driver.hip.cpp 27.8 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
5
#include <stdlib.h>
Chao Liu's avatar
Chao Liu committed
6
#include "config.h"
Chao Liu's avatar
Chao Liu committed
7
#include "tensor.hpp"
8
9
#include "ConstantTensorDescriptor.hip.hpp"
#include "conv_common.hip.hpp"
Chao Liu's avatar
Chao Liu committed
10
#include "device_convolution_direct_v2_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
11
//#include "device_direct_convolution_2_vectorized_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
12
#include "device_convolution_implicit_gemm_v1_chwn_cyxk_khwn.hpp"
13
#include "device_convolution_implicit_gemm_v1_nchw_cyxk_khwn.hpp"
Chao Liu's avatar
Chao Liu committed
14
#include "device_convolution_implicit_gemm_v1_nchw_cyxk_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
15
#include "device_convolution_implicit_gemm_v2_chwn_cyxk_khwn.hpp"
Chao Liu's avatar
Chao Liu committed
16
#include "device_convolution_implicit_gemm_v3_nchw_cyxk_nkhw.hpp"
17
#include "device_convolution_implicit_gemm_v4_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
18

Chao Liu's avatar
Chao Liu committed
19
struct GeneratorTensor_1
Chao Liu's avatar
Chao Liu committed
20
21
{
    template <class... Is>
Chao Liu's avatar
Chao Liu committed
22
    double operator()(Is... is)
Chao Liu's avatar
Chao Liu committed
23
    {
Chao Liu's avatar
Chao Liu committed
24
        return 1;
Chao Liu's avatar
Chao Liu committed
25
26
27
    }
};

Chao Liu's avatar
Chao Liu committed
28
29
30
31
32
33
34
35
36
37
38
39
struct GeneratorTensor_2
{
    int min_value = 0;
    int max_value = 1;

    template <class... Is>
    double operator()(Is...)
    {
        return (std::rand() % (max_value - min_value)) + min_value;
    }
};

40
41
42
43
44
45
46
struct GeneratorTensor_3
{
    template <class... Is>
    double operator()(Is... is)
    {
        std::array<index_t, sizeof...(Is)> dims = {{static_cast<index_t>(is)...}};

47
        auto f_acc = [](auto a, auto b) { return 100 * a + b; };
48

49
        return std::accumulate(dims.begin(), dims.end(), index_t(0), f_acc);
50
51
52
    }
};

Chao Liu's avatar
Chao Liu committed
53
54
55
56
57
struct GeneratorTensor_Checkboard
{
    template <class... Ts>
    double operator()(Ts... Xs) const
    {
Chao Liu's avatar
Chao Liu committed
58
        std::array<index_t, sizeof...(Ts)> dims = {{Xs...}};
Chao Liu's avatar
Chao Liu committed
59
60
61
        return std::accumulate(dims.begin(),
                               dims.end(),
                               true,
Chao Liu's avatar
Chao Liu committed
62
                               [](bool init, index_t x) -> int { return init != (x % 2); })
Chao Liu's avatar
Chao Liu committed
63
64
65
66
67
                   ? 1
                   : -1;
    }
};

Chao Liu's avatar
Chao Liu committed
68
69
70
71
72
73
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
74
75
76
77
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
92
93
94
95
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
96
97
    constexpr auto desc = TConstTensorDesc{};

Chao Liu's avatar
Chao Liu committed
98
    std::initializer_list<index_t> lengths = {
Chao Liu's avatar
Chao Liu committed
99
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
Chao Liu's avatar
Chao Liu committed
100
    std::initializer_list<index_t> strides = {
Chao Liu's avatar
Chao Liu committed
101
102
103
104
105
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

Jing Zhang's avatar
Jing Zhang committed
106
107
108
109
110
111
112
template <class TIn,
          class TWei,
          class TOut,
          class LowerPads,
          class UpperPads,
          class Strides,
          class Dilations>
113
114
115
116
void host_direct_convolution(const Tensor<TIn>& in_nchw,
                             const Tensor<TWei>& wei_kcyx,
                             Tensor<TOut>& out_nkhw,
                             LowerPads,
Jing Zhang's avatar
Jing Zhang committed
117
                             UpperPads,
Jing Zhang's avatar
Jing Zhang committed
118
119
                             Strides,
                             Dilations)
Chao Liu's avatar
Chao Liu committed
120
{
Chao Liu's avatar
Chao Liu committed
121
122
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});
123

Chao Liu's avatar
Chao Liu committed
124
125
    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});
126

Jing Zhang's avatar
Jing Zhang committed
127
128
129
    index_t stride_h = Strides{}.Get(Number<0>{});
    index_t stride_w = Strides{}.Get(Number<1>{});

Jing Zhang's avatar
Jing Zhang committed
130
131
132
    index_t dilation_h = Dilations{}.Get(Number<0>{});
    index_t dilation_w = Dilations{}.Get(Number<1>{});

Chao Liu's avatar
Chao Liu committed
133
134
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
Chao Liu's avatar
Chao Liu committed
135
        for(int c = 0; c < wei_kcyx.mDesc.GetLengths()[1]; ++c)
Chao Liu's avatar
Chao Liu committed
136
        {
Chao Liu's avatar
Chao Liu committed
137
            for(int y = 0; y < wei_kcyx.mDesc.GetLengths()[2]; ++y)
Chao Liu's avatar
Chao Liu committed
138
            {
Jing Zhang's avatar
Jing Zhang committed
139
                int hi = ho * stride_h + y * dilation_h - h_pad_low;
Chao Liu's avatar
Chao Liu committed
140
                for(int x = 0; x < wei_kcyx.mDesc.GetLengths()[3]; ++x)
Chao Liu's avatar
Chao Liu committed
141
                {
Jing Zhang's avatar
Jing Zhang committed
142
                    int wi = wo * stride_w + x * dilation_w - w_pad_low;
143
144
145
                    if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                       wi < in_nchw.mDesc.GetLengths()[3])
                    {
146
                        v += double(in_nchw(n, c, hi, wi)) * double(wei_kcyx(k, c, y, x));
147
                    }
Chao Liu's avatar
Chao Liu committed
148
149
150
                }
            }
        }
151
        out_nkhw(n, k, ho, wo) = v;
Chao Liu's avatar
Chao Liu committed
152
153
154
    };

    auto f_par = make_ParallelTensorFunctor(f,
155
156
157
158
                                            out_nkhw.mDesc.GetLengths()[0],
                                            out_nkhw.mDesc.GetLengths()[1],
                                            out_nkhw.mDesc.GetLengths()[2],
                                            out_nkhw.mDesc.GetLengths()[3]);
Chao Liu's avatar
Chao Liu committed
159

Chao Liu's avatar
Chao Liu committed
160
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
161
162
}

163
164
165
166
167
168
template <class TIn, class TWei, class TOut, class LowerPads, class UpperPads>
void host_winograd_3x3_convolution(const Tensor<TIn>& in_nchw,
                                   const Tensor<TWei>& wei_kcyx,
                                   Tensor<TOut>& out_nkhw,
                                   LowerPads,
                                   UpperPads)
Chao Liu's avatar
Chao Liu committed
169
{
Chao Liu's avatar
Chao Liu committed
170
171
    constexpr std::size_t HoPerTile = 2;
    constexpr std::size_t WoPerTile = 2;
Chao Liu's avatar
Chao Liu committed
172

Chao Liu's avatar
Chao Liu committed
173
174
175
176
    std::size_t N  = in_nchw.mDesc.GetLengths()[0];
    std::size_t C  = in_nchw.mDesc.GetLengths()[1];
    std::size_t HI = in_nchw.mDesc.GetLengths()[2];
    std::size_t WI = in_nchw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
177

Chao Liu's avatar
Chao Liu committed
178
179
180
    std::size_t K = wei_kcyx.mDesc.GetLengths()[0];
    std::size_t Y = wei_kcyx.mDesc.GetLengths()[2];
    std::size_t X = wei_kcyx.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
181

182
183
    std::size_t HO = out_nkhw.mDesc.GetLengths()[2];
    std::size_t WO = out_nkhw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
184

Chao Liu's avatar
Chao Liu committed
185
186
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});
187

Chao Liu's avatar
Chao Liu committed
188
189
    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});
190

Chao Liu's avatar
Chao Liu committed
191
192
    std::size_t HiPerTile = HoPerTile + Y - 1;
    std::size_t WiPerTile = WoPerTile + X - 1;
Chao Liu's avatar
Chao Liu committed
193

Chao Liu's avatar
Chao Liu committed
194
195
    std::size_t HTile = (HO + HoPerTile - 1) / HoPerTile;
    std::size_t WTile = (WO + WoPerTile - 1) / WoPerTile;
Chao Liu's avatar
Chao Liu committed
196

197
198
199
200
201
    Tensor<double> in_hold({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> in_transform({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> wei_transform({K, C, HiPerTile, WiPerTile});
    Tensor<double> out_transform({N, K, HTile, WTile, HiPerTile, HiPerTile});
    Tensor<double> out_hold({N, K, HTile, WTile, HoPerTile, WoPerTile});
Chao Liu's avatar
Chao Liu committed
202

Chao Liu's avatar
Chao Liu committed
203
204
    auto f_in_hold = [&](auto n, auto c, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
205
        {
Chao Liu's avatar
Chao Liu committed
206
207
            int hi = HoPerTile * htile + j - h_pad_low;
            for(int i = 0; i < WiPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
208
            {
Chao Liu's avatar
Chao Liu committed
209
                int wi = WoPerTile * wtile + i - w_pad_low;
210
211
212
213

                if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                   wi < in_nchw.mDesc.GetLengths()[3])
                {
Chao Liu's avatar
Chao Liu committed
214
                    in_hold(n, c, htile, wtile, j, i) = in_nchw(n, c, hi, wi);
215
216
217
                }
                else
                {
218
                    in_hold(n, c, htile, wtile, j, i) = TIn(0);
219
                }
Chao Liu's avatar
Chao Liu committed
220
221
222
223
            }
        }
    };

Chao Liu's avatar
Chao Liu committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    auto f_in_transform = [&](auto n, auto c, auto htile, auto wtile) {
        in_transform(n, c, htile, wtile, 0, 0) =
            in_hold(n, c, htile, wtile, 0, 0) - in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 0) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 1) =
            in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 2) =
            -in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 3) =
            in_hold(n, c, htile, wtile, 0, 1) - in_hold(n, c, htile, wtile, 0, 3) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 1, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 2, 0) =
            -in_hold(n, c, htile, wtile, 1, 0) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 1) =
            -in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 2) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 3) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 3, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 0) + in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) -
            in_hold(n, c, htile, wtile, 3, 1) + in_hold(n, c, htile, wtile, 3, 3);
Chao Liu's avatar
Chao Liu committed
276
277
278
    };

    auto f_wei_transform = [&](auto k, auto c) {
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        wei_transform(k, c, 0, 0) = double(wei_kcyx(k, c, 0, 0));
        wei_transform(k, c, 0, 1) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 2) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 3) = double(wei_kcyx(k, c, 0, 2));

        wei_transform(k, c, 1, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 1, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 2, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 2, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 3, 0) = double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 3, 1) = 0.5 * double(wei_kcyx(k, c, 2, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 2) = 0.5 * double(wei_kcyx(k, c, 2, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 3) = double(wei_kcyx(k, c, 2, 2));
Chao Liu's avatar
Chao Liu committed
334
335
    };

Chao Liu's avatar
Chao Liu committed
336
337
    auto f_out_transform = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
338
        {
Chao Liu's avatar
Chao Liu committed
339
            for(int i = 0; i < WiPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
340
341
342
343
            {
                double v = 0;
                for(int c = 0; c < C; ++c)
                {
Chao Liu's avatar
Chao Liu committed
344
                    v += in_transform(n, c, htile, wtile, j, i) * wei_transform(k, c, j, i);
Chao Liu's avatar
Chao Liu committed
345
346
                }

Chao Liu's avatar
Chao Liu committed
347
                out_transform(n, k, htile, wtile, j, i) = v;
Chao Liu's avatar
Chao Liu committed
348
349
350
351
            }
        }
    };

Chao Liu's avatar
Chao Liu committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    auto f_out_hold = [&](auto n, auto k, auto htile, auto wtile) {
        out_hold(n, k, htile, wtile, 0, 0) =
            out_transform(n, k, htile, wtile, 0, 0) + out_transform(n, k, htile, wtile, 0, 1) +
            out_transform(n, k, htile, wtile, 0, 2) + out_transform(n, k, htile, wtile, 1, 0) +
            out_transform(n, k, htile, wtile, 1, 1) + out_transform(n, k, htile, wtile, 1, 2) +
            out_transform(n, k, htile, wtile, 2, 0) + out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2);
        out_hold(n, k, htile, wtile, 0, 1) =
            out_transform(n, k, htile, wtile, 0, 1) - out_transform(n, k, htile, wtile, 0, 2) -
            out_transform(n, k, htile, wtile, 0, 3) + out_transform(n, k, htile, wtile, 1, 1) -
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 1, 3) +
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 2, 3);
        out_hold(n, k, htile, wtile, 1, 0) =
            out_transform(n, k, htile, wtile, 1, 0) + out_transform(n, k, htile, wtile, 1, 1) +
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 2, 0) -
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 3, 0) - out_transform(n, k, htile, wtile, 3, 1) -
            out_transform(n, k, htile, wtile, 3, 2);
        out_hold(n, k, htile, wtile, 1, 1) =
            out_transform(n, k, htile, wtile, 1, 1) - out_transform(n, k, htile, wtile, 1, 2) -
            out_transform(n, k, htile, wtile, 1, 3) - out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2) + out_transform(n, k, htile, wtile, 2, 3) -
            out_transform(n, k, htile, wtile, 3, 1) + out_transform(n, k, htile, wtile, 3, 2) +
            out_transform(n, k, htile, wtile, 3, 3);
Chao Liu's avatar
Chao Liu committed
377
378
    };

Chao Liu's avatar
Chao Liu committed
379
380
    auto f_out = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HoPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
381
        {
Chao Liu's avatar
Chao Liu committed
382
383
            std::size_t ho = HoPerTile * htile + j;
            for(int i = 0; i < WoPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
384
            {
385
                std::size_t wo = WoPerTile * wtile + i;
386
                out_nkhw(n, k, ho, wo) = out_hold(n, k, htile, wtile, j, i);
Chao Liu's avatar
Chao Liu committed
387
388
389
390
391
392
            }
        }
    };

    std::size_t num_thread = std::thread::hardware_concurrency();

Chao Liu's avatar
Chao Liu committed
393
394
    make_ParallelTensorFunctor(f_in_hold, N, C, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_in_transform, N, C, HTile, WTile)(num_thread);
Chao Liu's avatar
Chao Liu committed
395
    make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread);
Chao Liu's avatar
Chao Liu committed
396
397
398
    make_ParallelTensorFunctor(f_out_transform, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out_hold, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out, N, K, HTile, WTile)(num_thread);
Chao Liu's avatar
Chao Liu committed
399
400
401
402
403
404
}

template <class T>
void check_error(const Tensor<T>& ref, const Tensor<T>& result)
{
    float error     = 0;
Chao Liu's avatar
Chao Liu committed
405
    float max_diff  = -1;
Chao Liu's avatar
Chao Liu committed
406
407
408
    float ref_value = 0, result_value = 0;
    for(int i = 0; i < ref.mData.size(); ++i)
    {
409
410
        error += std::abs(double(ref.mData[i]) - double(result.mData[i]));
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
Chao Liu's avatar
Chao Liu committed
411
412
413
414
415
416
417
418
419
420
421
422
        if(max_diff < diff)
        {
            max_diff     = diff;
            ref_value    = ref.mData[i];
            result_value = result.mData[i];
        }
    }

    std::cout << "error: " << error << std::endl;
    std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl;
}

Chao Liu's avatar
Chao Liu committed
423
int main(int argc, char* argv[])
Chao Liu's avatar
Chao Liu committed
424
{
Jing Zhang's avatar
Jing Zhang committed
425
426
427
428
429
    constexpr index_t U = 1;
    constexpr index_t V = 1;

    constexpr index_t Dh = 2;
    constexpr index_t Dw = 2;
Chao Liu's avatar
Chao Liu committed
430
431
#if 0
    constexpr index_t N  = 8;
Chao Liu's avatar
Chao Liu committed
432
    constexpr index_t C  = 16;
Jing Zhang's avatar
Jing Zhang committed
433
434
    constexpr index_t HI = 20;
    constexpr index_t WI = 20;
Chao Liu's avatar
Chao Liu committed
435
    constexpr index_t K  = 128;
Jing Zhang's avatar
Jing Zhang committed
436
437
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;
Chao Liu's avatar
Chao Liu committed
438
439
440

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
441
#elif 0
442
    // 3x3, 34x34
443
444
    constexpr index_t N  = 64;
    constexpr index_t C  = 256;
445
446
    constexpr index_t HI = 34;
    constexpr index_t WI = 34;
447
448
449
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Chao Liu's avatar
Chao Liu committed
450
451
452

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
453
#elif 0
454
    // 3x3, 56x56
Chao Liu's avatar
Chao Liu committed
455
456
    constexpr index_t N  = 64;
    constexpr index_t C  = 64;
457
458
    constexpr index_t HI = 56;
    constexpr index_t WI = 56;
Chao Liu's avatar
Chao Liu committed
459
460
461
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Chao Liu's avatar
Chao Liu committed
462
463
464

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Jing Zhang's avatar
Jing Zhang committed
465
#elif 1
Chao Liu's avatar
Chao Liu committed
466
467
468
469
470
    // 3x3 filter, 28x28 image
    constexpr index_t N  = 128;
    constexpr index_t C  = 256;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
471
    constexpr index_t K  = 128;
Chao Liu's avatar
Chao Liu committed
472
473
474
475
476
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Jing Zhang's avatar
Jing Zhang committed
477
#elif 0
Chao Liu's avatar
Chao Liu committed
478
    // 1x1 filter, 28x28 image
479
480
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
Chao Liu's avatar
Chao Liu committed
481
482
483
484
485
486
487
488
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
489
490
#elif 0
    // 3x3 filter, 20x84 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
491
492
493
494
495
496
497
498
499
500
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 84;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
Chao Liu's avatar
Chao Liu committed
501
502
#elif 0
    // 3x3 filter, 112x112 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
503
504
505
506
507
508
509
510
511
512
    constexpr index_t N  = 16;
    constexpr index_t C  = 64;
    constexpr index_t HI = 112;
    constexpr index_t WI = 112;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
513
#elif 0
514
515
516
517
518
519
520
521
522
523
524
    // 5x5 filter, 20x86 image
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 86;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
525
526
#elif 0
    // 5x5 filter, 20x86 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
527
528
529
530
531
532
533
534
535
536
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 86;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
Chao Liu's avatar
Chao Liu committed
537
538
#elif 0
    // 5x5 filter, 28x28 image, 2x2 padding
Chao Liu's avatar
Chao Liu committed
539
540
541
542
543
544
545
546
547
548
    constexpr index_t N  = 16;
    constexpr index_t C  = 192;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 32;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 2;
    constexpr index_t WPad = 2;
Chao Liu's avatar
Chao Liu committed
549
#elif 0
550
    // 3x3 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
551
    constexpr index_t N  = 128;
552
    constexpr index_t C  = 256;
Chao Liu's avatar
Chao Liu committed
553
554
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
555
556
557
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Chao Liu's avatar
Chao Liu committed
558
559
560

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
561
#elif 0
562
    // 1x1 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
563
564
565
566
567
568
569
570
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

Chao Liu's avatar
Chao Liu committed
571
572
573
574
575
576
577
578
579
580
581
582
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 1x1 filter, 7x7 image
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 7;
    constexpr index_t WI = 7;
    constexpr index_t K  = 2048;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

583
584
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
585
#elif 0
586
587
    // 1x1 filter, 73x73 image
    constexpr index_t N  = 128;
Chao Liu's avatar
Chao Liu committed
588
    constexpr index_t C  = 512;
589
590
591
592
593
594
    constexpr index_t HI = 73;
    constexpr index_t WI = 73;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

Chao Liu's avatar
Chao Liu committed
595
596
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
597
#endif
Chao Liu's avatar
Chao Liu committed
598

599
600
601
    auto lower_pads = Sequence<HPad, WPad>{};
    auto upper_pads = Sequence<HPad, WPad>{};

Jing Zhang's avatar
Jing Zhang committed
602
603
    auto strides   = Sequence<U, V>{};
    auto dilations = Sequence<Dh, Dw>{};
Jing Zhang's avatar
Jing Zhang committed
604

Chao Liu's avatar
Chao Liu committed
605
606
    auto in_nchw_desc  = make_ConstantTensorDescriptor_packed(Sequence<N, C, HI, WI>{});
    auto wei_kcyx_desc = make_ConstantTensorDescriptor_packed(Sequence<K, C, Y, X>{});
Jing Zhang's avatar
Jing Zhang committed
607
608
    auto out_nkhw_desc = get_convolution_output_default_4d_tensor_descriptor(
        in_nchw_desc, wei_kcyx_desc, strides, dilations);
Chao Liu's avatar
Chao Liu committed
609

Chao Liu's avatar
Chao Liu committed
610
    ostream_ConstantTensorDescriptor(in_nchw_desc, std::cout << "in_nchw_desc: ");
Chao Liu's avatar
Chao Liu committed
611
    ostream_ConstantTensorDescriptor(wei_kcyx_desc, std::cout << "wei_kcyx_desc: ");
Chao Liu's avatar
Chao Liu committed
612
    ostream_ConstantTensorDescriptor(out_nkhw_desc, std::cout << "out_nkhw_desc: ");
Chao Liu's avatar
Chao Liu committed
613

Chao Liu's avatar
Chao Liu committed
614
615
    using in_data_t  = float;
    using out_data_t = float;
616
617
618
619
    Tensor<in_data_t> in_nchw(make_TensorDescriptor(in_nchw_desc));
    Tensor<in_data_t> wei_kcyx(make_TensorDescriptor(wei_kcyx_desc));
    Tensor<out_data_t> out_nkhw_host(make_TensorDescriptor(out_nkhw_desc));
    Tensor<out_data_t> out_nkhw_device(make_TensorDescriptor(out_nkhw_desc));
Chao Liu's avatar
Chao Liu committed
620

Chao Liu's avatar
Chao Liu committed
621
    std::size_t num_thread = std::thread::hardware_concurrency();
Chao Liu's avatar
Chao Liu committed
622

Chao Liu's avatar
Chao Liu committed
623
624
625
626
627
628
629
    if(argc != 3)
    {
        printf("arg1: do_verification, arg2: nrepeat\n");
        exit(1);
    }

    bool do_verification = atoi(argv[1]);
Chao Liu's avatar
Chao Liu committed
630
    index_t nrepeat      = atoi(argv[2]);
631
632
633

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
634
#if 0
635
        in_nchw.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
636
        wei_kcyx.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
637
638
639
#elif 0
        in_nchw.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        wei_kcyx.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
640
641
642
#elif 0
        in_nchw.GenerateTensorValue(GeneratorTensor_3{}, num_thread);
        wei_kcyx.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
643
#elif 1
644
        in_nchw.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
645
        wei_kcyx.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
646
#elif 0
647
648
649
650
651
652
        in_nchw.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);

        auto gen_wei = [](auto... is) {
            return GeneratorTensor_2{1, 5}(is...) * GeneratorTensor_Checkboard{}(is...);
        };
        wei_kcyx.GenerateTensorValue(gen_wei, num_thread);
Chao Liu's avatar
Chao Liu committed
653
#endif
654
    }
Chao Liu's avatar
Chao Liu committed
655

Chao Liu's avatar
Chao Liu committed
656
#if 1
Chao Liu's avatar
Chao Liu committed
657
#if 0
Chao Liu's avatar
Chao Liu committed
658
    device_direct_convolution_1
Chao Liu's avatar
Chao Liu committed
659
#elif 0
Chao Liu's avatar
Chao Liu committed
660
    device_convolution_direct_v2_nchw_kcyx_nkhw
Chao Liu's avatar
Chao Liu committed
661
#elif 0
Chao Liu's avatar
Chao Liu committed
662
    device_direct_convolution_2_vectorized_nchw_kcyx_nkhw
Chao Liu's avatar
Chao Liu committed
663
#elif 0
664
    device_convolution_implicit_gemm_v1_chwn_cyxk_khwn
Chao Liu's avatar
Chao Liu committed
665
#elif 0
666
    device_convolution_implicit_gemm_v1_nchw_cyxk_khwn
Chao Liu's avatar
Chao Liu committed
667
#elif 0
Chao Liu's avatar
Chao Liu committed
668
    device_convolution_implicit_gemm_v1_nchw_cyxk_nkhw
669
#elif 0
Chao Liu's avatar
Chao Liu committed
670
    device_convolution_implicit_gemm_v2_chwn_cyxk_khwn
Chao Liu's avatar
Chao Liu committed
671
#elif 0
Chao Liu's avatar
Chao Liu committed
672
    device_convolution_implicit_gemm_v3_nchw_cyxk_nkhw
673
674
#elif 1
    device_convolution_implicit_gemm_v4_nchw_kcyx_nkhw
675
#endif
Jing Zhang's avatar
Jing Zhang committed
676
677
678
679
680
681
    (in_nchw_desc,
     in_nchw,
     wei_kcyx_desc,
     wei_kcyx,
     out_nkhw_desc,
     strides,
Jing Zhang's avatar
Jing Zhang committed
682
     dilations,
Jing Zhang's avatar
Jing Zhang committed
683
684
     out_nkhw_device,
     nrepeat);
685

Chao Liu's avatar
Chao Liu committed
686
#elif 1
Chao Liu's avatar
Chao Liu committed
687
    device_implicit_gemm_convolution_1_chwn_cyxk_khwn_padded(in_nchw_desc,
Chao Liu's avatar
Chao Liu committed
688
                                                             in_nchw,
Chao Liu's avatar
Chao Liu committed
689
690
                                                             wei_kcyx_desc,
                                                             wei_kcyx,
Chao Liu's avatar
Chao Liu committed
691
692
693
694
695
                                                             out_nkhw_desc,
                                                             out_nkhw_device,
                                                             lower_pads,
                                                             upper_pads,
                                                             nrepeat);
696
#endif
Chao Liu's avatar
Chao Liu committed
697

698
    if(do_verification)
699
    {
Jing Zhang's avatar
Jing Zhang committed
700
#if 0
Chao Liu's avatar
Chao Liu committed
701
        if(Y == 3 && X == 3)
702
        {
Chao Liu's avatar
Chao Liu committed
703
            host_winograd_3x3_convolution(in_nchw, wei_kcyx, out_nkhw_host, lower_pads, upper_pads);
704
705
        }
        else
Chao Liu's avatar
Chao Liu committed
706
#endif
707
        {
Jing Zhang's avatar
Jing Zhang committed
708
            host_direct_convolution(
Jing Zhang's avatar
Jing Zhang committed
709
                in_nchw, wei_kcyx, out_nkhw_host, lower_pads, upper_pads, strides, dilations);
710
711
        }
        check_error(out_nkhw_host, out_nkhw_device);
Chao Liu's avatar
Chao Liu committed
712

Chao Liu's avatar
Chao Liu committed
713
#if 0
714
        LogRange(std::cout << "in_nchw : ", in_nchw.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
715
        LogRange(std::cout << "wei_kcyx: ", wei_kcyx.mData, ",") << std::endl;
716
717
        LogRange(std::cout << "out_nkhw_host  : ", out_nkhw_host.mData, ",") << std::endl;
        LogRange(std::cout << "out_nkhw_device: ", out_nkhw_device.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
718
#endif
719
    }
720
}