driver.hip.cpp 31.5 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
5
#include <stdlib.h>
Chao Liu's avatar
Chao Liu committed
6
#include "config.h"
Chao Liu's avatar
Chao Liu committed
7
#include "tensor.hpp"
8
9
#include "ConstantTensorDescriptor.hip.hpp"
#include "conv_common.hip.hpp"
Chao Liu's avatar
Chao Liu committed
10
#include "device_convolution_direct_v2_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
11
//#include "device_direct_convolution_2_vectorized_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
12
#include "device_convolution_implicit_gemm_v1_chwn_cyxk_khwn.hpp"
13
#include "device_convolution_implicit_gemm_v1_nchw_cyxk_khwn.hpp"
Chao Liu's avatar
Chao Liu committed
14
#include "device_convolution_implicit_gemm_v1_nchw_cyxk_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
15
#include "device_convolution_implicit_gemm_v2_chwn_cyxk_khwn.hpp"
Chao Liu's avatar
Chao Liu committed
16
#include "device_convolution_implicit_gemm_v3_nchw_cyxk_nkhw.hpp"
17
#include "device_convolution_implicit_gemm_v4_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
18

Jing Zhang's avatar
fix  
Jing Zhang committed
19
20
21
22
23
24
25
26
27
struct GeneratorTensor_0
{
    template <class... Is>
    double operator()(Is... is)
    {
        return 0;
    }
};

Chao Liu's avatar
Chao Liu committed
28
struct GeneratorTensor_1
Chao Liu's avatar
Chao Liu committed
29
30
{
    template <class... Is>
Chao Liu's avatar
Chao Liu committed
31
    double operator()(Is... is)
Chao Liu's avatar
Chao Liu committed
32
    {
Chao Liu's avatar
Chao Liu committed
33
        return 1;
Chao Liu's avatar
Chao Liu committed
34
35
36
    }
};

Chao Liu's avatar
Chao Liu committed
37
38
39
40
41
42
43
44
45
46
47
48
struct GeneratorTensor_2
{
    int min_value = 0;
    int max_value = 1;

    template <class... Is>
    double operator()(Is...)
    {
        return (std::rand() % (max_value - min_value)) + min_value;
    }
};

49
50
51
52
53
struct GeneratorTensor_3
{
    template <class... Is>
    double operator()(Is... is)
    {
Chao Liu's avatar
Chao Liu committed
54
        std::array<index_t, sizeof...(Is)> multi_id = {{static_cast<index_t>(is)...}};
55

Chao Liu's avatar
Chao Liu committed
56
        auto f_acc = [](auto a, auto b) { return 10 * a + b; };
57

Chao Liu's avatar
Chao Liu committed
58
        return std::accumulate(multi_id.begin(), multi_id.end(), index_t(0), f_acc);
59
60
61
    }
};

Chao Liu's avatar
Chao Liu committed
62
63
64
65
66
struct GeneratorTensor_Checkboard
{
    template <class... Ts>
    double operator()(Ts... Xs) const
    {
Chao Liu's avatar
Chao Liu committed
67
        std::array<index_t, sizeof...(Ts)> dims = {{static_cast<index_t>(Xs)...}};
Chao Liu's avatar
Chao Liu committed
68
69
70
        return std::accumulate(dims.begin(),
                               dims.end(),
                               true,
Chao Liu's avatar
Chao Liu committed
71
                               [](bool init, index_t x) -> int { return init != (x % 2); })
Chao Liu's avatar
Chao Liu committed
72
73
74
75
76
                   ? 1
                   : -1;
    }
};

Chao Liu's avatar
Chao Liu committed
77
78
79
80
81
82
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
83
84
85
86
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
101
102
103
104
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
105
106
    constexpr auto desc = TConstTensorDesc{};

Chao Liu's avatar
Chao Liu committed
107
    std::initializer_list<index_t> lengths = {
Chao Liu's avatar
Chao Liu committed
108
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
Chao Liu's avatar
Chao Liu committed
109
    std::initializer_list<index_t> strides = {
Chao Liu's avatar
Chao Liu committed
110
111
112
113
114
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

Jing Zhang's avatar
Jing Zhang committed
115
116
117
118
119
120
121
template <class TIn,
          class TWei,
          class TOut,
          class LowerPads,
          class UpperPads,
          class Strides,
          class Dilations>
Jing Zhang's avatar
Jing Zhang committed
122
void host_direct_convolution_forw(const Tensor<TIn>& in_nchw,
Jing Zhang's avatar
Jing Zhang committed
123
124
125
126
127
128
                                  const Tensor<TWei>& wei_kcyx,
                                  Tensor<TOut>& out_nkhw,
                                  LowerPads,
                                  UpperPads,
                                  Strides,
                                  Dilations)
Chao Liu's avatar
Chao Liu committed
129
{
Chao Liu's avatar
Chao Liu committed
130
131
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});
132

Chao Liu's avatar
Chao Liu committed
133
134
    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});
135

Jing Zhang's avatar
Jing Zhang committed
136
137
138
    index_t stride_h = Strides{}.Get(Number<0>{});
    index_t stride_w = Strides{}.Get(Number<1>{});

Jing Zhang's avatar
Jing Zhang committed
139
140
141
    index_t dilation_h = Dilations{}.Get(Number<0>{});
    index_t dilation_w = Dilations{}.Get(Number<1>{});

Chao Liu's avatar
Chao Liu committed
142
143
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
Chao Liu's avatar
Chao Liu committed
144
        for(int c = 0; c < wei_kcyx.mDesc.GetLengths()[1]; ++c)
Chao Liu's avatar
Chao Liu committed
145
        {
Chao Liu's avatar
Chao Liu committed
146
            for(int y = 0; y < wei_kcyx.mDesc.GetLengths()[2]; ++y)
Chao Liu's avatar
Chao Liu committed
147
            {
Jing Zhang's avatar
Jing Zhang committed
148
                int hi = ho * stride_h + y * dilation_h - h_pad_low;
Chao Liu's avatar
Chao Liu committed
149
                for(int x = 0; x < wei_kcyx.mDesc.GetLengths()[3]; ++x)
Chao Liu's avatar
Chao Liu committed
150
                {
Jing Zhang's avatar
Jing Zhang committed
151
                    int wi = wo * stride_w + x * dilation_w - w_pad_low;
152
153
154
                    if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                       wi < in_nchw.mDesc.GetLengths()[3])
                    {
155
                        v += double(in_nchw(n, c, hi, wi)) * double(wei_kcyx(k, c, y, x));
156
                    }
Chao Liu's avatar
Chao Liu committed
157
158
159
                }
            }
        }
160
        out_nkhw(n, k, ho, wo) = v;
Chao Liu's avatar
Chao Liu committed
161
162
163
    };

    auto f_par = make_ParallelTensorFunctor(f,
164
165
166
167
                                            out_nkhw.mDesc.GetLengths()[0],
                                            out_nkhw.mDesc.GetLengths()[1],
                                            out_nkhw.mDesc.GetLengths()[2],
                                            out_nkhw.mDesc.GetLengths()[3]);
Chao Liu's avatar
Chao Liu committed
168

Chao Liu's avatar
Chao Liu committed
169
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
170
171
}

Jing Zhang's avatar
Jing Zhang committed
172
173
174
175
176
177
178
179
template <class TIn,
          class TWei,
          class TOut,
          class LowerPads,
          class UpperPads,
          class Strides,
          class Dilations>
void host_direct_convolution_back(Tensor<TOut>& in_nchw,
Jing Zhang's avatar
Jing Zhang committed
180
181
182
183
184
185
                                  const Tensor<TWei>& wei_kcyx,
                                  const Tensor<TIn>& out_nkhw,
                                  LowerPads,
                                  UpperPads,
                                  Strides,
                                  Dilations)
Jing Zhang's avatar
Jing Zhang committed
186
187
188
189
190
191
192
193
194
195
196
197
198
{
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});

    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});

    index_t stride_h = Strides{}.Get(Number<0>{});
    index_t stride_w = Strides{}.Get(Number<1>{});

    index_t dilation_h = Dilations{}.Get(Number<0>{});
    index_t dilation_w = Dilations{}.Get(Number<1>{});

Jing Zhang's avatar
Jing Zhang committed
199
    // loop n,c,hi,wi
Jing Zhang's avatar
Jing Zhang committed
200
201
    auto f = [&](auto n, auto c, auto hi, auto wi) {
        double v = 0;
Jing Zhang's avatar
Jing Zhang committed
202
        // loop k,y,x
Jing Zhang's avatar
Jing Zhang committed
203
204
205
206
        for(int k = 0; k < wei_kcyx.mDesc.GetLengths()[0]; ++k)
        {
            for(int y = 0; y < wei_kcyx.mDesc.GetLengths()[2]; ++y)
            {
Jing Zhang's avatar
fix  
Jing Zhang committed
207
                int ho_ = (hi - y * dilation_h + h_pad_low);
Jing Zhang's avatar
Jing Zhang committed
208
                int ho  = ho_ / stride_h;
Jing Zhang's avatar
Jing Zhang committed
209
210
                for(int x = 0; x < wei_kcyx.mDesc.GetLengths()[3]; ++x)
                {
Jing Zhang's avatar
fix  
Jing Zhang committed
211
                    int wo_ = (wi - x * dilation_w + w_pad_low);
Jing Zhang's avatar
Jing Zhang committed
212
                    int wo  = wo_ / stride_w;
Jing Zhang's avatar
fix  
Jing Zhang committed
213
                    if(ho >= 0 && ho < out_nkhw.mDesc.GetLengths()[2] && wo >= 0 &&
Jing Zhang's avatar
Jing Zhang committed
214
215
                       wo < out_nkhw.mDesc.GetLengths()[3] && ho_ % stride_h == 0 &&
                       wo_ % stride_w == 0)
Jing Zhang's avatar
Jing Zhang committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
                    {
                        v += double(out_nkhw(n, k, ho, wo)) * double(wei_kcyx(k, c, y, x));
                    }
                }
            }
        }
        in_nchw(n, c, hi, wi) = v;
    };

    auto f_par = make_ParallelTensorFunctor(f,
                                            in_nchw.mDesc.GetLengths()[0],
                                            in_nchw.mDesc.GetLengths()[1],
                                            in_nchw.mDesc.GetLengths()[2],
                                            in_nchw.mDesc.GetLengths()[3]);

    f_par(std::thread::hardware_concurrency());
}

234
235
236
237
238
239
template <class TIn, class TWei, class TOut, class LowerPads, class UpperPads>
void host_winograd_3x3_convolution(const Tensor<TIn>& in_nchw,
                                   const Tensor<TWei>& wei_kcyx,
                                   Tensor<TOut>& out_nkhw,
                                   LowerPads,
                                   UpperPads)
Chao Liu's avatar
Chao Liu committed
240
{
Chao Liu's avatar
Chao Liu committed
241
242
    constexpr std::size_t HoPerTile = 2;
    constexpr std::size_t WoPerTile = 2;
Chao Liu's avatar
Chao Liu committed
243

Chao Liu's avatar
Chao Liu committed
244
245
246
247
    std::size_t N  = in_nchw.mDesc.GetLengths()[0];
    std::size_t C  = in_nchw.mDesc.GetLengths()[1];
    std::size_t HI = in_nchw.mDesc.GetLengths()[2];
    std::size_t WI = in_nchw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
248

Chao Liu's avatar
Chao Liu committed
249
250
251
    std::size_t K = wei_kcyx.mDesc.GetLengths()[0];
    std::size_t Y = wei_kcyx.mDesc.GetLengths()[2];
    std::size_t X = wei_kcyx.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
252

253
254
    std::size_t HO = out_nkhw.mDesc.GetLengths()[2];
    std::size_t WO = out_nkhw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
255

Chao Liu's avatar
Chao Liu committed
256
257
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});
258

Chao Liu's avatar
Chao Liu committed
259
260
    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});
261

Chao Liu's avatar
Chao Liu committed
262
263
    std::size_t HiPerTile = HoPerTile + Y - 1;
    std::size_t WiPerTile = WoPerTile + X - 1;
Chao Liu's avatar
Chao Liu committed
264

Chao Liu's avatar
Chao Liu committed
265
266
    std::size_t HTile = (HO + HoPerTile - 1) / HoPerTile;
    std::size_t WTile = (WO + WoPerTile - 1) / WoPerTile;
Chao Liu's avatar
Chao Liu committed
267

268
269
270
271
272
    Tensor<double> in_hold({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> in_transform({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> wei_transform({K, C, HiPerTile, WiPerTile});
    Tensor<double> out_transform({N, K, HTile, WTile, HiPerTile, HiPerTile});
    Tensor<double> out_hold({N, K, HTile, WTile, HoPerTile, WoPerTile});
Chao Liu's avatar
Chao Liu committed
273

Chao Liu's avatar
Chao Liu committed
274
275
    auto f_in_hold = [&](auto n, auto c, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
276
        {
Chao Liu's avatar
Chao Liu committed
277
278
            int hi = HoPerTile * htile + j - h_pad_low;
            for(int i = 0; i < WiPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
279
            {
Chao Liu's avatar
Chao Liu committed
280
                int wi = WoPerTile * wtile + i - w_pad_low;
281
282
283
284

                if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                   wi < in_nchw.mDesc.GetLengths()[3])
                {
Chao Liu's avatar
Chao Liu committed
285
                    in_hold(n, c, htile, wtile, j, i) = in_nchw(n, c, hi, wi);
286
287
288
                }
                else
                {
289
                    in_hold(n, c, htile, wtile, j, i) = TIn(0);
290
                }
Chao Liu's avatar
Chao Liu committed
291
292
293
294
            }
        }
    };

Chao Liu's avatar
Chao Liu committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    auto f_in_transform = [&](auto n, auto c, auto htile, auto wtile) {
        in_transform(n, c, htile, wtile, 0, 0) =
            in_hold(n, c, htile, wtile, 0, 0) - in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 0) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 1) =
            in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 2) =
            -in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 3) =
            in_hold(n, c, htile, wtile, 0, 1) - in_hold(n, c, htile, wtile, 0, 3) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 1, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 2, 0) =
            -in_hold(n, c, htile, wtile, 1, 0) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 1) =
            -in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 2) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 3) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 3, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 0) + in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) -
            in_hold(n, c, htile, wtile, 3, 1) + in_hold(n, c, htile, wtile, 3, 3);
Chao Liu's avatar
Chao Liu committed
347
348
349
    };

    auto f_wei_transform = [&](auto k, auto c) {
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        wei_transform(k, c, 0, 0) = double(wei_kcyx(k, c, 0, 0));
        wei_transform(k, c, 0, 1) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 2) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 3) = double(wei_kcyx(k, c, 0, 2));

        wei_transform(k, c, 1, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 1, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 2, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 2, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 3, 0) = double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 3, 1) = 0.5 * double(wei_kcyx(k, c, 2, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 2) = 0.5 * double(wei_kcyx(k, c, 2, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 3) = double(wei_kcyx(k, c, 2, 2));
Chao Liu's avatar
Chao Liu committed
405
406
    };

Chao Liu's avatar
Chao Liu committed
407
408
    auto f_out_transform = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
409
        {
Chao Liu's avatar
Chao Liu committed
410
            for(int i = 0; i < WiPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
411
412
413
414
            {
                double v = 0;
                for(int c = 0; c < C; ++c)
                {
Chao Liu's avatar
Chao Liu committed
415
                    v += in_transform(n, c, htile, wtile, j, i) * wei_transform(k, c, j, i);
Chao Liu's avatar
Chao Liu committed
416
417
                }

Chao Liu's avatar
Chao Liu committed
418
                out_transform(n, k, htile, wtile, j, i) = v;
Chao Liu's avatar
Chao Liu committed
419
420
421
422
            }
        }
    };

Chao Liu's avatar
Chao Liu committed
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    auto f_out_hold = [&](auto n, auto k, auto htile, auto wtile) {
        out_hold(n, k, htile, wtile, 0, 0) =
            out_transform(n, k, htile, wtile, 0, 0) + out_transform(n, k, htile, wtile, 0, 1) +
            out_transform(n, k, htile, wtile, 0, 2) + out_transform(n, k, htile, wtile, 1, 0) +
            out_transform(n, k, htile, wtile, 1, 1) + out_transform(n, k, htile, wtile, 1, 2) +
            out_transform(n, k, htile, wtile, 2, 0) + out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2);
        out_hold(n, k, htile, wtile, 0, 1) =
            out_transform(n, k, htile, wtile, 0, 1) - out_transform(n, k, htile, wtile, 0, 2) -
            out_transform(n, k, htile, wtile, 0, 3) + out_transform(n, k, htile, wtile, 1, 1) -
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 1, 3) +
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 2, 3);
        out_hold(n, k, htile, wtile, 1, 0) =
            out_transform(n, k, htile, wtile, 1, 0) + out_transform(n, k, htile, wtile, 1, 1) +
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 2, 0) -
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 3, 0) - out_transform(n, k, htile, wtile, 3, 1) -
            out_transform(n, k, htile, wtile, 3, 2);
        out_hold(n, k, htile, wtile, 1, 1) =
            out_transform(n, k, htile, wtile, 1, 1) - out_transform(n, k, htile, wtile, 1, 2) -
            out_transform(n, k, htile, wtile, 1, 3) - out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2) + out_transform(n, k, htile, wtile, 2, 3) -
            out_transform(n, k, htile, wtile, 3, 1) + out_transform(n, k, htile, wtile, 3, 2) +
            out_transform(n, k, htile, wtile, 3, 3);
Chao Liu's avatar
Chao Liu committed
448
449
    };

Chao Liu's avatar
Chao Liu committed
450
451
    auto f_out = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HoPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
452
        {
Chao Liu's avatar
Chao Liu committed
453
454
            std::size_t ho = HoPerTile * htile + j;
            for(int i = 0; i < WoPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
455
            {
456
                std::size_t wo = WoPerTile * wtile + i;
457
                out_nkhw(n, k, ho, wo) = out_hold(n, k, htile, wtile, j, i);
Chao Liu's avatar
Chao Liu committed
458
459
460
461
462
463
            }
        }
    };

    std::size_t num_thread = std::thread::hardware_concurrency();

Chao Liu's avatar
Chao Liu committed
464
465
    make_ParallelTensorFunctor(f_in_hold, N, C, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_in_transform, N, C, HTile, WTile)(num_thread);
Chao Liu's avatar
Chao Liu committed
466
    make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread);
Chao Liu's avatar
Chao Liu committed
467
468
469
    make_ParallelTensorFunctor(f_out_transform, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out_hold, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out, N, K, HTile, WTile)(num_thread);
Chao Liu's avatar
Chao Liu committed
470
471
472
473
474
475
}

template <class T>
void check_error(const Tensor<T>& ref, const Tensor<T>& result)
{
    float error     = 0;
Chao Liu's avatar
Chao Liu committed
476
    float max_diff  = -1;
Chao Liu's avatar
Chao Liu committed
477
478
479
    float ref_value = 0, result_value = 0;
    for(int i = 0; i < ref.mData.size(); ++i)
    {
480
481
        error += std::abs(double(ref.mData[i]) - double(result.mData[i]));
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
Chao Liu's avatar
Chao Liu committed
482
483
484
485
486
487
488
489
490
491
492
493
        if(max_diff < diff)
        {
            max_diff     = diff;
            ref_value    = ref.mData[i];
            result_value = result.mData[i];
        }
    }

    std::cout << "error: " << error << std::endl;
    std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl;
}

Chao Liu's avatar
Chao Liu committed
494
int main(int argc, char* argv[])
Chao Liu's avatar
Chao Liu committed
495
{
Jing Zhang's avatar
test  
Jing Zhang committed
496
497
    constexpr index_t HStride = 1;
    constexpr index_t WStride = 1;
Jing Zhang's avatar
Jing Zhang committed
498

Jing Zhang's avatar
Jing Zhang committed
499
500
501
    constexpr index_t HDilation = 1;
    constexpr index_t WDilation = 1;

Jing Zhang's avatar
Jing Zhang committed
502
    constexpr index_t Direction = 1; // 1: Forward; 0:Backward
Jing Zhang's avatar
fix  
Jing Zhang committed
503
#if 0
Chao Liu's avatar
Chao Liu committed
504
    constexpr index_t N  = 32;
Jing Zhang's avatar
Jing Zhang committed
505
    constexpr index_t C  = 128;
Chao Liu's avatar
Chao Liu committed
506
507
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
Jing Zhang's avatar
fix  
Jing Zhang committed
508
    constexpr index_t K  = 16;
Jing Zhang's avatar
Jing Zhang committed
509
510
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;
Chao Liu's avatar
Chao Liu committed
511
512
513

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
514
#elif 0
515
    // 3x3, 34x34
516
517
    constexpr index_t N  = 64;
    constexpr index_t C  = 256;
518
519
    constexpr index_t HI = 34;
    constexpr index_t WI = 34;
520
521
522
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Chao Liu's avatar
Chao Liu committed
523
524
525

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
526
#elif 0
527
    // 3x3, 56x56
Chao Liu's avatar
Chao Liu committed
528
529
    constexpr index_t N  = 64;
    constexpr index_t C  = 64;
530
531
    constexpr index_t HI = 56;
    constexpr index_t WI = 56;
Chao Liu's avatar
Chao Liu committed
532
533
534
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Chao Liu's avatar
Chao Liu committed
535
536
537

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Jing Zhang's avatar
Jing Zhang committed
538
#elif 0
Chao Liu's avatar
Chao Liu committed
539
540
541
542
543
    // 3x3 filter, 28x28 image
    constexpr index_t N  = 128;
    constexpr index_t C  = 256;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
544
    constexpr index_t K  = 128;
Chao Liu's avatar
Chao Liu committed
545
546
547
548
549
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Jing Zhang's avatar
Jing Zhang committed
550
#elif 1
Chao Liu's avatar
Chao Liu committed
551
    // 1x1 filter, 28x28 image
552
    constexpr index_t N  = 128;
Jing Zhang's avatar
Jing Zhang committed
553
554
555
556
    constexpr index_t C  = 512;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 512;
Chao Liu's avatar
Chao Liu committed
557
558
559
560
561
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
562
563
#elif 0
    // 3x3 filter, 20x84 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
564
565
566
567
568
569
570
571
572
573
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 84;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
Chao Liu's avatar
Chao Liu committed
574
575
#elif 0
    // 3x3 filter, 112x112 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
576
577
578
579
580
581
582
583
584
585
    constexpr index_t N  = 16;
    constexpr index_t C  = 64;
    constexpr index_t HI = 112;
    constexpr index_t WI = 112;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
586
#elif 0
587
588
589
590
591
592
593
594
595
596
597
    // 5x5 filter, 20x86 image
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 86;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
598
599
#elif 0
    // 5x5 filter, 20x86 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
600
601
602
603
604
605
606
607
608
609
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 86;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
Chao Liu's avatar
Chao Liu committed
610
611
#elif 0
    // 5x5 filter, 28x28 image, 2x2 padding
Chao Liu's avatar
Chao Liu committed
612
613
614
615
616
617
618
619
620
621
    constexpr index_t N  = 16;
    constexpr index_t C  = 192;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 32;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 2;
    constexpr index_t WPad = 2;
Chao Liu's avatar
Chao Liu committed
622
#elif 0
623
    // 3x3 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
624
    constexpr index_t N  = 128;
625
    constexpr index_t C  = 256;
Chao Liu's avatar
Chao Liu committed
626
627
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
628
629
630
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Chao Liu's avatar
Chao Liu committed
631
632
633

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
634
#elif 0
635
    // 1x1 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
636
637
638
639
640
641
642
643
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

Chao Liu's avatar
Chao Liu committed
644
645
646
647
648
649
650
651
652
653
654
655
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 1x1 filter, 7x7 image
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 7;
    constexpr index_t WI = 7;
    constexpr index_t K  = 2048;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

656
657
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
658
#elif 0
659
660
    // 1x1 filter, 73x73 image
    constexpr index_t N  = 128;
Chao Liu's avatar
Chao Liu committed
661
    constexpr index_t C  = 512;
662
663
664
665
666
667
    constexpr index_t HI = 73;
    constexpr index_t WI = 73;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

Chao Liu's avatar
Chao Liu committed
668
669
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
670
#endif
Chao Liu's avatar
Chao Liu committed
671

672
673
674
    auto lower_pads = Sequence<HPad, WPad>{};
    auto upper_pads = Sequence<HPad, WPad>{};

Jing Zhang's avatar
Jing Zhang committed
675
676
    auto strides   = Sequence<HStride, WStride>{};
    auto dilations = Sequence<HDilation, WDilation>{};
Jing Zhang's avatar
Jing Zhang committed
677

Chao Liu's avatar
Chao Liu committed
678
679
    auto in_nchw_desc  = make_ConstantTensorDescriptor_packed(Sequence<N, C, HI, WI>{});
    auto wei_kcyx_desc = make_ConstantTensorDescriptor_packed(Sequence<K, C, Y, X>{});
Jing Zhang's avatar
Jing Zhang committed
680
681
    auto out_nkhw_desc = get_convolution_output_default_4d_tensor_descriptor(
        in_nchw_desc, wei_kcyx_desc, strides, dilations);
Chao Liu's avatar
Chao Liu committed
682

Jing Zhang's avatar
Jing Zhang committed
683
    // auto wei_ckyx_back_desc = wei_kcyx_desc.ReorderGivenNew2Old(Sequence<1, 0, 2, 3>{});
Jing Zhang's avatar
Jing Zhang committed
684

Chao Liu's avatar
Chao Liu committed
685
    ostream_ConstantTensorDescriptor(in_nchw_desc, std::cout << "in_nchw_desc: ");
Chao Liu's avatar
Chao Liu committed
686
    ostream_ConstantTensorDescriptor(wei_kcyx_desc, std::cout << "wei_kcyx_desc: ");
Chao Liu's avatar
Chao Liu committed
687
    ostream_ConstantTensorDescriptor(out_nkhw_desc, std::cout << "out_nkhw_desc: ");
Chao Liu's avatar
Chao Liu committed
688

Chao Liu's avatar
Chao Liu committed
689
690
    using in_data_t  = float;
    using out_data_t = float;
691
    Tensor<in_data_t> in_nchw(make_TensorDescriptor(in_nchw_desc));
Jing Zhang's avatar
Jing Zhang committed
692
693
    Tensor<in_data_t> out_nkhw(make_TensorDescriptor(out_nkhw_desc));
    Tensor<in_data_t> in_nchw_device(make_TensorDescriptor(in_nchw_desc));
694
    Tensor<out_data_t> out_nkhw_device(make_TensorDescriptor(out_nkhw_desc));
Jing Zhang's avatar
Jing Zhang committed
695
    Tensor<in_data_t> wei_kcyx(make_TensorDescriptor(wei_kcyx_desc));
Chao Liu's avatar
Chao Liu committed
696

Chao Liu's avatar
Chao Liu committed
697
    std::size_t num_thread = std::thread::hardware_concurrency();
Chao Liu's avatar
Chao Liu committed
698

Chao Liu's avatar
Chao Liu committed
699
700
701
702
703
704
705
    if(argc != 3)
    {
        printf("arg1: do_verification, arg2: nrepeat\n");
        exit(1);
    }

    bool do_verification = atoi(argv[1]);
Chao Liu's avatar
Chao Liu committed
706
    index_t nrepeat      = atoi(argv[2]);
707
708
709

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
710
#if 0
Chao Liu's avatar
Chao Liu committed
711
        in_nchw.GenerateTensorValue(GeneratorTensor_0{}, num_thread);
Chao Liu's avatar
Chao Liu committed
712
        wei_kcyx.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
713
        out_nkhw.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
714
#elif 0
Chao Liu's avatar
Chao Liu committed
715
716
        in_nchw.GenerateTensorValue(GeneratorTensor_0{}, num_thread);
        wei_kcyx.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Jing Zhang's avatar
Jing Zhang committed
717
718
        // out_nkhw.GenerateTensorValue(GeneratorTensor_Checkboard{}, num_thread);
        // out_nkhw.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
719
        out_nkhw.GenerateTensorValue(GeneratorTensor_4{}, num_thread);
720
721
722
#elif 0
        in_nchw.GenerateTensorValue(GeneratorTensor_3{}, num_thread);
        wei_kcyx.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
723
#elif 1
Jing Zhang's avatar
Jing Zhang committed
724
        in_nchw.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
725
726
        out_nkhw.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        wei_kcyx.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
727
#elif 0
728
729
730
731
732
733
        in_nchw.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);

        auto gen_wei = [](auto... is) {
            return GeneratorTensor_2{1, 5}(is...) * GeneratorTensor_Checkboard{}(is...);
        };
        wei_kcyx.GenerateTensorValue(gen_wei, num_thread);
Chao Liu's avatar
Chao Liu committed
734
#endif
735
    }
Chao Liu's avatar
Chao Liu committed
736

Jing Zhang's avatar
Jing Zhang committed
737
738
    if(Direction == 1)
    {
Chao Liu's avatar
Chao Liu committed
739

Jing Zhang's avatar
Jing Zhang committed
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
        device_convolution_implicit_gemm_v4_nchw_kc1x1_nkhw(in_nchw_desc,
                                                            in_nchw,
                                                            wei_kcyx_desc,
                                                            wei_kcyx,
                                                            out_nkhw_desc,
                                                            strides,
                                                            dilations,
                                                            Number<Direction>{},
                                                            out_nkhw_device,
                                                            nrepeat);
    }
    else
    {
        device_convolution_implicit_gemm_v4_nchw_kc1x1_nkhw(in_nchw_desc,
                                                            in_nchw_device,
                                                            wei_kcyx_desc,
                                                            wei_kcyx,
                                                            out_nkhw_desc,
                                                            strides,
                                                            dilations,
                                                            Number<Direction>{},
                                                            out_nkhw,
                                                            nrepeat);
    }
764
    if(do_verification)
765
    {
Jing Zhang's avatar
Jing Zhang committed
766
#if 0
Chao Liu's avatar
Chao Liu committed
767
        if(Y == 3 && X == 3)
768
        {
Chao Liu's avatar
Chao Liu committed
769
            host_winograd_3x3_convolution(in_nchw, wei_kcyx, out_nkhw_host, lower_pads, upper_pads);
770
771
        }
        else
Chao Liu's avatar
Chao Liu committed
772
#endif
Jing Zhang's avatar
Jing Zhang committed
773
774
775
776
777
778
779
        if(Direction == 1)
        {
            host_direct_convolution_forw(
                in_nchw, wei_kcyx, out_nkhw, lower_pads, upper_pads, strides, dilations);
            check_error(out_nkhw, out_nkhw_device);
        }
        else
780
        {
Jing Zhang's avatar
Jing Zhang committed
781
782
783
            host_direct_convolution_back(
                in_nchw, wei_kcyx, out_nkhw, lower_pads, upper_pads, strides, dilations);
            check_error(in_nchw, in_nchw_device);
784
        }
Chao Liu's avatar
Chao Liu committed
785

Chao Liu's avatar
Chao Liu committed
786
#if 0
Jing Zhang's avatar
Jing Zhang committed
787
788
789
790
791
792
793
        //LogRange(std::cout << "out_nkhw: ", out_nkhw.mData, ",") << std::endl;
        //LogRange(std::cout << "wei_kcyx: ", wei_kcyx.mData, ",") << std::endl;
        //LogRange(std::cout << "in_nchw_host  : ", in_nchw.mData, ",") << std::endl;
        //LogRange(std::cout << "in_nchw_device: ", in_nchw_device.mData, ",") << std::endl;

        //LogRange(std::cout << "out_nkhw_host  : ", out_nkhw.mData, ",") << std::endl;
        LogRange(std::cout << "out_nkhw_device: ", out_nkhw_device.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
794
#endif
795
    }
796
}