue(GeneratorTensor_3<D1DataType>{0.0, 1.0});
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d0_device_buf(sizeof(D0DataType) * d0_m_n.mDesc.GetElementSpaceSize());
DeviceMem d1_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d0_device_buf.ToDevice(d0_m_n.mData.data());
d1_device_buf.ToDevice(d1_m_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
{d0_device_buf.GetDeviceBuffer(), d1_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
{StrideD0, StrideD1},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error("wrong! this device_op instance does not support this problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
std::size_t flop = 2_uz * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(D0DataType) * N + sizeof(D1DataType) * M * N +
sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< device_op.GetTypeString() << std::endl;
if(config.do_verification)
{
Tensor<AccDataType> c_m_n(HostTensorDescriptor{M, N});
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d0_m_n(m, n), d1_m_n(m, n));
}
}
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(e_m_n_device_result.mData, e_m_n_host_result.mData);
}
return true;
}
bool run_gemm_add_add_fastgelu_example(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
}
else if(argc == 12)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
problem_size.M = std::stoi(argv[4]);
problem_size.N = std::stoi(argv[5]);
problem_size.K = std::stoi(argv[6]);
problem_size.StrideA = std::stoi(argv[7]);
problem_size.StrideB = std::stoi(argv[8]);
problem_size.StrideD0 = std::stoi(argv[9]);
problem_size.StrideD1 = std::stoi(argv[10]);
problem_size.StrideE = std::stoi(argv[11]);
}
else
{
std::cerr << "arg1: verification (0=no, 1=yes)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
<< "arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, "
"StrideE"
<< std::endl;
return true;
}
return run_gemm_add_add_fastgelu(problem_size, config);
}
add_example_executable(example_reduce_blockwise reduce_blockwise.cpp)
add_example_executable(example_reduce_multiblock_atomic_add reduce_multiblock_atomic_add.cpp)
add_example_executable(example_reduce_blockwise_two_call reduce_blockwise_two_call.cpp)
......@@ -2,20 +2,41 @@
## Run ```example_reduce_blockwise```
```bash
# -D <xxx> : input 4-d tensor lengths
# -D <xxx> : input 3d/4d/5d tensor lengths
# -R <xxx> : reduce dimension ids
# -v <x> : verification (0=no, 1=yes)
#arg1: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg2: time kernel (0=no, 1=yes)
./bin/example_reduce_blockwise -D 16,64,32,960 -v 1 1 1
#arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64, 7: int4)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
./bin/example_reduce_blockwise -D 16,64,32,960 -v 1 0 2 1
```
Result
```
./bin/example_reduce_blockwise -D 16,64,32,960 -v 1 1 1
./bin/example_reduce_blockwise -D 16,64,32,960 -v 1 0 2 1
launch_and_time_kernel: grid_dim {240, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 0.282592 ms, 222.641 GB/s, DeviceReduceBlockWise<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1>
Perf: 0.238063 ms, 264.285 GB/s, DeviceReduceBlockWise<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1>
```
## Run ```example_reduce_multiblock_atomic_add```
```bash
# -D <xxx> : input 3d/4d/5d tensor lengths
# -R <xxx> : reduce dimension ids
# -v <x> : verification (0=no, 1=yes)
#arg1: data type (0: fp32, 1: fp64)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
./bin/example_reduce_multiblock_atomic_add -D 16,64,32,960 -v 1 0 2 0
```
Result
```
./bin/example_reduce_multiblock_atomic_add -D 16,64,32,960 -v 1 0 2 0
Perf: 0 ms, inf GB/s, DeviceReduceMultiBlock<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1>
echo $?
0
```
# Instructions for ```example_reduce_blockwise_two_call```
......
......@@ -2,64 +2,17 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_multiblock.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_reduction.hpp"
#include "reduce_blockwise_impl.hpp"
#include "reduce_example_common.hpp"
using namespace ck;
using namespace ck::tensor_operation::device;
using InDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
constexpr int Rank = 4;
constexpr int NumReduceDim = 3;
constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::NORM2;
constexpr bool PropagateNan = true;
constexpr bool OutputIndex = false;
using ReduceOperation = typename reduce_binary_operator<ReduceOpId>::opType;
using InElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::AccElementwiseOperation;
using DeviceReduceInstance = DeviceReduceMultiBlock<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
InMemoryDataOperationEnum::Set,
PropagateNan,
OutputIndex,
false, // HaveIndexInputIfOutputIndex
256,
4,
64,
1,
1,
0,
1,
1>;
static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
{"verify", required_argument, nullptr, 'v'},
{"help", no_argument, nullptr, '?'},
......@@ -72,10 +25,12 @@ class SimpleAppArgs
public:
std::vector<size_t> inLengths = {16, 64, 32, 960};
std::vector<int> reduceDims = {0, 1, 2};
std::vector<float> scales = {1.0f, 0.0f};
bool do_verification = true;
int init_method = 1;
int data_type = 1;
int init_method = 2;
bool time_kernel = true;
public:
......@@ -84,13 +39,17 @@ class SimpleAppArgs
std::cout << "Usage of " << cmd << std::endl;
std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
<< std::endl;
std::cout << "--reduceDims or -R, comma separated list of to-reduce dimensions"
<< std::endl;
std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
<< std::endl;
std::cout << "Arg1 -- init method (0=no init, 1=single integer value, 2=scope integer "
std::cout << "Arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64, 7: int4)"
<< std::endl;
std::cout << "Arg2 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
<< std::endl;
std::cout << "Arg2 -- time kernel (0=no, 1=yes)" << std::endl;
std::cout << "Arg3 -- time kernel (0=no, 1=yes)" << std::endl;
};
int processArgs(int argc, char* argv[])
......@@ -101,7 +60,7 @@ class SimpleAppArgs
while(1)
{
ch = getopt_long(argc, argv, "D:v:l:", long_options, &option_index);
ch = getopt_long(argc, argv, "D:R:v:l:", long_options, &option_index);
if(ch == -1)
break;
switch(ch)
......@@ -112,6 +71,12 @@ class SimpleAppArgs
inLengths = getTypeValuesFromString<size_t>(optarg);
break;
case 'R':
if(!optarg)
throw std::runtime_error("Invalid option format!");
reduceDims = getTypeValuesFromString<int>(optarg);
break;
case 'v':
if(!optarg)
throw std::runtime_error("Invalid option format!");
......@@ -129,9 +94,12 @@ class SimpleAppArgs
};
};
if(optind + 2 > argc)
if(optind + 3 > argc)
{
throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");
};
data_type = std::atoi(argv[optind++]);
init_method = std::atoi(argv[optind++]);
time_kernel = static_cast<bool>(std::atoi(argv[optind]));
......@@ -145,198 +113,152 @@ class SimpleAppArgs
};
};
int main(int argc, char* argv[])
template <typename InOutDataType,
typename AccDataType,
ReduceTensorOp ReduceOpId,
index_t PropagateNan,
index_t OutputIndex>
bool reduce_blockwise_test(bool do_verification,
int init_method,
bool time_kernel,
const std::vector<size_t>& inLengths,
const std::vector<int>& reduceDims,
float alpha,
float beta)
{
const std::vector<int> reduceDims{0, 1, 2};
const std::vector<int> invariantDims{3};
bool matched = false;
int result = 0;
SimpleAppArgs args;
const auto tuple_object = reduce_shape_instances{};
if(argc > 1)
{
if(args.processArgs(argc, argv) < 0)
return (-1);
};
constexpr bool op_support_indices =
(ReduceOpId == ReduceTensorOp::MIN || ReduceOpId == ReduceTensorOp::MAX ||
ReduceOpId == ReduceTensorOp::AMAX);
// if input is half type, no reason to use float for indiced reduction operation and must use
// float for non-indiced reduction operation for accuracy
constexpr bool invalid_reduce_1 =
std::is_same<InDataType, ck::half_t>::value &&
((!op_support_indices && !std::is_same<AccDataType, float>::value) ||
(op_support_indices && !std::is_same<AccDataType, ck::half_t>::value));
static_for<0, std::tuple_size<reduce_shape_instances>::value, 1>{}([&](auto i) {
if(matched)
return;
// if input is float type, no reason to use double for indiced reduction operation
constexpr bool invalid_reduce_2 =
std::is_same<InDataType, float>::value &&
(op_support_indices && !std::is_same<AccDataType, float>::value);
using ShapeType = remove_cvref_t<decltype(std::get<i>(tuple_object))>;
// indices option can only be used when it is really needed
constexpr bool invalid_reduce_3 = (!op_support_indices && OutputIndex);
if(ShapeType::Rank_ != inLengths.size() || ShapeType::NumReduceDim_ != reduceDims.size())
return;
constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3);
if constexpr(invalid_reduce)
std::cout << "Reduction setting is not supported, exiting!" << std::endl;
Tensor<InDataType> in(args.inLengths);
result = reduce_blockwise_impl<InOutDataType,
AccDataType,
ReduceOpId,
ShapeType::Rank_,
ShapeType::NumReduceDim_,
PropagateNan,
OutputIndex>(
do_verification, init_method, time_kernel, inLengths, reduceDims, alpha, beta);
std::vector<size_t> outLengths;
matched = true;
});
if(invariantDims.empty())
outLengths.push_back(1);
else
for(auto dim : invariantDims)
outLengths.push_back(args.inLengths[dim]);
Tensor<OutDataType> out_ref(outLengths);
Tensor<OutDataType> out(outLengths);
Tensor<int> out_indices_ref(outLengths);
Tensor<int> out_indices(outLengths);
return (result == 0) ? true : false;
};
auto inStrides = in.mDesc.GetStrides();
auto outStrides = out.mDesc.GetStrides();
constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::AVG;
constexpr bool PropagateNan = true;
constexpr bool OutputIndex = false;
size_t invariant_total_length = out.mDesc.GetElementSize();
size_t reduce_total_length = in.mDesc.GetElementSize() / invariant_total_length;
int main(int argc, char* argv[])
{
bool pass = true;
float alpha = args.scales[0];
float beta = args.scales[1];
if(argc > 1)
{
SimpleAppArgs arg;
std::size_t num_thread = 1;
if(arg.processArgs(argc, argv) < 0)
return (-1);
if(args.do_verification)
if(arg.data_type == 0)
{
switch(args.init_method)
pass = reduce_blockwise_test<ck::half_t, float, ReduceOpId, PropagateNan, OutputIndex>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
else if(arg.data_type == 1)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
break;
case 2:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
pass = reduce_blockwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
if(beta != 0.0f)
for(size_t i = 0; i < out_ref.mDesc.GetElementSpaceSize(); i++)
out.mData[i] = out_ref.mData[i];
};
// these buffers are usually provided by the user application
DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpaceSize());
in_dev.ToDevice(in.mData.data());
if(beta != 0.0f)
out_dev.ToDevice(out.mData.data());
size_t indicesSizeInBytes = OutputIndex ? out.mDesc.GetElementSize() * sizeof(int32_t) : 0;
DeviceMem out_index_dev(indicesSizeInBytes);
InElementwiseOperation in_elementwise_op;
AccElementwiseOperation acc_elementwise_op;
std::tie(in_elementwise_op, acc_elementwise_op) =
reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(
static_cast<int32_t>(reduce_total_length));
if(args.do_verification)
else if(arg.data_type == 3)
{
ReductionHost<InDataType,
AccDataType,
OutDataType,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
Rank,
NumReduceDim,
PropagateNan,
OutputIndex>
hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
hostReduce.Run(alpha,
in.mData.data(),
beta,
out_ref.mData.data(),
out_indices_ref.mData.data(),
in_elementwise_op,
acc_elementwise_op);
};
std::vector<ck::index_t> i_inLengths;
std::vector<ck::index_t> i_inStrides;
std::vector<ck::index_t> i_outLengths;
std::vector<ck::index_t> i_outStrides;
i_inLengths.assign(args.inLengths.begin(), args.inLengths.end());
i_inStrides.assign(inStrides.begin(), inStrides.end());
i_outLengths.assign(outLengths.begin(), outLengths.end());
i_outStrides.assign(outStrides.begin(), outStrides.end());
auto reduce = DeviceReduceInstance{};
auto argument_ptr = reduce.MakeArgumentPointer(i_inLengths,
i_inStrides,
i_outLengths,
i_outStrides,
reduceDims,
alpha,
beta,
in_dev.GetDeviceBuffer(),
nullptr,
out_dev.GetDeviceBuffer(),
out_index_dev.GetDeviceBuffer(),
in_elementwise_op,
acc_elementwise_op);
if(!reduce.IsSupportedArgument(argument_ptr.get()))
pass = reduce_blockwise_test<int8_t, float, ReduceOpId, PropagateNan, OutputIndex>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
else if(arg.data_type == 5)
{
std::cout
<< "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<< std::endl;
};
std::string reduce_name = reduce.GetTypeString();
auto invoker_ptr = reduce.MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, args.time_kernel});
std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InDataType) +
invariant_total_length * sizeof(OutDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
<< std::endl;
bool pass = true;
if(args.do_verification)
pass = reduce_blockwise_test<ck::bhalf_t, float, ReduceOpId, PropagateNan, OutputIndex>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
else if(arg.data_type == 6)
{
out_dev.FromDevice(out.mData.data());
pass = pass && ck::utils::check_err(out.mData, out_ref.mData);
if(OutputIndex)
pass = reduce_blockwise_test<double, double, ReduceOpId, PropagateNan, OutputIndex>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
}
else
{
out_index_dev.FromDevice(out_indices.mData.data());
pass = pass && ck::utils::check_err(out_indices.mData, out_indices_ref.mData);
};
// for testing half_t
pass =
pass && reduce_blockwise_test<ck::half_t, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing float
pass = pass && reduce_blockwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing double
pass = pass && reduce_blockwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing bhalf_t
pass = pass &&
reduce_blockwise_test<ck::bhalf_t, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing int8_t
pass =
pass && reduce_blockwise_test<int8_t, int32_t, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing 3D input
pass = pass && reduce_blockwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 960}, {0, 1}, 1.0f, 0.0f);
// for testing 5D input
pass = pass && reduce_blockwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 2, 960}, {0, 1, 2, 3}, 1.0f, 0.0f);
};
return (pass ? 0 : 1);
}
};
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_multiblock.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_reduction.hpp"
#include "reduce_example_common.hpp"
template <typename InOutDataType,
typename AccDataType,
ck::ReduceTensorOp ReduceOpId,
ck::index_t Rank,
ck::index_t NumReduceDim,
bool PropagateNan,
bool OutputIndex>
int reduce_blockwise_impl(bool do_verification,
int init_method,
bool time_kernel,
const std::vector<size_t>& inLengths,
const std::vector<int>& reduceDims,
float alpha,
float beta)
{
using namespace ck;
using namespace ck::tensor_operation::device;
constexpr bool op_support_indices =
(ReduceOpId == ReduceTensorOp::MIN || ReduceOpId == ReduceTensorOp::MAX ||
ReduceOpId == ReduceTensorOp::AMAX);
constexpr bool invalid_reduce_1 = OutputIndex && !op_support_indices;
// 1) If InOutDataType is half_t, must use half_t as AccDataType for indexable reduction
// operations 2) If InOutDataType is half_t, must use float as AccDataType for non-indexable
// reduction operations
constexpr bool invalid_reduce_2 =
std::is_same<InOutDataType, half_t>::value &&
((!op_support_indices && !std::is_same<AccDataType, float>::value) ||
(op_support_indices && !std::is_same<AccDataType, half_t>::value));
// 1) If InOutDataType is float, must use float as AccDataType for indexable reduction
// operations
constexpr bool invalid_reduce_3 =
std::is_same<InOutDataType, float>::value &&
(op_support_indices && !std::is_same<AccDataType, float>::value);
// 1) If InOutDataType is int8_t, must use int8_t as AccDataType for indexable reduction
// operations 2) If InOutDataType is int8_t, must use int32_t as AccDataType for non-indexable
// reduction operations
constexpr bool invalid_reduce_4 =
std::is_same<InOutDataType, int8_t>::value &&
((!op_support_indices && !std::is_same<AccDataType, int32_t>::value) ||
(op_support_indices && !std::is_same<AccDataType, int8_t>::value));
// 1) If InOutDataType is int8_t, the supported operation must be either indexable operations or
// ADD/AVG
constexpr bool invalid_reduce_5 = std::is_same<InOutDataType, int8_t>::value &&
(!op_support_indices && ReduceOpId != ReduceTensorOp::ADD &&
ReduceOpId != ReduceTensorOp::AVG);
// 1) If InOutDataType is bhalf_t, must use float as AccDataType for all reduction operations
constexpr bool invalid_reduce_6 =
std::is_same<InOutDataType, bhalf_t>::value && !std::is_same<AccDataType, float>::value;
constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3 ||
invalid_reduce_4 || invalid_reduce_5 || invalid_reduce_6);
if(invalid_reduce)
{
std::cerr << "The reduction setting is invalid, exiting!" << std::endl;
return (-1);
};
using ReduceOperation = typename reduce_binary_operator<ReduceOpId>::opType;
using InElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::AccElementwiseOperation;
using DeviceReduceInstance =
ck::tensor_operation::device::DeviceReduceMultiBlock<InOutDataType,
AccDataType,
InOutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
InMemoryDataOperationEnum::Set,
PropagateNan,
OutputIndex,
false, // HaveIndexInputIfOutputIndex
256, // BlockSize
4, // MThreadClusterSize
64, // KThreadClusterSize
1, // MThreadSliceSize
1, // KThreadSliceSize
0, // InSrcVectorDim
1, // InSrceVectorSize
1>; // OutDstVectorSize
Tensor<InOutDataType> in(inLengths);
std::vector<size_t> outLengths;
std::vector<int> invariantDims = get_invariant_dims<Rank, NumReduceDim>(reduceDims);
if(invariantDims.empty())
outLengths.push_back(1);
else
for(auto dim : invariantDims)
outLengths.push_back(inLengths[dim]);
Tensor<InOutDataType> out_ref(outLengths);
Tensor<InOutDataType> out(outLengths);
Tensor<int> out_indices_ref(outLengths);
Tensor<int> out_indices(outLengths);
auto inStrides = in.mDesc.GetStrides();
auto outStrides = out.mDesc.GetStrides();
size_t invariant_total_length = out.mDesc.GetElementSize();
size_t reduce_total_length = in.mDesc.GetElementSize() / invariant_total_length;
std::size_t num_thread = 1;
if(do_verification)
{
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
break;
case 2:
in.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0},
num_thread);
}
if(beta != 0.0f)
for(size_t i = 0; i < out_ref.mDesc.GetElementSpaceSize(); i++)
out.mData[i] = out_ref.mData[i];
};
// these buffers are usually provided by the user application
DeviceMem in_dev(sizeof(InOutDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem out_dev(sizeof(InOutDataType) * out.mDesc.GetElementSpaceSize());
in_dev.ToDevice(in.mData.data());
if(beta != 0.0f)
out_dev.ToDevice(out.mData.data());
size_t indicesSizeInBytes = OutputIndex ? out.mDesc.GetElementSize() * sizeof(int32_t) : 0;
DeviceMem out_index_dev(indicesSizeInBytes);
InElementwiseOperation in_elementwise_op;
AccElementwiseOperation acc_elementwise_op;
std::tie(in_elementwise_op, acc_elementwise_op) =
reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(
static_cast<int32_t>(reduce_total_length));
if(do_verification)
{
ReductionHost<InOutDataType,
AccDataType,
InOutDataType,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
Rank,
NumReduceDim,
PropagateNan,
OutputIndex>
hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
hostReduce.Run(alpha,
in.mData.data(),
beta,
out_ref.mData.data(),
out_indices_ref.mData.data(),
in_elementwise_op,
acc_elementwise_op);
};
std::vector<ck::index_t> i_inLengths;
std::vector<ck::index_t> i_inStrides;
std::vector<ck::index_t> i_outLengths;
std::vector<ck::index_t> i_outStrides;
i_inLengths.assign(inLengths.begin(), inLengths.end());
i_inStrides.assign(inStrides.begin(), inStrides.end());
i_outLengths.assign(outLengths.begin(), outLengths.end());
i_outStrides.assign(outStrides.begin(), outStrides.end());
auto reduce = DeviceReduceInstance{};
auto argument_ptr = reduce.MakeArgumentPointer(i_inLengths,
i_inStrides,
i_outLengths,
i_outStrides,
reduceDims,
alpha,
beta,
in_dev.GetDeviceBuffer(),
nullptr,
out_dev.GetDeviceBuffer(),
out_index_dev.GetDeviceBuffer(),
in_elementwise_op,
acc_elementwise_op);
if(!reduce.IsSupportedArgument(argument_ptr.get()))
{
std::cerr
<< "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<< std::endl;
return (-2);
};
std::string reduce_name = reduce.GetTypeString();
auto invoker_ptr = reduce.MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InOutDataType) +
invariant_total_length * sizeof(InOutDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
<< std::endl;
bool pass = true;
if(do_verification)
{
out_dev.FromDevice(out.mData.data());
pass = pass && ck::utils::check_err(out.mData, out_ref.mData);
if(OutputIndex)
{
out_index_dev.FromDevice(out_indices.mData.data());
pass = pass && ck::utils::check_err(out_indices.mData, out_indices_ref.mData);
};
};
return (pass ? 0 : 1);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
template <ck::index_t Rank, ck::index_t NumReduceDim>
std::vector<int> get_invariant_dims(const std::vector<int>& reduceDims)
{
assert(NumReduceDim == reduceDims.size());
int reduceFlag = 0;
// flag the bits for the reduceDims
for(int i = 0; i < NumReduceDim; i++)
{
reduceFlag |= 1 << reduceDims[i];
};
std::vector<int> invariantDims;
// collect invariant dimensions
for(int i = 0; i < Rank; i++)
if((reduceFlag & (1 << i)) == 0)
{
invariantDims.push_back(i);
};
return invariantDims;
};
template <ck::index_t Rank, ck::index_t NumReduceDim>
struct ReduceShape
{
static constexpr ck::index_t Rank_ = Rank;
static constexpr ck::index_t NumReduceDim_ = NumReduceDim;
};
using reduce_shape_instances = std::tuple<ReduceShape<3, 1>,
ReduceShape<3, 2>,
ReduceShape<4, 1>,
ReduceShape<4, 2>,
ReduceShape<4, 3>,
ReduceShape<5, 1>,
ReduceShape<5, 2>,
ReduceShape<5, 3>,
ReduceShape<5, 4>>;
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/utility/reduction_enums.hpp"
#include "reduce_multiblock_atomic_add_impl.hpp"
#include "reduce_example_common.hpp"
using namespace ck;
using namespace ck::tensor_operation::device;
static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
{"verify", required_argument, nullptr, 'v'},
{"help", no_argument, nullptr, '?'},
{nullptr, 0, nullptr, 0}};
class SimpleAppArgs
{
private:
int option_index = 0;
public:
std::vector<size_t> inLengths = {16, 64, 32, 960};
std::vector<int> reduceDims = {0, 1, 2};
std::vector<float> scales = {1.0f, 0.0f};
bool do_verification = true;
int data_type = 1;
int init_method = 2;
bool time_kernel = true;
public:
void show_usage(const char* cmd)
{
std::cout << "Usage of " << cmd << std::endl;
std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
<< std::endl;
std::cout << "--reduceDims or -R, comma separated list of to-reduce dimensions"
<< std::endl;
std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
<< std::endl;
std::cout << "Arg1: data type (0: fp32, 1: fp64)" << std::endl;
std::cout << "Arg2 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
<< std::endl;
std::cout << "Arg3 -- time kernel (0=no, 1=yes)" << std::endl;
};
int processArgs(int argc, char* argv[])
{
using ck::host_common::getTypeValuesFromString;
int ch;
while(1)
{
ch = getopt_long(argc, argv, "D:R:v:l:", long_options, &option_index);
if(ch == -1)
break;
switch(ch)
{
case 'D':
if(!optarg)
throw std::runtime_error("Invalid option format!");
inLengths = getTypeValuesFromString<size_t>(optarg);
break;
case 'R':
if(!optarg)
throw std::runtime_error("Invalid option format!");
reduceDims = getTypeValuesFromString<int>(optarg);
break;
case 'v':
if(!optarg)
throw std::runtime_error("Invalid option format!");
do_verification = static_cast<bool>(std::atoi(optarg));
break;
case '?':
if(std::string(long_options[option_index].name) == "help")
{
show_usage(argv[0]);
return (-1);
};
break;
default: show_usage(argv[0]); return (-1);
};
};
if(optind + 3 > argc)
{
throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");
};
data_type = std::atoi(argv[optind++]);
init_method = std::atoi(argv[optind++]);
time_kernel = static_cast<bool>(std::atoi(argv[optind]));
if(scales.empty())
{
scales.push_back(1.0f);
scales.push_back(0.0f);
};
return (0);
};
};
template <typename InOutDataType,
typename AccDataType,
ReduceTensorOp ReduceOpId,
index_t PropagateNan>
bool reduce_multiblock_atomic_add_test(bool do_verification,
int init_method,
bool time_kernel,
const std::vector<size_t>& inLengths,
const std::vector<int>& reduceDims,
float alpha,
float beta)
{
bool matched = false;
int result = 0;
const auto tuple_object = reduce_shape_instances{};
static_for<0, std::tuple_size<reduce_shape_instances>::value, 1>{}([&](auto i) {
if(matched)
return;
using ShapeType = remove_cvref_t<decltype(std::get<i>(tuple_object))>;
if(ShapeType::Rank_ != inLengths.size() || ShapeType::NumReduceDim_ != reduceDims.size())
return;
result = reduce_multiblock_atomic_add_impl<InOutDataType,
AccDataType,
ReduceOpId,
ShapeType::Rank_,
ShapeType::NumReduceDim_,
PropagateNan>(
do_verification, init_method, time_kernel, inLengths, reduceDims, alpha, beta);
matched = true;
});
return (result == 0) ? true : false;
};
constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::AVG;
constexpr bool PropagateNan = true;
int main(int argc, char* argv[])
{
bool pass = true;
if(argc > 1)
{
SimpleAppArgs arg;
if(arg.processArgs(argc, argv) < 0)
return (-1);
if(arg.data_type == 0)
{
pass = reduce_multiblock_atomic_add_test<float, float, ReduceOpId, PropagateNan>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
else if(arg.data_type == 1)
{
pass = reduce_multiblock_atomic_add_test<double, double, ReduceOpId, PropagateNan>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
}
else
{
// for testing float
pass = pass && reduce_multiblock_atomic_add_test<float, float, ReduceOpId, PropagateNan>(
true, 2, false, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing double
pass = pass && reduce_multiblock_atomic_add_test<double, double, ReduceOpId, PropagateNan>(
true, 2, false, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing 3D input
pass = pass && reduce_multiblock_atomic_add_test<float, float, ReduceOpId, PropagateNan>(
true, 2, false, {16, 64, 960}, {0, 1}, 1.0f, 0.0f);
// for testing 5D input
pass = pass && reduce_multiblock_atomic_add_test<float, float, ReduceOpId, PropagateNan>(
true, 2, false, {16, 64, 32, 2, 960}, {0, 1, 2, 3}, 1.0f, 0.0f);
};
return (pass ? 0 : 1);
};
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_multiblock.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_reduction.hpp"
#include "reduce_example_common.hpp"
template <typename InOutDataType,
typename AccDataType,
ck::ReduceTensorOp ReduceOpId,
ck::index_t Rank,
ck::index_t NumReduceDim,
bool PropagateNan>
int reduce_multiblock_atomic_add_impl(bool do_verification,
int init_method,
bool time_kernel,
const std::vector<size_t>& inLengths,
const std::vector<int>& reduceDims,
float alpha,
float beta)
{
using namespace ck;
using namespace ck::tensor_operation::device;
constexpr bool op_support_atomic_add =
(ReduceOpId == ReduceTensorOp::ADD || ReduceOpId == ReduceTensorOp::AVG);
constexpr bool invalid_reduce_1 = !op_support_atomic_add;
constexpr bool invalid_reduce_2 =
!(std::is_same<InOutDataType, float>::value || std::is_same<InOutDataType, double>::value);
constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2);
if(invalid_reduce)
{
std::cerr << "The reduction setting is invalid, exiting!" << std::endl;
return (-1);
};
using ReduceOperation = typename reduce_binary_operator<ReduceOpId>::opType;
using InElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::AccElementwiseOperation;
using DeviceReduceInstance =
ck::tensor_operation::device::DeviceReduceMultiBlock<InOutDataType,
AccDataType,
InOutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
InMemoryDataOperationEnum::AtomicAdd,
PropagateNan,
false,
false, // HaveIndexInputIfOutputIndex
256,
4,
64,
1,
1,
0,
1,
1>;
Tensor<InOutDataType> in(inLengths);
std::vector<size_t> outLengths;
std::vector<int> invariantDims = get_invariant_dims<Rank, NumReduceDim>(reduceDims);
if(invariantDims.empty())
outLengths.push_back(1);
else
for(auto dim : invariantDims)
outLengths.push_back(inLengths[dim]);
Tensor<InOutDataType> out_ref(outLengths);
Tensor<InOutDataType> out(outLengths);
auto inStrides = in.mDesc.GetStrides();
auto outStrides = out.mDesc.GetStrides();
size_t invariant_total_length = out.mDesc.GetElementSize();
size_t reduce_total_length = in.mDesc.GetElementSize() / invariant_total_length;
std::size_t num_thread = 1;
if(do_verification)
{
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
break;
case 2:
in.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0},
num_thread);
}
if(beta != 0.0f)
for(size_t i = 0; i < out_ref.mDesc.GetElementSpaceSize(); i++)
out.mData[i] = out_ref.mData[i];
};
// these buffers are usually provided by the user application
DeviceMem in_dev(sizeof(InOutDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem out_dev(sizeof(InOutDataType) * out.mDesc.GetElementSpaceSize());
in_dev.ToDevice(in.mData.data());
if(beta != 0.0f)
out_dev.ToDevice(out.mData.data());
InElementwiseOperation in_elementwise_op;
AccElementwiseOperation acc_elementwise_op;
std::tie(in_elementwise_op, acc_elementwise_op) =
reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(
static_cast<int32_t>(reduce_total_length));
if(do_verification)
{
ReductionHost<InOutDataType,
AccDataType,
InOutDataType,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
Rank,
NumReduceDim,
PropagateNan,
false>
hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
hostReduce.Run(alpha,
in.mData.data(),
beta,
out_ref.mData.data(),
nullptr,
in_elementwise_op,
acc_elementwise_op);
};
std::vector<ck::index_t> i_inLengths;
std::vector<ck::index_t> i_inStrides;
std::vector<ck::index_t> i_outLengths;
std::vector<ck::index_t> i_outStrides;
i_inLengths.assign(inLengths.begin(), inLengths.end());
i_inStrides.assign(inStrides.begin(), inStrides.end());
i_outLengths.assign(outLengths.begin(), outLengths.end());
i_outStrides.assign(outStrides.begin(), outStrides.end());
auto reduce = DeviceReduceInstance{};
auto argument_ptr = reduce.MakeArgumentPointer(i_inLengths,
i_inStrides,
i_outLengths,
i_outStrides,
reduceDims,
alpha,
beta,
in_dev.GetDeviceBuffer(),
nullptr,
out_dev.GetDeviceBuffer(),
nullptr,
in_elementwise_op,
acc_elementwise_op);
if(!reduce.IsSupportedArgument(argument_ptr.get()))
{
std::cerr
<< "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<< std::endl;
return (-2);
};
std::string reduce_name = reduce.GetTypeString();
auto invoker_ptr = reduce.MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InOutDataType) +
invariant_total_length * sizeof(InOutDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
<< std::endl;
bool pass = true;
if(do_verification)
{
out_dev.FromDevice(out.mData.data());
pass = pass && ck::utils::check_err(out.mData, out_ref.mData);
};
return (pass ? 0 : 1);
}
add_example_executable(example_gemm_add_add_mean_meansquare_xdl_fp16 gemm_add_add_mean_meansquare_xdl_fp16.cpp)
add_example_executable(example_gemm_mean_meansquare_xdl_fp16 gemm_mean_meansquare_xdl_fp16.cpp)
#exclude GEMM+max exampe from testing, since there is random failure on gfx908
#https://github.com/ROCmSoftwarePlatform/composable_kernel/issues/358
#TODO: fix the failure and re-enable this test
add_example_executable_no_testing(example_gemm_max_xdl_fp16 gemm_max_xdl_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
// DataType
using ADataType = F16;
using BDataType = F16;
using GemmAccDataType = F32;
using CShuffleDataType = F32;
using D0DataType = F16;
using D1DataType = F16;
using DsDataType = ck::Tuple<D0DataType, D1DataType>;
using EDataType = F16;
using ReduceAccDataType = F32;
using R0DataType = F32;
using R1DataType = F32;
using RsDataType = ck::Tuple<R0DataType, R1DataType>;
// Layout
using ALayout = Row;
using BLayout = Col;
using D1Layout = Row;
using ELayout = D1Layout;
// Elementwise op
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddAdd = ck::tensor_operation::element_wise::AddAdd;
using Square = ck::tensor_operation::element_wise::UnarySquare;
using Div = ck::tensor_operation::element_wise::UnaryDivide;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddAdd;
using QsElementOp = ck::Tuple<PassThrough, Square>;
using RsElementOp = ck::Tuple<Div, Div>;
// ReduceOp
using R0ThreadReduceOp = ck::reduce::Add;
using R1ThreadReduceOp = ck::reduce::Add;
using RsThreadReduceOp = ck::Tuple<R0ThreadReduceOp, R1ThreadReduceOp>;
static constexpr auto R0GlobalReduceOp = ck::InMemoryDataOperationEnum::AtomicAdd;
static constexpr auto R1GlobalReduceOp = ck::InMemoryDataOperationEnum::AtomicAdd;
using RsGlobalReduceOp = ck::InMemoryDataOperationEnumSequence<R0GlobalReduceOp, R1GlobalReduceOp>;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleDMultipleR_Xdl_CShuffle
//######| ALayout| BLayout| ELayout| AData| BData| GemmAccData| CShuffle| DsData| EData| ReduceAccData| RsData| A| B| CDE| Qs| Rs| Thread| Global| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CDRThreadTransfer| CDE| RThreadTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ReduceThreadTransfer| DstScalarPerVector|
//######| | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _MPerBlock_NPerBlock| ScalarPerVector| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _NPerBlock| |
< ALayout, BLayout, ELayout, ADataType, BDataType, GemmAccDataType, CShuffleDataType, DsDataType, EDataType, ReduceAccDataType, RsDataType, AElementOp, BElementOp, CDEElementOp, QsElementOp, RsElementOp, RsThreadReduceOp, RsGlobalReduceOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<64, 4>, 4, 1>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
EDataType,
GemmAccDataType,
AElementOp,
BElementOp,
PassThrough>;
template <typename ADataType,
typename BDataType,
typename D0DataType,
typename D1DataType,
typename EDataType,
typename R0DataType,
typename R1DataType>
void DumpPerf(float ave_time, int M, int N, int K)
{
std::size_t flop = std::size_t(2) * M * N * K + std::size_t(2) * M * N;
std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(D0DataType) * M * N + sizeof(D1DataType) * M * N +
sizeof(EDataType) * M * N + sizeof(R0DataType) * M +
sizeof(R1DataType) * M;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gemm_gb_per_sec = gemm_num_byte / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gemm_gb_per_sec
<< " GB/s, " << std::endl;
}
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({len}),
std::vector<std::size_t>({stride}));
};
auto f_host_tensor_descriptor2d =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
int main()
{
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t K = 1024;
ck::index_t StrideA = 1024;
ck::index_t StrideB = 1024;
ck::index_t StrideD0 = 0;
ck::index_t StrideD1 = 1024;
ck::index_t StrideE = 1024;
Tensor<ADataType> a_m_k(f_host_tensor_descriptor2d(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor2d(K, N, StrideB, BLayout{}));
Tensor<D0DataType> d0_n(f_host_tensor_descriptor1d(N, 1));
Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor2d(M, N, StrideD1, D1Layout{}));
Tensor<EDataType> e_m_n(f_host_tensor_descriptor2d(M, N, StrideE, ELayout{}));
Tensor<R0DataType> r0_m(f_host_tensor_descriptor1d(M, 1));
Tensor<R1DataType> r1_m(f_host_tensor_descriptor1d(M, 1));
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{-1, 1});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-1, 1});
d0_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-1, 1});
d1_m_n.GenerateTensorValue(GeneratorTensor_3<D1DataType>{-1, 1});
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d0_device_buf(sizeof(D0DataType) * d0_n.mDesc.GetElementSpaceSize());
DeviceMem d1_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n.mDesc.GetElementSpaceSize());
DeviceMem r0_device_buf(sizeof(R0DataType) * r0_m.mDesc.GetElementSpaceSize());
DeviceMem r1_device_buf(sizeof(R1DataType) * r1_m.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d0_device_buf.ToDevice(d0_n.mData.data());
d1_device_buf.ToDevice(d1_m_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
auto qs_element_op = QsElementOp{};
auto rs_element_op = RsElementOp{N, N};
// Prepare GEMM, mean, mean_square
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
{d0_device_buf.GetDeviceBuffer(), d1_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
{r0_device_buf.GetDeviceBuffer(), r1_device_buf.GetDeviceBuffer()},
M,
N,
K,
StrideA,
StrideB,
{StrideD0, StrideD1},
StrideE,
a_element_op,
b_element_op,
cde_element_op,
qs_element_op,
rs_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error("wrong! this device_op instance does not support this problem");
}
// init reducetion buffer to 0
r0_device_buf.SetZero();
r1_device_buf.SetZero();
invoker.Run(argument, StreamConfig{nullptr, false});
bool do_verification = true;
bool pass = true;
if(do_verification)
{
auto I0 = ck::Number<0>{};
auto I1 = ck::Number<1>{};
Tensor<EDataType> e_m_n_host(e_m_n.mDesc);
Tensor<R0DataType> r0_m_host(r0_m.mDesc);
Tensor<R1DataType> r1_m_host(r1_m.mDesc);
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, e_m_n_host, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
auto reduce0_op = R0ThreadReduceOp{};
auto reduce1_op = R1ThreadReduceOp{};
for(int m = 0; m < M; ++m)
{
auto reduce0_acc = reduce0_op.GetIdentityValue<ReduceAccDataType>();
auto reduce1_acc = reduce1_op.GetIdentityValue<ReduceAccDataType>();
for(int n = 0; n < N; ++n)
{
ReduceAccDataType square_e_val;
auto e_val = ck::type_convert<GemmAccDataType>(e_m_n_host(m, n));
auto d0_val = ck::type_convert<GemmAccDataType>(d0_n(n));
auto d1_val = ck::type_convert<GemmAccDataType>(d1_m_n(m, n));
cde_element_op(e_val, e_val, d0_val, d1_val);
e_m_n_host(m, n) = ck::type_convert<EDataType>(e_val);
auto e_val_reduce = ck::type_convert<ReduceAccDataType>(e_val);
qs_element_op[I1](square_e_val, e_val_reduce);
reduce0_op(reduce0_acc, e_val_reduce);
reduce1_op(reduce1_acc, square_e_val);
}
rs_element_op[I0](reduce0_acc, reduce0_acc);
rs_element_op[I1](reduce1_acc, reduce1_acc);
r0_m_host(m) = ck::type_convert<R0DataType>(reduce0_acc);
r1_m_host(m) = ck::type_convert<R1DataType>(reduce1_acc);
}
e_device_buf.FromDevice(e_m_n.mData.data());
r0_device_buf.FromDevice(r0_m.mData.data());
r1_device_buf.FromDevice(r1_m.mData.data());
pass = ck::utils::check_err(
e_m_n.mData, e_m_n_host.mData, "Error: Incorrect results c", 1e-2, 1e-2);
pass &= ck::utils::check_err(
r0_m.mData, r0_m_host.mData, "Error: Incorrect results d0", 1e-2, 1e-2);
pass &= ck::utils::check_err(
r1_m.mData, r1_m_host.mData, "Error: Incorrect results d1", 1e-2, 1e-2);
}
bool time_kernel = true;
if(time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
DumpPerf<ADataType, BDataType, D0DataType, D1DataType, EDataType, R0DataType, R1DataType>(
ave_time, M, N, K);
}
return pass ? 0 : 1;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment