Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
1dbdab56
Commit
1dbdab56
authored
Aug 18, 2022
by
Jing Zhang
Browse files
merge develop
parents
d2e49b23
bac7df8f
Changes
192
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2053 additions
and
449 deletions
+2053
-449
CMakeLists.txt
CMakeLists.txt
+1
-1
Jenkinsfile
Jenkinsfile
+137
-17
client_example/03_gemm_layernorm/gemm_add_add_layernorm.cpp
client_example/03_gemm_layernorm/gemm_add_add_layernorm.cpp
+7
-4
example/01_gemm/CMakeLists.txt
example/01_gemm/CMakeLists.txt
+1
-0
example/01_gemm/gemm_xdl_skip_b_lds_fp16.cpp
example/01_gemm/gemm_xdl_skip_b_lds_fp16.cpp
+260
-0
example/04_gemm_add_add_fastgelu/CMakeLists.txt
example/04_gemm_add_add_fastgelu/CMakeLists.txt
+3
-0
example/04_gemm_add_add_fastgelu/gemm_add_add_fastgelu_xdl_bf16.cpp
..._gemm_add_add_fastgelu/gemm_add_add_fastgelu_xdl_bf16.cpp
+67
-0
example/04_gemm_add_add_fastgelu/gemm_add_add_fastgelu_xdl_fp16.cpp
..._gemm_add_add_fastgelu/gemm_add_add_fastgelu_xdl_fp16.cpp
+8
-190
example/04_gemm_add_add_fastgelu/gemm_add_add_fastgelu_xdl_fp32.cpp
..._gemm_add_add_fastgelu/gemm_add_add_fastgelu_xdl_fp32.cpp
+67
-0
example/04_gemm_add_add_fastgelu/gemm_add_add_fastgelu_xdl_int8.cpp
..._gemm_add_add_fastgelu/gemm_add_add_fastgelu_xdl_int8.cpp
+67
-0
example/04_gemm_add_add_fastgelu/run_gemm_add_add_fastgelu_example.inc
...mm_add_add_fastgelu/run_gemm_add_add_fastgelu_example.inc
+203
-0
example/12_reduce/CMakeLists.txt
example/12_reduce/CMakeLists.txt
+1
-0
example/12_reduce/README.md
example/12_reduce/README.md
+28
-7
example/12_reduce/reduce_blockwise.cpp
example/12_reduce/reduce_blockwise.cpp
+152
-230
example/12_reduce/reduce_blockwise_impl.hpp
example/12_reduce/reduce_blockwise_impl.hpp
+275
-0
example/12_reduce/reduce_example_common.hpp
example/12_reduce/reduce_example_common.hpp
+48
-0
example/12_reduce/reduce_multiblock_atomic_add.cpp
example/12_reduce/reduce_multiblock_atomic_add.cpp
+212
-0
example/12_reduce/reduce_multiblock_atomic_add_impl.hpp
example/12_reduce/reduce_multiblock_atomic_add_impl.hpp
+230
-0
example/16_gemm_multi_d_multi_reduces/CMakeLists.txt
example/16_gemm_multi_d_multi_reduces/CMakeLists.txt
+7
-0
example/16_gemm_multi_d_multi_reduces/gemm_add_add_mean_meansquare_xdl_fp16.cpp
...d_multi_reduces/gemm_add_add_mean_meansquare_xdl_fp16.cpp
+279
-0
No files found.
CMakeLists.txt
View file @
1dbdab56
...
@@ -8,7 +8,7 @@ list(APPEND CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
...
@@ -8,7 +8,7 @@ list(APPEND CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
enable_testing
()
enable_testing
()
set
(
ROCM_SYMLINK_LIBS OFF
)
set
(
ROCM_SYMLINK_LIBS OFF
)
find_package
(
ROCM
0.8
REQUIRED PATHS /opt/rocm
)
find_package
(
ROCM REQUIRED PATHS /opt/rocm
)
include
(
ROCMInstallTargets
)
include
(
ROCMInstallTargets
)
include
(
ROCMPackageConfigHelpers
)
include
(
ROCMPackageConfigHelpers
)
...
...
Jenkinsfile
View file @
1dbdab56
...
@@ -18,6 +18,89 @@ def runShell(String command){
...
@@ -18,6 +18,89 @@ def runShell(String command){
return
(
output
!=
""
)
return
(
output
!=
""
)
}
}
def
getDockerImageName
(){
def
img
=
"${env.MIOPEN_IMAGE_URL}:composable_kernels_${params.COMPILER_VERSION}"
return
img
}
def
getDockerImage
(
Map
conf
=[:]){
env
.
DOCKER_BUILDKIT
=
1
def
prefixpath
=
conf
.
get
(
"prefixpath"
,
"/opt/rocm"
)
// prefix:/opt/rocm
def
gpu_arch
=
conf
.
get
(
"gpu_arch"
,
"gfx908"
)
// prebuilt dockers should have all the architectures enabled so one image can be used for all stages
def
no_cache
=
conf
.
get
(
"no_cache"
,
false
)
def
dockerArgs
=
"--build-arg BUILDKIT_INLINE_CACHE=1 --build-arg PREFIX=${prefixpath} --build-arg compiler_version='${params.COMPILER_VERSION}' "
if
(
env
.
CCACHE_HOST
)
{
def
check_host
=
sh
(
script:
"""(printf "PING\r\n";) | nc -N ${env.CCACHE_HOST} 6379 """
,
returnStdout:
true
).
trim
()
if
(
check_host
==
"+PONG"
)
{
echo
"FOUND CCACHE SERVER: ${CCACHE_HOST}"
}
else
{
echo
"CCACHE SERVER: ${CCACHE_HOST} NOT FOUND, got ${check_host} response"
}
dockerArgs
=
dockerArgs
+
" --build-arg CCACHE_SECONDARY_STORAGE='redis://${env.CCACHE_HOST}' --build-arg COMPILER_LAUNCHER='ccache' "
env
.
CCACHE_DIR
=
"""/tmp/ccache_store"""
env
.
CCACHE_SECONDARY_STORAGE
=
"""redis://${env.CCACHE_HOST}"""
}
if
(
no_cache
)
{
dockerArgs
=
dockerArgs
+
" --no-cache "
}
echo
"Docker Args: ${dockerArgs}"
def
image
=
getDockerImageName
()
//Check if image exists
def
retimage
try
{
echo
"Pulling down image: ${image}"
retimage
=
docker
.
image
(
"${image}"
)
retimage
.
pull
()
}
catch
(
Exception
ex
)
{
error
"Unable to locate image: ${image}"
}
return
[
retimage
,
image
]
}
def
buildDocker
(
install_prefix
){
show_node_info
()
env
.
DOCKER_BUILDKIT
=
1
checkout
scm
def
image_name
=
getDockerImageName
()
echo
"Building Docker for ${image_name}"
def
dockerArgs
=
"--build-arg BUILDKIT_INLINE_CACHE=1 --build-arg PREFIX=${install_prefix} --build-arg compiler_version='${params.COMPILER_VERSION}' "
if
(
env
.
CCACHE_HOST
)
{
def
check_host
=
sh
(
script:
"""(printf "PING\\r\\n";) | nc -N ${env.CCACHE_HOST} 6379 """
,
returnStdout:
true
).
trim
()
if
(
check_host
==
"+PONG"
)
{
echo
"FOUND CCACHE SERVER: ${CCACHE_HOST}"
}
else
{
echo
"CCACHE SERVER: ${CCACHE_HOST} NOT FOUND, got ${check_host} response"
}
dockerArgs
=
dockerArgs
+
" --build-arg CCACHE_SECONDARY_STORAGE='redis://${env.CCACHE_HOST}' --build-arg COMPILER_LAUNCHER='ccache' "
env
.
CCACHE_DIR
=
"""/tmp/ccache_store"""
env
.
CCACHE_SECONDARY_STORAGE
=
"""redis://${env.CCACHE_HOST}"""
}
echo
"Build Args: ${dockerArgs}"
try
{
echo
"Checking for image: ${image_name}"
sh
"docker manifest inspect --insecure ${image_name}"
echo
"Image: ${image_name} found!! Skipping building image"
}
catch
(
Exception
ex
){
echo
"Unable to locate image: ${image_name}. Building image now"
retimage
=
docker
.
build
(
"${image_name}"
,
dockerArgs
+
' .'
)
retimage
.
push
()
}
}
def
cmake_build
(
Map
conf
=[:]){
def
cmake_build
(
Map
conf
=[:]){
def
compiler
=
conf
.
get
(
"compiler"
,
"/opt/rocm/bin/hipcc"
)
def
compiler
=
conf
.
get
(
"compiler"
,
"/opt/rocm/bin/hipcc"
)
...
@@ -100,9 +183,10 @@ def buildHipClangJob(Map conf=[:]){
...
@@ -100,9 +183,10 @@ def buildHipClangJob(Map conf=[:]){
// def dockerOpts="--device=/dev/kfd --device=/dev/dri --group-add video --group-add render --cap-add=SYS_PTRACE --security-opt seccomp=unconfined"
// def dockerOpts="--device=/dev/kfd --device=/dev/dri --group-add video --group-add render --cap-add=SYS_PTRACE --security-opt seccomp=unconfined"
def
dockerOpts
=
"--device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined"
def
dockerOpts
=
"--device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined"
if
(
conf
.
get
(
"enforce_xnack_on"
,
false
))
{
if
(
conf
.
get
(
"enforce_xnack_on"
,
false
))
{
dockerOpts
=
dockerOpts
+
" --env HSA_XNACK=1"
dockerOpts
=
dockerOpts
+
" --env HSA_XNACK=1
--env GPU_ARCH='${gpu_arch}'
"
}
}
def
dockerArgs
=
"--build-arg PREFIX=${prefixpath} --build-arg GPU_ARCH='${gpu_arch}' --build-arg compiler_version='${params.COMPILER_VERSION}' "
//def dockerArgs = "--build-arg PREFIX=${prefixpath} --build-arg GPU_ARCH='${gpu_arch}' --build-arg compiler_version='${params.COMPILER_VERSION}' "
def
dockerArgs
=
"--build-arg PREFIX=${prefixpath} --build-arg compiler_version='${params.COMPILER_VERSION}' "
if
(
params
.
COMPILER_VERSION
!=
"release"
){
if
(
params
.
COMPILER_VERSION
!=
"release"
){
dockerOpts
=
dockerOpts
+
" --env HIP_CLANG_PATH='/llvm-project/build/bin' "
dockerOpts
=
dockerOpts
+
" --env HIP_CLANG_PATH='/llvm-project/build/bin' "
}
}
...
@@ -113,7 +197,8 @@ def buildHipClangJob(Map conf=[:]){
...
@@ -113,7 +197,8 @@ def buildHipClangJob(Map conf=[:]){
gitStatusWrapper
(
credentialsId:
"${status_wrapper_creds}"
,
gitHubContext:
"Jenkins - ${variant}"
,
account:
'ROCmSoftwarePlatform'
,
repo:
'composable_kernel'
)
{
gitStatusWrapper
(
credentialsId:
"${status_wrapper_creds}"
,
gitHubContext:
"Jenkins - ${variant}"
,
account:
'ROCmSoftwarePlatform'
,
repo:
'composable_kernel'
)
{
try
{
try
{
retimage
=
docker
.
build
(
"${image}"
,
dockerArgs
+
'.'
)
//retimage = docker.build("${image}", dockerArgs + '.')
(
retimage
,
image
)
=
getDockerImage
(
conf
)
withDockerContainer
(
image:
image
,
args:
dockerOpts
)
{
withDockerContainer
(
image:
image
,
args:
dockerOpts
)
{
timeout
(
time:
5
,
unit:
'MINUTES'
){
timeout
(
time:
5
,
unit:
'MINUTES'
){
sh
'PATH="/opt/rocm/opencl/bin:/opt/rocm/opencl/bin/x86_64:$PATH" clinfo | tee clinfo.log'
sh
'PATH="/opt/rocm/opencl/bin:/opt/rocm/opencl/bin/x86_64:$PATH" clinfo | tee clinfo.log'
...
@@ -190,9 +275,9 @@ def runCKProfiler(Map conf=[:]){
...
@@ -190,9 +275,9 @@ def runCKProfiler(Map conf=[:]){
// def dockerOpts="--device=/dev/kfd --device=/dev/dri --group-add video --group-add render --cap-add=SYS_PTRACE --security-opt seccomp=unconfined"
// def dockerOpts="--device=/dev/kfd --device=/dev/dri --group-add video --group-add render --cap-add=SYS_PTRACE --security-opt seccomp=unconfined"
def
dockerOpts
=
"--device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined"
def
dockerOpts
=
"--device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined"
if
(
conf
.
get
(
"enforce_xnack_on"
,
false
))
{
if
(
conf
.
get
(
"enforce_xnack_on"
,
false
))
{
dockerOpts
=
dockerOpts
+
" --env HSA_XNACK=1"
dockerOpts
=
dockerOpts
+
" --env HSA_XNACK=1
--env GPU_ARCH='${gpu_arch}'
"
}
}
def
dockerArgs
=
"--build-arg PREFIX=${prefixpath} --build-arg
GPU_ARCH='${gpu_arch}' --build-arg
compiler_version='${params.COMPILER_VERSION}' "
def
dockerArgs
=
"--build-arg PREFIX=${prefixpath} --build-arg compiler_version='${params.COMPILER_VERSION}' "
if
(
params
.
COMPILER_VERSION
!=
"release"
){
if
(
params
.
COMPILER_VERSION
!=
"release"
){
dockerOpts
=
dockerOpts
+
" --env HIP_CLANG_PATH='/llvm-project/build/bin' "
dockerOpts
=
dockerOpts
+
" --env HIP_CLANG_PATH='/llvm-project/build/bin' "
}
}
...
@@ -202,7 +287,8 @@ def runCKProfiler(Map conf=[:]){
...
@@ -202,7 +287,8 @@ def runCKProfiler(Map conf=[:]){
gitStatusWrapper
(
credentialsId:
"${status_wrapper_creds}"
,
gitHubContext:
"Jenkins - ${variant}"
,
account:
'ROCmSoftwarePlatform'
,
repo:
'composable_kernel'
)
{
gitStatusWrapper
(
credentialsId:
"${status_wrapper_creds}"
,
gitHubContext:
"Jenkins - ${variant}"
,
account:
'ROCmSoftwarePlatform'
,
repo:
'composable_kernel'
)
{
try
{
try
{
retimage
=
docker
.
build
(
"${image}"
,
dockerArgs
+
'.'
)
//retimage = docker.build("${image}", dockerArgs + '.')
(
retimage
,
image
)
=
getDockerImage
(
conf
)
withDockerContainer
(
image:
image
,
args:
dockerOpts
)
{
withDockerContainer
(
image:
image
,
args:
dockerOpts
)
{
timeout
(
time:
5
,
unit:
'MINUTES'
){
timeout
(
time:
5
,
unit:
'MINUTES'
){
sh
'PATH="/opt/rocm/opencl/bin:/opt/rocm/opencl/bin/x86_64:$PATH" clinfo | tee clinfo.log'
sh
'PATH="/opt/rocm/opencl/bin:/opt/rocm/opencl/bin/x86_64:$PATH" clinfo | tee clinfo.log'
...
@@ -248,7 +334,7 @@ def runCKProfiler(Map conf=[:]){
...
@@ -248,7 +334,7 @@ def runCKProfiler(Map conf=[:]){
archiveArtifacts
"perf_batched_gemm_${gpu_arch}.log"
archiveArtifacts
"perf_batched_gemm_${gpu_arch}.log"
archiveArtifacts
"perf_grouped_gemm_${gpu_arch}.log"
archiveArtifacts
"perf_grouped_gemm_${gpu_arch}.log"
archiveArtifacts
"perf_conv_fwd_${gpu_arch}.log"
archiveArtifacts
"perf_conv_fwd_${gpu_arch}.log"
archiveArtifacts
"perf_conv_bwd_${gpu_arch}.log"
archiveArtifacts
"perf_conv_bwd_
data_
${gpu_arch}.log"
archiveArtifacts
"perf_gemm_bilinear_${gpu_arch}.log"
archiveArtifacts
"perf_gemm_bilinear_${gpu_arch}.log"
archiveArtifacts
"perf_reduction_${gpu_arch}.log"
archiveArtifacts
"perf_reduction_${gpu_arch}.log"
// stash perf files to master
// stash perf files to master
...
@@ -258,7 +344,7 @@ def runCKProfiler(Map conf=[:]){
...
@@ -258,7 +344,7 @@ def runCKProfiler(Map conf=[:]){
stash
name:
"perf_batched_gemm_${gpu_arch}.log"
stash
name:
"perf_batched_gemm_${gpu_arch}.log"
stash
name:
"perf_grouped_gemm_${gpu_arch}.log"
stash
name:
"perf_grouped_gemm_${gpu_arch}.log"
stash
name:
"perf_conv_fwd_${gpu_arch}.log"
stash
name:
"perf_conv_fwd_${gpu_arch}.log"
stash
name:
"perf_conv_bwd_${gpu_arch}.log"
stash
name:
"perf_conv_bwd_
data_
${gpu_arch}.log"
stash
name:
"perf_gemm_bilinear_${gpu_arch}.log"
stash
name:
"perf_gemm_bilinear_${gpu_arch}.log"
stash
name:
"perf_reduction_${gpu_arch}.log"
stash
name:
"perf_reduction_${gpu_arch}.log"
//we will process results on the master node
//we will process results on the master node
...
@@ -308,16 +394,17 @@ def process_results(Map conf=[:]){
...
@@ -308,16 +394,17 @@ def process_results(Map conf=[:]){
// Jenkins is complaining about the render group
// Jenkins is complaining about the render group
def
dockerOpts
=
"--cap-add=SYS_PTRACE --security-opt seccomp=unconfined"
def
dockerOpts
=
"--cap-add=SYS_PTRACE --security-opt seccomp=unconfined"
if
(
conf
.
get
(
"enforce_xnack_on"
,
false
))
{
if
(
conf
.
get
(
"enforce_xnack_on"
,
false
))
{
dockerOpts
=
dockerOpts
+
" --env HSA_XNACK=1"
dockerOpts
=
dockerOpts
+
" --env HSA_XNACK=1
--env GPU_ARCH='${gpu_arch}'
"
}
}
def
dockerArgs
=
"--build-arg PREFIX=${prefixpath} --build-arg
GPU_ARCH='${gpu_arch}' --build-arg
compiler_version='release' "
def
dockerArgs
=
"--build-arg PREFIX=${prefixpath} --build-arg compiler_version='release' "
def
variant
=
env
.
STAGE_NAME
def
variant
=
env
.
STAGE_NAME
def
retimage
def
retimage
gitStatusWrapper
(
credentialsId:
"${status_wrapper_creds}"
,
gitHubContext:
"Jenkins - ${variant}"
,
account:
'ROCmSoftwarePlatform'
,
repo:
'composable_kernel'
)
{
gitStatusWrapper
(
credentialsId:
"${status_wrapper_creds}"
,
gitHubContext:
"Jenkins - ${variant}"
,
account:
'ROCmSoftwarePlatform'
,
repo:
'composable_kernel'
)
{
try
{
try
{
retimage
=
docker
.
build
(
"${image}"
,
dockerArgs
+
'.'
)
//retimage = docker.build("${image}", dockerArgs + '.')
(
retimage
,
image
)
=
getDockerImage
(
conf
)
}
}
catch
(
org
.
jenkinsci
.
plugins
.
workflow
.
steps
.
FlowInterruptedException
e
){
catch
(
org
.
jenkinsci
.
plugins
.
workflow
.
steps
.
FlowInterruptedException
e
){
echo
"The job was cancelled or aborted"
echo
"The job was cancelled or aborted"
...
@@ -337,7 +424,7 @@ def process_results(Map conf=[:]){
...
@@ -337,7 +424,7 @@ def process_results(Map conf=[:]){
unstash
"perf_batched_gemm_${gpu_arch}.log"
unstash
"perf_batched_gemm_${gpu_arch}.log"
unstash
"perf_grouped_gemm_${gpu_arch}.log"
unstash
"perf_grouped_gemm_${gpu_arch}.log"
unstash
"perf_conv_fwd_${gpu_arch}.log"
unstash
"perf_conv_fwd_${gpu_arch}.log"
unstash
"perf_conv_bwd${gpu_arch}.log"
unstash
"perf_conv_bwd
_data_
${gpu_arch}.log"
unstash
"perf_gemm_bilinear_${gpu_arch}.log"
unstash
"perf_gemm_bilinear_${gpu_arch}.log"
unstash
"perf_reduction_${gpu_arch}.log"
unstash
"perf_reduction_${gpu_arch}.log"
sh
"./process_qa_data.sh ${gpu_arch}"
sh
"./process_qa_data.sh ${gpu_arch}"
...
@@ -372,14 +459,22 @@ pipeline {
...
@@ -372,14 +459,22 @@ pipeline {
parallelsAlwaysFailFast
()
parallelsAlwaysFailFast
()
}
}
parameters
{
parameters
{
booleanParam
(
name:
"BUILD_DOCKER"
,
defaultValue:
true
,
description:
"Force building docker image (default: true)"
)
string
(
string
(
name:
'COMPILER_VERSION'
,
name:
'COMPILER_VERSION'
,
defaultValue:
'ck-9110'
,
defaultValue:
'ck-9110'
,
description:
'Specify which version of compiler to use: ck-9110 (default), release, or amd-
mainline
-open.'
)
description:
'Specify which version of compiler to use: ck-9110 (default), release, or amd-
stg
-open.'
)
booleanParam
(
booleanParam
(
name:
"RUN_FULL_QA"
,
name:
"RUN_FULL_QA"
,
defaultValue:
false
,
defaultValue:
false
,
description:
"Select whether to run small set of performance tests (default) or full QA"
)
description:
"Select whether to run small set of performance tests (default) or full QA"
)
booleanParam
(
name:
"TEST_NODE_PERFORMANCE"
,
defaultValue:
false
,
description:
"Test the node GPU performance (default: false)"
)
}
}
environment
{
environment
{
dbuser
=
"${dbuser}"
dbuser
=
"${dbuser}"
...
@@ -393,7 +488,24 @@ pipeline {
...
@@ -393,7 +488,24 @@ pipeline {
DOCKER_BUILDKIT
=
"1"
DOCKER_BUILDKIT
=
"1"
}
}
stages
{
stages
{
stage
(
"Build Docker"
){
when
{
expression
{
params
.
BUILD_DOCKER
.
toBoolean
()
}
}
parallel
{
stage
(
'Docker /opt/rocm'
){
agent
{
label
rocmnode
(
"nogpu"
)
}
steps
{
buildDocker
(
'/opt/rocm'
)
}
}
}
}
stage
(
"Static checks"
)
{
stage
(
"Static checks"
)
{
when
{
beforeAgent
true
expression
{
!
params
.
TEST_NODE_PERFORMANCE
.
toBoolean
()
}
}
parallel
{
parallel
{
// enable after we move from hipcc to hip-clang
// enable after we move from hipcc to hip-clang
// stage('Tidy') {
// stage('Tidy') {
...
@@ -427,6 +539,10 @@ pipeline {
...
@@ -427,6 +539,10 @@ pipeline {
}
}
stage
(
"Tests"
)
stage
(
"Tests"
)
{
{
when
{
beforeAgent
true
expression
{
!
params
.
TEST_NODE_PERFORMANCE
.
toBoolean
()
}
}
parallel
parallel
{
{
stage
(
"Run Tests: gfx908"
)
stage
(
"Run Tests: gfx908"
)
...
@@ -457,6 +573,10 @@ pipeline {
...
@@ -457,6 +573,10 @@ pipeline {
}
}
stage
(
"Client App"
)
stage
(
"Client App"
)
{
{
when
{
beforeAgent
true
expression
{
!
params
.
TEST_NODE_PERFORMANCE
.
toBoolean
()
}
}
parallel
parallel
{
{
stage
(
"Run Client App"
)
stage
(
"Run Client App"
)
...
@@ -480,7 +600,7 @@ pipeline {
...
@@ -480,7 +600,7 @@ pipeline {
{
{
when
{
when
{
beforeAgent
true
beforeAgent
true
expression
{
!
params
.
RUN_FULL_QA
.
toBoolean
()
}
expression
{
!
params
.
RUN_FULL_QA
.
toBoolean
()
&&
!
params
.
TEST_NODE_PERFORMANCE
.
toBoolean
()
}
}
}
agent
{
label
rocmnode
(
"gfx908"
)}
agent
{
label
rocmnode
(
"gfx908"
)}
environment
{
environment
{
...
@@ -494,7 +614,7 @@ pipeline {
...
@@ -494,7 +614,7 @@ pipeline {
{
{
when
{
when
{
beforeAgent
true
beforeAgent
true
expression
{
params
.
RUN_FULL_QA
.
toBoolean
()
}
expression
{
params
.
RUN_FULL_QA
.
toBoolean
()
||
params
.
TEST_NODE_PERFORMANCE
.
toBoolean
()
}
}
}
agent
{
label
rocmnode
(
"gfx90a"
)}
agent
{
label
rocmnode
(
"gfx90a"
)}
environment
{
environment
{
...
@@ -513,7 +633,7 @@ pipeline {
...
@@ -513,7 +633,7 @@ pipeline {
stage
(
"Process results for gfx908"
){
stage
(
"Process results for gfx908"
){
when
{
when
{
beforeAgent
true
beforeAgent
true
expression
{
!
params
.
RUN_FULL_QA
.
toBoolean
()
}
expression
{
!
params
.
RUN_FULL_QA
.
toBoolean
()
&&
!
params
.
TEST_NODE_PERFORMANCE
.
toBoolean
()
}
}
}
agent
{
label
'mici'
}
agent
{
label
'mici'
}
steps
{
steps
{
...
@@ -523,7 +643,7 @@ pipeline {
...
@@ -523,7 +643,7 @@ pipeline {
stage
(
"Process results for gfx90a"
){
stage
(
"Process results for gfx90a"
){
when
{
when
{
beforeAgent
true
beforeAgent
true
expression
{
params
.
RUN_FULL_QA
.
toBoolean
()
}
expression
{
params
.
RUN_FULL_QA
.
toBoolean
()
||
params
.
TEST_NODE_PERFORMANCE
.
toBoolean
()
}
}
}
agent
{
label
'mici'
}
agent
{
label
'mici'
}
steps
{
steps
{
...
...
client_example/03_gemm_layernorm/gemm_add_add_layernorm.cpp
View file @
1dbdab56
...
@@ -128,11 +128,14 @@ bool RunDeviceNormalize2D(normalize_op_ptr& p_op,
...
@@ -128,11 +128,14 @@ bool RunDeviceNormalize2D(normalize_op_ptr& p_op,
std
::
array
<
void
*
,
1
>
output
=
{
p_y
};
std
::
array
<
void
*
,
1
>
output
=
{
p_y
};
auto
normalize_functor
=
ck
::
tensor_operation
::
element_wise
::
Normalize
{};
auto
normalize_functor
=
ck
::
tensor_operation
::
element_wise
::
Normalize
{};
auto
argument_ptr
=
p_op
->
MakeArgumentPointer
(
input
,
std
::
array
<
ck
::
index_t
,
2
>
xyLengths
=
{
M
,
N
};
std
::
array
<
ck
::
index_t
,
2
>
xyStrides
=
{
StrideX
,
1
};
auto
argument_ptr
=
p_op
->
MakeArgumentPointer
(
xyLengths
,
{
xyStrides
,
{
1
,
0
},
{
1
,
0
},
{
0
,
1
},
{
0
,
1
}},
{
xyStrides
},
input
,
output
,
output
,
{
M
,
N
},
{{
StrideX
,
1
},
{
1
,
0
},
{
1
,
0
},
{
0
,
1
},
{
0
,
1
}},
{{
StrideX
,
1
}},
ck
::
tensor_operation
::
element_wise
::
Normalize
{});
ck
::
tensor_operation
::
element_wise
::
Normalize
{});
if
(
p_op
->
IsSupportedArgument
(
argument_ptr
.
get
()))
if
(
p_op
->
IsSupportedArgument
(
argument_ptr
.
get
()))
...
...
example/01_gemm/CMakeLists.txt
View file @
1dbdab56
...
@@ -4,5 +4,6 @@ add_example_executable(example_gemm_dl_int8 gemm_dl_int8.cpp)
...
@@ -4,5 +4,6 @@ add_example_executable(example_gemm_dl_int8 gemm_dl_int8.cpp)
add_example_executable
(
example_gemm_xdl_fp16 gemm_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_fp16 gemm_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_bf16 gemm_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_xdl_bf16 gemm_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_xdl_int8 gemm_xdl_int8.cpp
)
add_example_executable
(
example_gemm_xdl_int8 gemm_xdl_int8.cpp
)
add_example_executable
(
example_gemm_xdl_skip_b_lds_fp16 gemm_xdl_skip_b_lds_fp16.cpp
)
# FIXME: re-enable this exampe as test when SWDEV-335738 is fixed
# FIXME: re-enable this exampe as test when SWDEV-335738 is fixed
add_example_executable_no_testing
(
example_gemm_xdl_fp64 gemm_xdl_fp64.cpp
)
add_example_executable_no_testing
(
example_gemm_xdl_fp64 gemm_xdl_fp64.cpp
)
example/1
6
_gemm
_reduce/gemm_reduce_xdl_max
_fp16.cpp
→
example/
0
1_gemm
/gemm_xdl_skip_b_lds
_fp16.cpp
View file @
1dbdab56
This diff is collapsed.
Click to expand it.
example/04_gemm_add_add_fastgelu/CMakeLists.txt
View file @
1dbdab56
add_example_executable
(
example_gemm_add_add_fastgelu_xdl_bf16 gemm_add_add_fastgelu_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_add_add_fastgelu_xdl_fp16 gemm_add_add_fastgelu_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_add_add_fastgelu_xdl_fp16 gemm_add_add_fastgelu_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_add_add_fastgelu_xdl_fp32 gemm_add_add_fastgelu_xdl_fp32.cpp
)
add_example_executable
(
example_gemm_add_add_fastgelu_xdl_int8 gemm_add_add_fastgelu_xdl_int8.cpp
)
example/04_gemm_add_add_fastgelu/gemm_add_add_fastgelu_xdl_bf16.cpp
0 → 100644
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstddef>
#include <iostream>
#include <stdexcept>
#include <string>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddAddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddAddFastGelu
;
using
ADataType
=
BF16
;
using
BDataType
=
BF16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
BF16
;
using
D1DataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
EDataType
=
BF16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
D0Layout
=
Row
;
using
D1Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
,
D1Layout
>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddAddFastGelu
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD_Xdl_CShuffle
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
#include "run_gemm_add_add_fastgelu_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_add_add_fastgelu_example
(
argc
,
argv
);
}
example/04_gemm_add_add_fastgelu/gemm_add_add_fastgelu_xdl_fp16.cpp
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstddef>
#include <iostream>
#include <iostream>
#include <numeric>
#include <stdexcept>
#include <initializer_list>
#include <string>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
...
@@ -12,11 +12,12 @@
...
@@ -12,11 +12,12 @@
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -61,189 +62,6 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_C
...
@@ -61,189 +62,6 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_C
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
#include "run_gemm_add_add_fastgelu_example.inc"
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideD0
=
0
;
ck
::
index_t
StrideD1
=
4096
;
ck
::
index_t
StrideE
=
4096
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
12
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideD0
=
std
::
stoi
(
argv
[
9
]);
StrideD1
=
std
::
stoi
(
argv
[
10
]);
StrideE
=
std
::
stoi
(
argv
[
11
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, "
"StrideE
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
D0DataType
>
d0_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD0
,
D0Layout
{}));
Tensor
<
D1DataType
>
d1_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD1
,
D1Layout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m_n: "
<<
d0_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_m_n: "
<<
d1_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
5
,
5
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_m_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
2
>
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
2
>
{
StrideD0
,
StrideD1
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
D0DataType
)
*
N
+
sizeof
(
D1DataType
)
*
M
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
device_op
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
Tensor
<
AccDataType
>
c_m_n
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
M
),
static_cast
<
std
::
size_t
>
(
N
)}));
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d0_m_n
(
m
,
n
),
d1_m_n
(
m
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
.
mData
,
e_m_n_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_add_add_fastgelu_example
(
argc
,
argv
);
}
}
example/04_gemm_add_add_fastgelu/gemm_add_add_fastgelu_xdl_fp32.cpp
0 → 100644
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstddef>
#include <iostream>
#include <stdexcept>
#include <string>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddAddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddAddFastGelu
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F32
;
using
D1DataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
EDataType
=
F32
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
D0Layout
=
Row
;
using
D1Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
,
D1Layout
>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddAddFastGelu
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD_Xdl_CShuffle
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
;
// clang-format on
#include "run_gemm_add_add_fastgelu_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_add_add_fastgelu_example
(
argc
,
argv
);
}
example/04_gemm_add_add_fastgelu/gemm_add_add_fastgelu_xdl_int8.cpp
0 → 100644
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstddef>
#include <iostream>
#include <stdexcept>
#include <string>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
I8
=
int8_t
;
using
I32
=
int32_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddAddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddAddFastGelu
;
using
ADataType
=
I8
;
using
BDataType
=
I8
;
using
AccDataType
=
I32
;
using
CShuffleDataType
=
I32
;
using
D0DataType
=
I8
;
using
D1DataType
=
I8
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
EDataType
=
I8
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
D0Layout
=
Row
;
using
D1Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
,
D1Layout
>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddAddFastGelu
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD_Xdl_CShuffle
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
>
;
// clang-format on
#include "run_gemm_add_add_fastgelu_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_add_add_fastgelu_example
(
argc
,
argv
);
}
example/04_gemm_add_add_fastgelu/run_gemm_add_add_fastgelu_example.inc
0 → 100644
View file @
1dbdab56
#pragma once
struct
ProblemSize
final
{
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideD0
=
0
;
ck
::
index_t
StrideD1
=
4096
;
ck
::
index_t
StrideE
=
4096
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
};
bool
run_gemm_add_add_fastgelu
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
using
namespace
ck
::
literals
;
auto
&
[
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideD0
,
StrideD1
,
StrideE
]
=
problem_size
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
constexpr
(
std
::
is_same_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1_
uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1_
uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
D0DataType
>
d0_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD0
,
D0Layout
{}));
Tensor
<
D1DataType
>
d1_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD1
,
D1Layout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m_n: "
<<
d0_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_m_n: "
<<
d1_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
5
,
5
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
-
5
,
5
});
break
;
default
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_m_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
{
StrideD0
,
StrideD1
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
flop
=
2_
uz
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
D0DataType
)
*
N
+
sizeof
(
D1DataType
)
*
M
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
device_op
.
GetTypeString
()
<<
std
::
endl
;
if
(
config
.
do_verification
)
{
Tensor
<
AccDataType
>
c_m_n
(
HostTensorDescriptor
{
M
,
N
});
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d0_m_n
(
m
,
n
),
d1_m_n
(
m
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
.
mData
,
e_m_n_host_result
.
mData
);
}
return
true
;
}
bool
run_gemm_add_add_fastgelu_example
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
12
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
problem_size
.
M
=
std
::
stoi
(
argv
[
4
]);
problem_size
.
N
=
std
::
stoi
(
argv
[
5
]);
problem_size
.
K
=
std
::
stoi
(
argv
[
6
]);
problem_size
.
StrideA
=
std
::
stoi
(
argv
[
7
]);
problem_size
.
StrideB
=
std
::
stoi
(
argv
[
8
]);
problem_size
.
StrideD0
=
std
::
stoi
(
argv
[
9
]);
problem_size
.
StrideD1
=
std
::
stoi
(
argv
[
10
]);
problem_size
.
StrideE
=
std
::
stoi
(
argv
[
11
]);
}
else
{
std
::
cerr
<<
"arg1: verification (0=no, 1=yes)"
<<
std
::
endl
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<<
std
::
endl
<<
"arg3: time kernel (0=no, 1=yes)"
<<
std
::
endl
<<
"arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, "
"StrideE"
<<
std
::
endl
;
return
true
;
}
return
run_gemm_add_add_fastgelu
(
problem_size
,
config
);
}
example/12_reduce/CMakeLists.txt
View file @
1dbdab56
add_example_executable
(
example_reduce_blockwise reduce_blockwise.cpp
)
add_example_executable
(
example_reduce_blockwise reduce_blockwise.cpp
)
add_example_executable
(
example_reduce_multiblock_atomic_add reduce_multiblock_atomic_add.cpp
)
add_example_executable
(
example_reduce_blockwise_two_call reduce_blockwise_two_call.cpp
)
add_example_executable
(
example_reduce_blockwise_two_call reduce_blockwise_two_call.cpp
)
example/12_reduce/README.md
View file @
1dbdab56
...
@@ -2,20 +2,41 @@
...
@@ -2,20 +2,41 @@
## Run ```example_reduce_blockwise```
## Run ```example_reduce_blockwise```
```
bash
```
bash
# -D <xxx> : input 4-d tensor lengths
# -D <xxx> : input 3d/4d/5d tensor lengths
# -R <xxx> : reduce dimension ids
# -v <x> : verification (0=no, 1=yes)
# -v <x> : verification (0=no, 1=yes)
#arg1: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64, 7: int4)
#arg2: time kernel (0=no, 1=yes)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
./bin/example_reduce_blockwise
-D
16,64,32,960
-v
1 1 1
#arg3: time kernel (0=no, 1=yes)
./bin/example_reduce_blockwise
-D
16,64,32,960
-v
1 0 2 1
```
```
Result
Result
```
```
./bin/example_reduce_blockwise -D 16,64,32,960 -v 1
1
1
./bin/example_reduce_blockwise -D 16,64,32,960 -v 1
0 2
1
launch_and_time_kernel: grid_dim {240, 1, 1}, block_dim {256, 1, 1}
launch_and_time_kernel: grid_dim {240, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Warm up 1 time
Start running 10 times...
Start running 10 times...
Perf: 0.282592 ms, 222.641 GB/s, DeviceReduceBlockWise<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1>
Perf: 0.238063 ms, 264.285 GB/s, DeviceReduceBlockWise<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1>
```
## Run ```example_reduce_multiblock_atomic_add```
```
bash
# -D <xxx> : input 3d/4d/5d tensor lengths
# -R <xxx> : reduce dimension ids
# -v <x> : verification (0=no, 1=yes)
#arg1: data type (0: fp32, 1: fp64)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
./bin/example_reduce_multiblock_atomic_add
-D
16,64,32,960
-v
1 0 2 0
```
Result
```
./bin/example_reduce_multiblock_atomic_add -D 16,64,32,960 -v 1 0 2 0
Perf: 0 ms, inf GB/s, DeviceReduceMultiBlock<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1>
echo $?
0
```
```
# Instructions for ```example_reduce_blockwise_two_call```
# Instructions for ```example_reduce_blockwise_two_call```
...
...
example/12_reduce/reduce_blockwise.cpp
View file @
1dbdab56
...
@@ -2,64 +2,17 @@
...
@@ -2,64 +2,17 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <initializer_list>
#include <cstdlib>
#include <cstdlib>
#include <getopt.h>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "reduce_blockwise_impl.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_multiblock.hpp"
#include "reduce_example_common.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_reduction.hpp"
using
namespace
ck
;
using
namespace
ck
;
using
namespace
ck
::
tensor_operation
::
device
;
using
namespace
ck
::
tensor_operation
::
device
;
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
constexpr
int
Rank
=
4
;
constexpr
int
NumReduceDim
=
3
;
constexpr
ReduceTensorOp
ReduceOpId
=
ReduceTensorOp
::
NORM2
;
constexpr
bool
PropagateNan
=
true
;
constexpr
bool
OutputIndex
=
false
;
using
ReduceOperation
=
typename
reduce_binary_operator
<
ReduceOpId
>::
opType
;
using
InElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
using
DeviceReduceInstance
=
DeviceReduceMultiBlock
<
InDataType
,
AccDataType
,
OutDataType
,
Rank
,
NumReduceDim
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
PropagateNan
,
OutputIndex
,
false
,
// HaveIndexInputIfOutputIndex
256
,
4
,
64
,
1
,
1
,
0
,
1
,
1
>
;
static
struct
option
long_options
[]
=
{{
"inLengths"
,
required_argument
,
nullptr
,
'D'
},
static
struct
option
long_options
[]
=
{{
"inLengths"
,
required_argument
,
nullptr
,
'D'
},
{
"verify"
,
required_argument
,
nullptr
,
'v'
},
{
"verify"
,
required_argument
,
nullptr
,
'v'
},
{
"help"
,
no_argument
,
nullptr
,
'?'
},
{
"help"
,
no_argument
,
nullptr
,
'?'
},
...
@@ -72,10 +25,12 @@ class SimpleAppArgs
...
@@ -72,10 +25,12 @@ class SimpleAppArgs
public:
public:
std
::
vector
<
size_t
>
inLengths
=
{
16
,
64
,
32
,
960
};
std
::
vector
<
size_t
>
inLengths
=
{
16
,
64
,
32
,
960
};
std
::
vector
<
int
>
reduceDims
=
{
0
,
1
,
2
};
std
::
vector
<
float
>
scales
=
{
1.0
f
,
0.0
f
};
std
::
vector
<
float
>
scales
=
{
1.0
f
,
0.0
f
};
bool
do_verification
=
true
;
bool
do_verification
=
true
;
int
init_method
=
1
;
int
data_type
=
1
;
int
init_method
=
2
;
bool
time_kernel
=
true
;
bool
time_kernel
=
true
;
public:
public:
...
@@ -84,13 +39,17 @@ class SimpleAppArgs
...
@@ -84,13 +39,17 @@ class SimpleAppArgs
std
::
cout
<<
"Usage of "
<<
cmd
<<
std
::
endl
;
std
::
cout
<<
"Usage of "
<<
cmd
<<
std
::
endl
;
std
::
cout
<<
"--inLengths or -D, comma separated list of input tensor dimension lengths"
std
::
cout
<<
"--inLengths or -D, comma separated list of input tensor dimension lengths"
<<
std
::
endl
;
<<
std
::
endl
;
std
::
cout
<<
"--reduceDims or -R, comma separated list of to-reduce dimensions"
<<
std
::
endl
;
std
::
cout
<<
"--verify or -v, 1/0 to indicate whether to verify the reduction result by "
std
::
cout
<<
"--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
"comparing with the host-based reduction"
<<
std
::
endl
;
<<
std
::
endl
;
std
::
cout
<<
"Arg1 -- init method (0=no init, 1=single integer value, 2=scope integer "
std
::
cout
<<
"Arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64, 7: int4)"
<<
std
::
endl
;
std
::
cout
<<
"Arg2 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
"value, 3=decimal value)"
<<
std
::
endl
;
<<
std
::
endl
;
std
::
cout
<<
"Arg
2
-- time kernel (0=no, 1=yes)"
<<
std
::
endl
;
std
::
cout
<<
"Arg
3
-- time kernel (0=no, 1=yes)"
<<
std
::
endl
;
};
};
int
processArgs
(
int
argc
,
char
*
argv
[])
int
processArgs
(
int
argc
,
char
*
argv
[])
...
@@ -101,7 +60,7 @@ class SimpleAppArgs
...
@@ -101,7 +60,7 @@ class SimpleAppArgs
while
(
1
)
while
(
1
)
{
{
ch
=
getopt_long
(
argc
,
argv
,
"D:v:l:"
,
long_options
,
&
option_index
);
ch
=
getopt_long
(
argc
,
argv
,
"D:
R:
v:l:"
,
long_options
,
&
option_index
);
if
(
ch
==
-
1
)
if
(
ch
==
-
1
)
break
;
break
;
switch
(
ch
)
switch
(
ch
)
...
@@ -112,6 +71,12 @@ class SimpleAppArgs
...
@@ -112,6 +71,12 @@ class SimpleAppArgs
inLengths
=
getTypeValuesFromString
<
size_t
>
(
optarg
);
inLengths
=
getTypeValuesFromString
<
size_t
>
(
optarg
);
break
;
break
;
case
'R'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
reduceDims
=
getTypeValuesFromString
<
int
>
(
optarg
);
break
;
case
'v'
:
case
'v'
:
if
(
!
optarg
)
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
throw
std
::
runtime_error
(
"Invalid option format!"
);
...
@@ -129,9 +94,12 @@ class SimpleAppArgs
...
@@ -129,9 +94,12 @@ class SimpleAppArgs
};
};
};
};
if
(
optind
+
2
>
argc
)
if
(
optind
+
3
>
argc
)
{
throw
std
::
runtime_error
(
"Invalid cmd-line arguments, more argumetns are needed!"
);
throw
std
::
runtime_error
(
"Invalid cmd-line arguments, more argumetns are needed!"
);
};
data_type
=
std
::
atoi
(
argv
[
optind
++
]);
init_method
=
std
::
atoi
(
argv
[
optind
++
]);
init_method
=
std
::
atoi
(
argv
[
optind
++
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
atoi
(
argv
[
optind
]));
time_kernel
=
static_cast
<
bool
>
(
std
::
atoi
(
argv
[
optind
]));
...
@@ -145,198 +113,152 @@ class SimpleAppArgs
...
@@ -145,198 +113,152 @@ class SimpleAppArgs
};
};
};
};
int
main
(
int
argc
,
char
*
argv
[])
template
<
typename
InOutDataType
,
typename
AccDataType
,
ReduceTensorOp
ReduceOpId
,
index_t
PropagateNan
,
index_t
OutputIndex
>
bool
reduce_blockwise_test
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
std
::
vector
<
size_t
>&
inLengths
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
)
{
{
const
std
::
vector
<
int
>
reduceDims
{
0
,
1
,
2
}
;
bool
matched
=
false
;
const
std
::
vector
<
int
>
invariantDims
{
3
}
;
int
result
=
0
;
SimpleAppArgs
args
;
const
auto
tuple_object
=
reduce_shape_instances
{}
;
if
(
argc
>
1
)
static_for
<
0
,
std
::
tuple_size
<
reduce_shape_instances
>::
value
,
1
>
{}([
&
](
auto
i
)
{
{
if
(
matched
)
if
(
args
.
processArgs
(
argc
,
argv
)
<
0
)
return
;
return
(
-
1
);
};
constexpr
bool
op_support_indices
=
(
ReduceOpId
==
ReduceTensorOp
::
MIN
||
ReduceOpId
==
ReduceTensorOp
::
MAX
||
ReduceOpId
==
ReduceTensorOp
::
AMAX
);
// if input is half type, no reason to use float for indiced reduction operation and must use
// float for non-indiced reduction operation for accuracy
constexpr
bool
invalid_reduce_1
=
std
::
is_same
<
InDataType
,
ck
::
half_t
>::
value
&&
((
!
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
float
>::
value
)
||
(
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
ck
::
half_t
>::
value
));
// if input is float type, no reason to use double for indiced reduction operation
constexpr
bool
invalid_reduce_2
=
std
::
is_same
<
InDataType
,
float
>::
value
&&
(
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
float
>::
value
);
// indices option can only be used when it is really needed
constexpr
bool
invalid_reduce_3
=
(
!
op_support_indices
&&
OutputIndex
);
constexpr
bool
invalid_reduce
=
(
invalid_reduce_1
||
invalid_reduce_2
||
invalid_reduce_3
)
;
using
ShapeType
=
remove_cvref_t
<
decltype
(
std
::
get
<
i
>
(
tuple_object
))
>
;
if
constexpr
(
invalid_reduce
)
if
(
ShapeType
::
Rank_
!=
inLengths
.
size
()
||
ShapeType
::
NumReduceDim_
!=
reduceDims
.
size
()
)
std
::
cout
<<
"Reduction setting is not supported, exiting!"
<<
std
::
endl
;
return
;
Tensor
<
InDataType
>
in
(
args
.
inLengths
);
result
=
reduce_blockwise_impl
<
InOutDataType
,
AccDataType
,
ReduceOpId
,
ShapeType
::
Rank_
,
ShapeType
::
NumReduceDim_
,
PropagateNan
,
OutputIndex
>
(
do_verification
,
init_method
,
time_kernel
,
inLengths
,
reduceDims
,
alpha
,
beta
);
std
::
vector
<
size_t
>
outLengths
;
matched
=
true
;
});
if
(
invariantDims
.
empty
())
return
(
result
==
0
)
?
true
:
false
;
outLengths
.
push_back
(
1
);
};
else
for
(
auto
dim
:
invariantDims
)
outLengths
.
push_back
(
args
.
inLengths
[
dim
]);
Tensor
<
OutDataType
>
out_ref
(
outLengths
);
Tensor
<
OutDataType
>
out
(
outLengths
);
Tensor
<
int
>
out_indices_ref
(
outLengths
);
Tensor
<
int
>
out_indices
(
outLengths
);
auto
inStrides
=
in
.
mDesc
.
GetStrides
();
constexpr
ReduceTensorOp
ReduceOpId
=
ReduceTensorOp
::
AVG
;
auto
outStrides
=
out
.
mDesc
.
GetStrides
();
constexpr
bool
PropagateNan
=
true
;
constexpr
bool
OutputIndex
=
false
;
size_t
invariant_total_length
=
out
.
mDesc
.
GetElementSize
();
int
main
(
int
argc
,
char
*
argv
[])
size_t
reduce_total_length
=
in
.
mDesc
.
GetElementSize
()
/
invariant_total_length
;
{
bool
pass
=
true
;
float
alpha
=
args
.
scales
[
0
];
if
(
argc
>
1
)
float
beta
=
args
.
scales
[
1
];
{
SimpleAppArgs
arg
;
std
::
size_t
num_thread
=
1
;
if
(
arg
.
processArgs
(
argc
,
argv
)
<
0
)
return
(
-
1
);
if
(
args
.
do_verification
)
if
(
arg
.
data_type
==
0
)
{
switch
(
args
.
init_method
)
{
{
case
0
:
break
;
pass
=
reduce_blockwise_test
<
ck
::
half_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
case
1
:
arg
.
do_verification
,
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
},
num_thread
);
arg
.
init_method
,
if
(
beta
!=
0.0
f
)
arg
.
time_kernel
,
out_ref
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
},
num_thread
);
arg
.
inLengths
,
break
;
arg
.
reduceDims
,
case
2
:
arg
.
scales
[
0
],
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
},
num_thread
);
arg
.
scales
[
1
]);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
5.0
,
5.0
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
5.0
,
5.0
},
num_thread
);
}
}
else
if
(
arg
.
data_type
==
1
)
if
(
beta
!=
0.0
f
)
for
(
size_t
i
=
0
;
i
<
out_ref
.
mDesc
.
GetElementSpaceSize
();
i
++
)
out
.
mData
[
i
]
=
out_ref
.
mData
[
i
];
};
// these buffers are usually provided by the user application
DeviceMem
in_dev
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_dev
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpaceSize
());
in_dev
.
ToDevice
(
in
.
mData
.
data
());
if
(
beta
!=
0.0
f
)
out_dev
.
ToDevice
(
out
.
mData
.
data
());
size_t
indicesSizeInBytes
=
OutputIndex
?
out
.
mDesc
.
GetElementSize
()
*
sizeof
(
int32_t
)
:
0
;
DeviceMem
out_index_dev
(
indicesSizeInBytes
);
InElementwiseOperation
in_elementwise_op
;
AccElementwiseOperation
acc_elementwise_op
;
std
::
tie
(
in_elementwise_op
,
acc_elementwise_op
)
=
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
static_cast
<
int32_t
>
(
reduce_total_length
));
if
(
args
.
do_verification
)
{
ReductionHost
<
InDataType
,
AccDataType
,
OutDataType
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
Rank
,
NumReduceDim
,
PropagateNan
,
OutputIndex
>
hostReduce
(
in
.
mDesc
,
out_ref
.
mDesc
,
invariantDims
,
reduceDims
);
hostReduce
.
Run
(
alpha
,
in
.
mData
.
data
(),
beta
,
out_ref
.
mData
.
data
(),
out_indices_ref
.
mData
.
data
(),
in_elementwise_op
,
acc_elementwise_op
);
};
std
::
vector
<
ck
::
index_t
>
i_inLengths
;
std
::
vector
<
ck
::
index_t
>
i_inStrides
;
std
::
vector
<
ck
::
index_t
>
i_outLengths
;
std
::
vector
<
ck
::
index_t
>
i_outStrides
;
i_inLengths
.
assign
(
args
.
inLengths
.
begin
(),
args
.
inLengths
.
end
());
i_inStrides
.
assign
(
inStrides
.
begin
(),
inStrides
.
end
());
i_outLengths
.
assign
(
outLengths
.
begin
(),
outLengths
.
end
());
i_outStrides
.
assign
(
outStrides
.
begin
(),
outStrides
.
end
());
auto
reduce
=
DeviceReduceInstance
{};
auto
argument_ptr
=
reduce
.
MakeArgumentPointer
(
i_inLengths
,
i_inStrides
,
i_outLengths
,
i_outStrides
,
reduceDims
,
alpha
,
beta
,
in_dev
.
GetDeviceBuffer
(),
nullptr
,
out_dev
.
GetDeviceBuffer
(),
out_index_dev
.
GetDeviceBuffer
(),
in_elementwise_op
,
acc_elementwise_op
);
if
(
!
reduce
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<<
std
::
endl
;
};
std
::
string
reduce_name
=
reduce
.
GetTypeString
();
auto
invoker_ptr
=
reduce
.
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
args
.
time_kernel
});
std
::
size_t
num_bytes
=
invariant_total_length
*
reduce_total_length
*
sizeof
(
InDataType
)
+
invariant_total_length
*
sizeof
(
OutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
reduce_name
<<
std
::
endl
;
bool
pass
=
true
;
if
(
args
.
do_verification
)
{
out_dev
.
FromDevice
(
out
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
);
if
(
OutputIndex
)
{
{
out_index_dev
.
FromDevice
(
out_indices
.
mData
.
data
());
pass
=
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_indices
.
mData
,
out_indices_ref
.
mData
);
arg
.
do_verification
,
};
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
else
if
(
arg
.
data_type
==
3
)
{
pass
=
reduce_blockwise_test
<
int8_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
else
if
(
arg
.
data_type
==
5
)
{
pass
=
reduce_blockwise_test
<
ck
::
bhalf_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
else
if
(
arg
.
data_type
==
6
)
{
pass
=
reduce_blockwise_test
<
double
,
double
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
}
else
{
// for testing half_t
pass
=
pass
&&
reduce_blockwise_test
<
ck
::
half_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing float
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing double
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing bhalf_t
pass
=
pass
&&
reduce_blockwise_test
<
ck
::
bhalf_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing int8_t
pass
=
pass
&&
reduce_blockwise_test
<
int8_t
,
int32_t
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing 3D input
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
960
},
{
0
,
1
},
1.0
f
,
0.0
f
);
// for testing 5D input
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
2
,
960
},
{
0
,
1
,
2
,
3
},
1.0
f
,
0.0
f
);
};
};
return
(
pass
?
0
:
1
);
return
(
pass
?
0
:
1
);
}
}
;
example/12_reduce/reduce_blockwise_impl.hpp
0 → 100644
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_multiblock.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_reduction.hpp"
#include "reduce_example_common.hpp"
template
<
typename
InOutDataType
,
typename
AccDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
ck
::
index_t
Rank
,
ck
::
index_t
NumReduceDim
,
bool
PropagateNan
,
bool
OutputIndex
>
int
reduce_blockwise_impl
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
std
::
vector
<
size_t
>&
inLengths
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
)
{
using
namespace
ck
;
using
namespace
ck
::
tensor_operation
::
device
;
constexpr
bool
op_support_indices
=
(
ReduceOpId
==
ReduceTensorOp
::
MIN
||
ReduceOpId
==
ReduceTensorOp
::
MAX
||
ReduceOpId
==
ReduceTensorOp
::
AMAX
);
constexpr
bool
invalid_reduce_1
=
OutputIndex
&&
!
op_support_indices
;
// 1) If InOutDataType is half_t, must use half_t as AccDataType for indexable reduction
// operations 2) If InOutDataType is half_t, must use float as AccDataType for non-indexable
// reduction operations
constexpr
bool
invalid_reduce_2
=
std
::
is_same
<
InOutDataType
,
half_t
>::
value
&&
((
!
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
float
>::
value
)
||
(
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
half_t
>::
value
));
// 1) If InOutDataType is float, must use float as AccDataType for indexable reduction
// operations
constexpr
bool
invalid_reduce_3
=
std
::
is_same
<
InOutDataType
,
float
>::
value
&&
(
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
float
>::
value
);
// 1) If InOutDataType is int8_t, must use int8_t as AccDataType for indexable reduction
// operations 2) If InOutDataType is int8_t, must use int32_t as AccDataType for non-indexable
// reduction operations
constexpr
bool
invalid_reduce_4
=
std
::
is_same
<
InOutDataType
,
int8_t
>::
value
&&
((
!
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
int32_t
>::
value
)
||
(
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
int8_t
>::
value
));
// 1) If InOutDataType is int8_t, the supported operation must be either indexable operations or
// ADD/AVG
constexpr
bool
invalid_reduce_5
=
std
::
is_same
<
InOutDataType
,
int8_t
>::
value
&&
(
!
op_support_indices
&&
ReduceOpId
!=
ReduceTensorOp
::
ADD
&&
ReduceOpId
!=
ReduceTensorOp
::
AVG
);
// 1) If InOutDataType is bhalf_t, must use float as AccDataType for all reduction operations
constexpr
bool
invalid_reduce_6
=
std
::
is_same
<
InOutDataType
,
bhalf_t
>::
value
&&
!
std
::
is_same
<
AccDataType
,
float
>::
value
;
constexpr
bool
invalid_reduce
=
(
invalid_reduce_1
||
invalid_reduce_2
||
invalid_reduce_3
||
invalid_reduce_4
||
invalid_reduce_5
||
invalid_reduce_6
);
if
(
invalid_reduce
)
{
std
::
cerr
<<
"The reduction setting is invalid, exiting!"
<<
std
::
endl
;
return
(
-
1
);
};
using
ReduceOperation
=
typename
reduce_binary_operator
<
ReduceOpId
>::
opType
;
using
InElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
using
DeviceReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceReduceMultiBlock
<
InOutDataType
,
AccDataType
,
InOutDataType
,
Rank
,
NumReduceDim
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
PropagateNan
,
OutputIndex
,
false
,
// HaveIndexInputIfOutputIndex
256
,
// BlockSize
4
,
// MThreadClusterSize
64
,
// KThreadClusterSize
1
,
// MThreadSliceSize
1
,
// KThreadSliceSize
0
,
// InSrcVectorDim
1
,
// InSrceVectorSize
1
>
;
// OutDstVectorSize
Tensor
<
InOutDataType
>
in
(
inLengths
);
std
::
vector
<
size_t
>
outLengths
;
std
::
vector
<
int
>
invariantDims
=
get_invariant_dims
<
Rank
,
NumReduceDim
>
(
reduceDims
);
if
(
invariantDims
.
empty
())
outLengths
.
push_back
(
1
);
else
for
(
auto
dim
:
invariantDims
)
outLengths
.
push_back
(
inLengths
[
dim
]);
Tensor
<
InOutDataType
>
out_ref
(
outLengths
);
Tensor
<
InOutDataType
>
out
(
outLengths
);
Tensor
<
int
>
out_indices_ref
(
outLengths
);
Tensor
<
int
>
out_indices
(
outLengths
);
auto
inStrides
=
in
.
mDesc
.
GetStrides
();
auto
outStrides
=
out
.
mDesc
.
GetStrides
();
size_t
invariant_total_length
=
out
.
mDesc
.
GetElementSize
();
size_t
reduce_total_length
=
in
.
mDesc
.
GetElementSize
()
/
invariant_total_length
;
std
::
size_t
num_thread
=
1
;
if
(
do_verification
)
{
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOutDataType
>
{
1
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOutDataType
>
{
1
},
num_thread
);
break
;
case
2
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
5.0
,
5.0
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
5.0
,
5.0
},
num_thread
);
}
if
(
beta
!=
0.0
f
)
for
(
size_t
i
=
0
;
i
<
out_ref
.
mDesc
.
GetElementSpaceSize
();
i
++
)
out
.
mData
[
i
]
=
out_ref
.
mData
[
i
];
};
// these buffers are usually provided by the user application
DeviceMem
in_dev
(
sizeof
(
InOutDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_dev
(
sizeof
(
InOutDataType
)
*
out
.
mDesc
.
GetElementSpaceSize
());
in_dev
.
ToDevice
(
in
.
mData
.
data
());
if
(
beta
!=
0.0
f
)
out_dev
.
ToDevice
(
out
.
mData
.
data
());
size_t
indicesSizeInBytes
=
OutputIndex
?
out
.
mDesc
.
GetElementSize
()
*
sizeof
(
int32_t
)
:
0
;
DeviceMem
out_index_dev
(
indicesSizeInBytes
);
InElementwiseOperation
in_elementwise_op
;
AccElementwiseOperation
acc_elementwise_op
;
std
::
tie
(
in_elementwise_op
,
acc_elementwise_op
)
=
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
static_cast
<
int32_t
>
(
reduce_total_length
));
if
(
do_verification
)
{
ReductionHost
<
InOutDataType
,
AccDataType
,
InOutDataType
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
Rank
,
NumReduceDim
,
PropagateNan
,
OutputIndex
>
hostReduce
(
in
.
mDesc
,
out_ref
.
mDesc
,
invariantDims
,
reduceDims
);
hostReduce
.
Run
(
alpha
,
in
.
mData
.
data
(),
beta
,
out_ref
.
mData
.
data
(),
out_indices_ref
.
mData
.
data
(),
in_elementwise_op
,
acc_elementwise_op
);
};
std
::
vector
<
ck
::
index_t
>
i_inLengths
;
std
::
vector
<
ck
::
index_t
>
i_inStrides
;
std
::
vector
<
ck
::
index_t
>
i_outLengths
;
std
::
vector
<
ck
::
index_t
>
i_outStrides
;
i_inLengths
.
assign
(
inLengths
.
begin
(),
inLengths
.
end
());
i_inStrides
.
assign
(
inStrides
.
begin
(),
inStrides
.
end
());
i_outLengths
.
assign
(
outLengths
.
begin
(),
outLengths
.
end
());
i_outStrides
.
assign
(
outStrides
.
begin
(),
outStrides
.
end
());
auto
reduce
=
DeviceReduceInstance
{};
auto
argument_ptr
=
reduce
.
MakeArgumentPointer
(
i_inLengths
,
i_inStrides
,
i_outLengths
,
i_outStrides
,
reduceDims
,
alpha
,
beta
,
in_dev
.
GetDeviceBuffer
(),
nullptr
,
out_dev
.
GetDeviceBuffer
(),
out_index_dev
.
GetDeviceBuffer
(),
in_elementwise_op
,
acc_elementwise_op
);
if
(
!
reduce
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
cerr
<<
"The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<<
std
::
endl
;
return
(
-
2
);
};
std
::
string
reduce_name
=
reduce
.
GetTypeString
();
auto
invoker_ptr
=
reduce
.
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_bytes
=
invariant_total_length
*
reduce_total_length
*
sizeof
(
InOutDataType
)
+
invariant_total_length
*
sizeof
(
InOutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
reduce_name
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
out_dev
.
FromDevice
(
out
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
);
if
(
OutputIndex
)
{
out_index_dev
.
FromDevice
(
out_indices
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_indices
.
mData
,
out_indices_ref
.
mData
);
};
};
return
(
pass
?
0
:
1
);
}
example/12_reduce/reduce_example_common.hpp
0 → 100644
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
template
<
ck
::
index_t
Rank
,
ck
::
index_t
NumReduceDim
>
std
::
vector
<
int
>
get_invariant_dims
(
const
std
::
vector
<
int
>&
reduceDims
)
{
assert
(
NumReduceDim
==
reduceDims
.
size
());
int
reduceFlag
=
0
;
// flag the bits for the reduceDims
for
(
int
i
=
0
;
i
<
NumReduceDim
;
i
++
)
{
reduceFlag
|=
1
<<
reduceDims
[
i
];
};
std
::
vector
<
int
>
invariantDims
;
// collect invariant dimensions
for
(
int
i
=
0
;
i
<
Rank
;
i
++
)
if
((
reduceFlag
&
(
1
<<
i
))
==
0
)
{
invariantDims
.
push_back
(
i
);
};
return
invariantDims
;
};
template
<
ck
::
index_t
Rank
,
ck
::
index_t
NumReduceDim
>
struct
ReduceShape
{
static
constexpr
ck
::
index_t
Rank_
=
Rank
;
static
constexpr
ck
::
index_t
NumReduceDim_
=
NumReduceDim
;
};
using
reduce_shape_instances
=
std
::
tuple
<
ReduceShape
<
3
,
1
>
,
ReduceShape
<
3
,
2
>
,
ReduceShape
<
4
,
1
>
,
ReduceShape
<
4
,
2
>
,
ReduceShape
<
4
,
3
>
,
ReduceShape
<
5
,
1
>
,
ReduceShape
<
5
,
2
>
,
ReduceShape
<
5
,
3
>
,
ReduceShape
<
5
,
4
>>
;
example/12_reduce/reduce_multiblock_atomic_add.cpp
0 → 100644
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/utility/reduction_enums.hpp"
#include "reduce_multiblock_atomic_add_impl.hpp"
#include "reduce_example_common.hpp"
using
namespace
ck
;
using
namespace
ck
::
tensor_operation
::
device
;
static
struct
option
long_options
[]
=
{{
"inLengths"
,
required_argument
,
nullptr
,
'D'
},
{
"verify"
,
required_argument
,
nullptr
,
'v'
},
{
"help"
,
no_argument
,
nullptr
,
'?'
},
{
nullptr
,
0
,
nullptr
,
0
}};
class
SimpleAppArgs
{
private:
int
option_index
=
0
;
public:
std
::
vector
<
size_t
>
inLengths
=
{
16
,
64
,
32
,
960
};
std
::
vector
<
int
>
reduceDims
=
{
0
,
1
,
2
};
std
::
vector
<
float
>
scales
=
{
1.0
f
,
0.0
f
};
bool
do_verification
=
true
;
int
data_type
=
1
;
int
init_method
=
2
;
bool
time_kernel
=
true
;
public:
void
show_usage
(
const
char
*
cmd
)
{
std
::
cout
<<
"Usage of "
<<
cmd
<<
std
::
endl
;
std
::
cout
<<
"--inLengths or -D, comma separated list of input tensor dimension lengths"
<<
std
::
endl
;
std
::
cout
<<
"--reduceDims or -R, comma separated list of to-reduce dimensions"
<<
std
::
endl
;
std
::
cout
<<
"--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
<<
std
::
endl
;
std
::
cout
<<
"Arg1: data type (0: fp32, 1: fp64)"
<<
std
::
endl
;
std
::
cout
<<
"Arg2 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
<<
std
::
endl
;
std
::
cout
<<
"Arg3 -- time kernel (0=no, 1=yes)"
<<
std
::
endl
;
};
int
processArgs
(
int
argc
,
char
*
argv
[])
{
using
ck
::
host_common
::
getTypeValuesFromString
;
int
ch
;
while
(
1
)
{
ch
=
getopt_long
(
argc
,
argv
,
"D:R:v:l:"
,
long_options
,
&
option_index
);
if
(
ch
==
-
1
)
break
;
switch
(
ch
)
{
case
'D'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
inLengths
=
getTypeValuesFromString
<
size_t
>
(
optarg
);
break
;
case
'R'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
reduceDims
=
getTypeValuesFromString
<
int
>
(
optarg
);
break
;
case
'v'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
do_verification
=
static_cast
<
bool
>
(
std
::
atoi
(
optarg
));
break
;
case
'?'
:
if
(
std
::
string
(
long_options
[
option_index
].
name
)
==
"help"
)
{
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
break
;
default:
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
};
if
(
optind
+
3
>
argc
)
{
throw
std
::
runtime_error
(
"Invalid cmd-line arguments, more argumetns are needed!"
);
};
data_type
=
std
::
atoi
(
argv
[
optind
++
]);
init_method
=
std
::
atoi
(
argv
[
optind
++
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
atoi
(
argv
[
optind
]));
if
(
scales
.
empty
())
{
scales
.
push_back
(
1.0
f
);
scales
.
push_back
(
0.0
f
);
};
return
(
0
);
};
};
template
<
typename
InOutDataType
,
typename
AccDataType
,
ReduceTensorOp
ReduceOpId
,
index_t
PropagateNan
>
bool
reduce_multiblock_atomic_add_test
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
std
::
vector
<
size_t
>&
inLengths
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
)
{
bool
matched
=
false
;
int
result
=
0
;
const
auto
tuple_object
=
reduce_shape_instances
{};
static_for
<
0
,
std
::
tuple_size
<
reduce_shape_instances
>::
value
,
1
>
{}([
&
](
auto
i
)
{
if
(
matched
)
return
;
using
ShapeType
=
remove_cvref_t
<
decltype
(
std
::
get
<
i
>
(
tuple_object
))
>
;
if
(
ShapeType
::
Rank_
!=
inLengths
.
size
()
||
ShapeType
::
NumReduceDim_
!=
reduceDims
.
size
())
return
;
result
=
reduce_multiblock_atomic_add_impl
<
InOutDataType
,
AccDataType
,
ReduceOpId
,
ShapeType
::
Rank_
,
ShapeType
::
NumReduceDim_
,
PropagateNan
>
(
do_verification
,
init_method
,
time_kernel
,
inLengths
,
reduceDims
,
alpha
,
beta
);
matched
=
true
;
});
return
(
result
==
0
)
?
true
:
false
;
};
constexpr
ReduceTensorOp
ReduceOpId
=
ReduceTensorOp
::
AVG
;
constexpr
bool
PropagateNan
=
true
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
pass
=
true
;
if
(
argc
>
1
)
{
SimpleAppArgs
arg
;
if
(
arg
.
processArgs
(
argc
,
argv
)
<
0
)
return
(
-
1
);
if
(
arg
.
data_type
==
0
)
{
pass
=
reduce_multiblock_atomic_add_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
else
if
(
arg
.
data_type
==
1
)
{
pass
=
reduce_multiblock_atomic_add_test
<
double
,
double
,
ReduceOpId
,
PropagateNan
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
}
else
{
// for testing float
pass
=
pass
&&
reduce_multiblock_atomic_add_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
>
(
true
,
2
,
false
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing double
pass
=
pass
&&
reduce_multiblock_atomic_add_test
<
double
,
double
,
ReduceOpId
,
PropagateNan
>
(
true
,
2
,
false
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing 3D input
pass
=
pass
&&
reduce_multiblock_atomic_add_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
>
(
true
,
2
,
false
,
{
16
,
64
,
960
},
{
0
,
1
},
1.0
f
,
0.0
f
);
// for testing 5D input
pass
=
pass
&&
reduce_multiblock_atomic_add_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
>
(
true
,
2
,
false
,
{
16
,
64
,
32
,
2
,
960
},
{
0
,
1
,
2
,
3
},
1.0
f
,
0.0
f
);
};
return
(
pass
?
0
:
1
);
};
example/12_reduce/reduce_multiblock_atomic_add_impl.hpp
0 → 100644
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_multiblock.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_reduction.hpp"
#include "reduce_example_common.hpp"
template
<
typename
InOutDataType
,
typename
AccDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
ck
::
index_t
Rank
,
ck
::
index_t
NumReduceDim
,
bool
PropagateNan
>
int
reduce_multiblock_atomic_add_impl
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
std
::
vector
<
size_t
>&
inLengths
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
)
{
using
namespace
ck
;
using
namespace
ck
::
tensor_operation
::
device
;
constexpr
bool
op_support_atomic_add
=
(
ReduceOpId
==
ReduceTensorOp
::
ADD
||
ReduceOpId
==
ReduceTensorOp
::
AVG
);
constexpr
bool
invalid_reduce_1
=
!
op_support_atomic_add
;
constexpr
bool
invalid_reduce_2
=
!
(
std
::
is_same
<
InOutDataType
,
float
>::
value
||
std
::
is_same
<
InOutDataType
,
double
>::
value
);
constexpr
bool
invalid_reduce
=
(
invalid_reduce_1
||
invalid_reduce_2
);
if
(
invalid_reduce
)
{
std
::
cerr
<<
"The reduction setting is invalid, exiting!"
<<
std
::
endl
;
return
(
-
1
);
};
using
ReduceOperation
=
typename
reduce_binary_operator
<
ReduceOpId
>::
opType
;
using
InElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
using
DeviceReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceReduceMultiBlock
<
InOutDataType
,
AccDataType
,
InOutDataType
,
Rank
,
NumReduceDim
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
InMemoryDataOperationEnum
::
AtomicAdd
,
PropagateNan
,
false
,
false
,
// HaveIndexInputIfOutputIndex
256
,
4
,
64
,
1
,
1
,
0
,
1
,
1
>
;
Tensor
<
InOutDataType
>
in
(
inLengths
);
std
::
vector
<
size_t
>
outLengths
;
std
::
vector
<
int
>
invariantDims
=
get_invariant_dims
<
Rank
,
NumReduceDim
>
(
reduceDims
);
if
(
invariantDims
.
empty
())
outLengths
.
push_back
(
1
);
else
for
(
auto
dim
:
invariantDims
)
outLengths
.
push_back
(
inLengths
[
dim
]);
Tensor
<
InOutDataType
>
out_ref
(
outLengths
);
Tensor
<
InOutDataType
>
out
(
outLengths
);
auto
inStrides
=
in
.
mDesc
.
GetStrides
();
auto
outStrides
=
out
.
mDesc
.
GetStrides
();
size_t
invariant_total_length
=
out
.
mDesc
.
GetElementSize
();
size_t
reduce_total_length
=
in
.
mDesc
.
GetElementSize
()
/
invariant_total_length
;
std
::
size_t
num_thread
=
1
;
if
(
do_verification
)
{
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOutDataType
>
{
1
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOutDataType
>
{
1
},
num_thread
);
break
;
case
2
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
5.0
,
5.0
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
5.0
,
5.0
},
num_thread
);
}
if
(
beta
!=
0.0
f
)
for
(
size_t
i
=
0
;
i
<
out_ref
.
mDesc
.
GetElementSpaceSize
();
i
++
)
out
.
mData
[
i
]
=
out_ref
.
mData
[
i
];
};
// these buffers are usually provided by the user application
DeviceMem
in_dev
(
sizeof
(
InOutDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_dev
(
sizeof
(
InOutDataType
)
*
out
.
mDesc
.
GetElementSpaceSize
());
in_dev
.
ToDevice
(
in
.
mData
.
data
());
if
(
beta
!=
0.0
f
)
out_dev
.
ToDevice
(
out
.
mData
.
data
());
InElementwiseOperation
in_elementwise_op
;
AccElementwiseOperation
acc_elementwise_op
;
std
::
tie
(
in_elementwise_op
,
acc_elementwise_op
)
=
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
static_cast
<
int32_t
>
(
reduce_total_length
));
if
(
do_verification
)
{
ReductionHost
<
InOutDataType
,
AccDataType
,
InOutDataType
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
Rank
,
NumReduceDim
,
PropagateNan
,
false
>
hostReduce
(
in
.
mDesc
,
out_ref
.
mDesc
,
invariantDims
,
reduceDims
);
hostReduce
.
Run
(
alpha
,
in
.
mData
.
data
(),
beta
,
out_ref
.
mData
.
data
(),
nullptr
,
in_elementwise_op
,
acc_elementwise_op
);
};
std
::
vector
<
ck
::
index_t
>
i_inLengths
;
std
::
vector
<
ck
::
index_t
>
i_inStrides
;
std
::
vector
<
ck
::
index_t
>
i_outLengths
;
std
::
vector
<
ck
::
index_t
>
i_outStrides
;
i_inLengths
.
assign
(
inLengths
.
begin
(),
inLengths
.
end
());
i_inStrides
.
assign
(
inStrides
.
begin
(),
inStrides
.
end
());
i_outLengths
.
assign
(
outLengths
.
begin
(),
outLengths
.
end
());
i_outStrides
.
assign
(
outStrides
.
begin
(),
outStrides
.
end
());
auto
reduce
=
DeviceReduceInstance
{};
auto
argument_ptr
=
reduce
.
MakeArgumentPointer
(
i_inLengths
,
i_inStrides
,
i_outLengths
,
i_outStrides
,
reduceDims
,
alpha
,
beta
,
in_dev
.
GetDeviceBuffer
(),
nullptr
,
out_dev
.
GetDeviceBuffer
(),
nullptr
,
in_elementwise_op
,
acc_elementwise_op
);
if
(
!
reduce
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
cerr
<<
"The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<<
std
::
endl
;
return
(
-
2
);
};
std
::
string
reduce_name
=
reduce
.
GetTypeString
();
auto
invoker_ptr
=
reduce
.
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_bytes
=
invariant_total_length
*
reduce_total_length
*
sizeof
(
InOutDataType
)
+
invariant_total_length
*
sizeof
(
InOutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
reduce_name
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
out_dev
.
FromDevice
(
out
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
);
};
return
(
pass
?
0
:
1
);
}
example/16_gemm_multi_d_multi_reduces/CMakeLists.txt
0 → 100644
View file @
1dbdab56
add_example_executable
(
example_gemm_add_add_mean_meansquare_xdl_fp16 gemm_add_add_mean_meansquare_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_fp16 gemm_mean_meansquare_xdl_fp16.cpp
)
#exclude GEMM+max exampe from testing, since there is random failure on gfx908
#https://github.com/ROCmSoftwarePlatform/composable_kernel/issues/358
#TODO: fix the failure and re-enable this test
add_example_executable_no_testing
(
example_gemm_max_xdl_fp16 gemm_max_xdl_fp16.cpp
)
example/16_gemm_multi_d_multi_reduces/gemm_add_add_mean_meansquare_xdl_fp16.cpp
0 → 100644
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// DataType
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F16
;
using
D1DataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
EDataType
=
F16
;
using
ReduceAccDataType
=
F32
;
using
R0DataType
=
F32
;
using
R1DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
,
R1DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
D1Layout
=
Row
;
using
ELayout
=
D1Layout
;
// Elementwise op
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddAdd
=
ck
::
tensor_operation
::
element_wise
::
AddAdd
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddAdd
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
,
Square
>
;
using
RsElementOp
=
ck
::
Tuple
<
Div
,
Div
>
;
// ReduceOp
using
R0ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
R1ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
RsThreadReduceOp
=
ck
::
Tuple
<
R0ThreadReduceOp
,
R1ThreadReduceOp
>
;
static
constexpr
auto
R0GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
static
constexpr
auto
R1GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
R0GlobalReduceOp
,
R1GlobalReduceOp
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
//######| ALayout| BLayout| ELayout| AData| BData| GemmAccData| CShuffle| DsData| EData| ReduceAccData| RsData| A| B| CDE| Qs| Rs| Thread| Global| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CDRThreadTransfer| CDE| RThreadTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ReduceThreadTransfer| DstScalarPerVector|
//######| | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _MPerBlock_NPerBlock| ScalarPerVector| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _NPerBlock| |
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
RsGlobalReduceOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
template
<
typename
ADataType
,
typename
BDataType
,
typename
D0DataType
,
typename
D1DataType
,
typename
EDataType
,
typename
R0DataType
,
typename
R1DataType
>
void
DumpPerf
(
float
ave_time
,
int
M
,
int
N
,
int
K
)
{
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
+
std
::
size_t
(
2
)
*
M
*
N
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
D0DataType
)
*
M
*
N
+
sizeof
(
D1DataType
)
*
M
*
N
+
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
+
sizeof
(
R1DataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
int
main
()
{
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideD0
=
0
;
ck
::
index_t
StrideD1
=
1024
;
ck
::
index_t
StrideE
=
1024
;
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
D0DataType
>
d0_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
D1DataType
>
d1_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideD1
,
D1Layout
{}));
Tensor
<
EDataType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
r0_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R1DataType
>
r1_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
1
,
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
1
,
1
});
d0_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
-
1
,
1
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
-
1
,
1
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_device_buf
(
sizeof
(
R0DataType
)
*
r0_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r1_device_buf
(
sizeof
(
R1DataType
)
*
r1_m
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_m_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{
N
,
N
};
// Prepare GEMM, mean, mean_square
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_device_buf
.
GetDeviceBuffer
(),
r1_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{
StrideD0
,
StrideD1
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
// init reducetion buffer to 0
r0_device_buf
.
SetZero
();
r1_device_buf
.
SetZero
();
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
do_verification
=
true
;
bool
pass
=
true
;
if
(
do_verification
)
{
auto
I0
=
ck
::
Number
<
0
>
{};
auto
I1
=
ck
::
Number
<
1
>
{};
Tensor
<
EDataType
>
e_m_n_host
(
e_m_n
.
mDesc
);
Tensor
<
R0DataType
>
r0_m_host
(
r0_m
.
mDesc
);
Tensor
<
R1DataType
>
r1_m_host
(
r1_m
.
mDesc
);
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e_m_n_host
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
auto
reduce0_op
=
R0ThreadReduceOp
{};
auto
reduce1_op
=
R1ThreadReduceOp
{};
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
reduce0_acc
=
reduce0_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
reduce1_acc
=
reduce1_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ReduceAccDataType
square_e_val
;
auto
e_val
=
ck
::
type_convert
<
GemmAccDataType
>
(
e_m_n_host
(
m
,
n
));
auto
d0_val
=
ck
::
type_convert
<
GemmAccDataType
>
(
d0_n
(
n
));
auto
d1_val
=
ck
::
type_convert
<
GemmAccDataType
>
(
d1_m_n
(
m
,
n
));
cde_element_op
(
e_val
,
e_val
,
d0_val
,
d1_val
);
e_m_n_host
(
m
,
n
)
=
ck
::
type_convert
<
EDataType
>
(
e_val
);
auto
e_val_reduce
=
ck
::
type_convert
<
ReduceAccDataType
>
(
e_val
);
qs_element_op
[
I1
](
square_e_val
,
e_val_reduce
);
reduce0_op
(
reduce0_acc
,
e_val_reduce
);
reduce1_op
(
reduce1_acc
,
square_e_val
);
}
rs_element_op
[
I0
](
reduce0_acc
,
reduce0_acc
);
rs_element_op
[
I1
](
reduce1_acc
,
reduce1_acc
);
r0_m_host
(
m
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
r1_m_host
(
m
)
=
ck
::
type_convert
<
R1DataType
>
(
reduce1_acc
);
}
e_device_buf
.
FromDevice
(
e_m_n
.
mData
.
data
());
r0_device_buf
.
FromDevice
(
r0_m
.
mData
.
data
());
r1_device_buf
.
FromDevice
(
r1_m
.
mData
.
data
());
pass
=
ck
::
utils
::
check_err
(
e_m_n
.
mData
,
e_m_n_host
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
pass
&=
ck
::
utils
::
check_err
(
r0_m
.
mData
,
r0_m_host
.
mData
,
"Error: Incorrect results d0"
,
1e-2
,
1e-2
);
pass
&=
ck
::
utils
::
check_err
(
r1_m
.
mData
,
r1_m_host
.
mData
,
"Error: Incorrect results d1"
,
1e-2
,
1e-2
);
}
bool
time_kernel
=
true
;
if
(
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
DumpPerf
<
ADataType
,
BDataType
,
D0DataType
,
D1DataType
,
EDataType
,
R0DataType
,
R1DataType
>
(
ave_time
,
M
,
N
,
K
);
}
return
pass
?
0
:
1
;
}
Prev
1
2
3
4
5
…
10
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment