profile_grouped_gemm_impl.hpp 12.7 KB
Newer Older
zjing14's avatar
zjing14 committed
1
2
#pragma once
#include <iomanip>
3
4

#include "check_err.hpp"
zjing14's avatar
zjing14 committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "device_gemm.hpp"
#include "reference_gemm.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_grouped_gemm_instance {

using DeviceGroupedGemmNoOpPtr = ck::tensor_operation::device::DeviceGroupedGemmPtr<
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough>;

void add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(
    std::vector<DeviceGroupedGemmNoOpPtr>&);
void add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(
    std::vector<DeviceGroupedGemmNoOpPtr>&);
void add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances(
    std::vector<DeviceGroupedGemmNoOpPtr>&);
void add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(
    std::vector<DeviceGroupedGemmNoOpPtr>&);

} // namespace device_grouped_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
void profile_grouped_gemm_impl(int do_verification,
                               int init_method,
                               bool do_log,
                               int nrepeat,
53
54
55
56
57
58
                               const std::vector<int>& Ms,
                               const std::vector<int>& Ns,
                               const std::vector<int>& Ks,
                               const std::vector<int>& StrideAs,
                               const std::vector<int>& StrideBs,
                               const std::vector<int>& StrideCs)
zjing14's avatar
zjing14 committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
{
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

74
    std::size_t group_count = Ms.size();
zjing14's avatar
zjing14 committed
75
76
77
78
79
80
81
82
83
84
85

    if(!(group_count == Ns.size() && group_count == Ks.size() && group_count == StrideAs.size() &&
         group_count == StrideBs.size() && group_count == StrideCs.size()))
    {
        throw std::runtime_error("wrong! inconsistent M/N/Ks, StrideA/B/Cs size\n");
    }

    std::vector<Tensor<ADataType>> a_m_k;
    std::vector<Tensor<BDataType>> b_k_n;
    std::vector<Tensor<CDataType>> c_m_n_device_results;

86
    for(std::size_t i = 0; i < group_count; i++)
zjing14's avatar
zjing14 committed
87
88
89
90
91
92
93
94
95
96
97
98
99
    {
        a_m_k.push_back(
            Tensor<ADataType>(f_host_tensor_descriptor(Ms[i], Ks[i], StrideAs[i], ALayout{})));
        b_k_n.push_back(
            Tensor<BDataType>(f_host_tensor_descriptor(Ks[i], Ns[i], StrideBs[i], BLayout{})));

        c_m_n_device_results.push_back(
            Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));

        std::cout << "group: " << i << " a_m_k[" << i << "]:" << a_m_k[i].mDesc << ", b_k_n[" << i
                  << "]:" << b_k_n[i].mDesc << ", c_m_n_device_results[" << i
                  << "]:" << c_m_n_device_results[i].mDesc << std::endl;

100
        std::size_t num_thread = 1;
zjing14's avatar
zjing14 committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        switch(init_method)
        {
        case 0: break;
        case 1:
            a_m_k[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
            b_k_n[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
            break;
        default:
            a_m_k[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
            b_k_n[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
        }

        c_m_n_device_results[i].GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
    }

    using AElementOp = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};

    // if(do_verification)
    // {

    // }

    using DeviceMemPtr = std::unique_ptr<DeviceMem>;
    std::vector<DeviceMemPtr> a_device_buf, b_device_buf, c_device_buf;

    a_device_buf.reserve(group_count);
    b_device_buf.reserve(group_count);
    c_device_buf.reserve(group_count);

    std::vector<const void*> p_a, p_b;
    std::vector<void*> p_c;

    p_a.reserve(group_count);
    p_b.reserve(group_count);
    p_c.reserve(group_count);

    std::vector<ck::tensor_operation::device::GemmShape> gemm_shapes;

    gemm_shapes.reserve(group_count);

147
    for(std::size_t i = 0; i < group_count; i++)
zjing14's avatar
zjing14 committed
148
149
    {
        a_device_buf.emplace_back(
zjing14's avatar
zjing14 committed
150
            std::make_unique<DeviceMem>(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpace()));
zjing14's avatar
zjing14 committed
151
        b_device_buf.emplace_back(
zjing14's avatar
zjing14 committed
152
            std::make_unique<DeviceMem>(sizeof(BDataType) * b_k_n[i].mDesc.GetElementSpace()));
zjing14's avatar
zjing14 committed
153
154

        c_device_buf.emplace_back(std::make_unique<DeviceMem>(
zjing14's avatar
zjing14 committed
155
            sizeof(CDataType) * c_m_n_device_results[i].mDesc.GetElementSpace()));
zjing14's avatar
zjing14 committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

        a_device_buf[i]->ToDevice(a_m_k[i].mData.data());
        b_device_buf[i]->ToDevice(b_k_n[i].mData.data());
        c_device_buf[i]->ToDevice(c_m_n_device_results[i].mData.data());

        gemm_shapes.push_back({Ms[i], Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideCs[i]});

        p_a.push_back(a_device_buf[i]->GetDeviceBuffer());
        p_b.push_back(b_device_buf[i]->GetDeviceBuffer());
        p_c.push_back(c_device_buf[i]->GetDeviceBuffer());
    }

    // add device GEMM instances
    std::vector<
        ck::tensor_operation::device::device_grouped_gemm_instance::DeviceGroupedGemmNoOpPtr>
        gemm_ptrs;

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                 is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_grouped_gemm_instance::
                add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_grouped_gemm_instance::
                add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_grouped_gemm_instance::
                add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_grouped_gemm_instance::
                add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
        }
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(p_a,
                                          p_b,
                                          p_c,
                                          gemm_shapes,
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{});

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            std::string gemm_name = gemm_ptr->GetTypeString();

            float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

            std::size_t flop = 0, num_btype = 0;
237
            for(std::size_t i = 0; i < gemm_shapes.size(); i++)
zjing14's avatar
zjing14 committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
            {
                flop += std::size_t(2) * Ms[i] * Ns[i] * Ks[i];

                num_btype += sizeof(ADataType) * Ms[i] * Ks[i] + sizeof(BDataType) * Ks[i] * Ns[i] +
                             sizeof(CDataType) * Ms[i] * Ns[i];
            }

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;
            std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
                      << gb_per_sec << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
261
                for(std::size_t i = 0; i < gemm_shapes.size(); i++)
zjing14's avatar
zjing14 committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
                {

                    c_device_buf[i]->FromDevice(c_m_n_device_results[i].mData.data());

                    Tensor<CDataType> c_m_n_host_result(
                        f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{}));

                    using ReferenceGemmInstance =
                        ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                  BDataType,
                                                                  CDataType,
                                                                  AElementOp,
                                                                  BElementOp,
                                                                  CElementOp>;

                    auto ref_gemm    = ReferenceGemmInstance{};
                    auto ref_invoker = ref_gemm.MakeInvoker();

                    auto ref_argument = ref_gemm.MakeArgument(a_m_k[i],
                                                              b_k_n[i],
                                                              c_m_n_host_result,
                                                              a_element_op,
                                                              b_element_op,
                                                              c_element_op);

                    ref_invoker.Run(ref_argument);
288
                    ck::utils::check_err(c_m_n_device_results[i].mData, c_m_n_host_result.mData);
zjing14's avatar
zjing14 committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

                    if(do_log)
                    {
                        LogRangeAsType<float>(std::cout << "a : ", a_m_k[i].mData, ",")
                            << std::endl;
                        LogRangeAsType<float>(std::cout << "b: ", b_k_n[i].mData, ",") << std::endl;
                        LogRangeAsType<float>(
                            std::cout << "c_device: ", c_m_n_device_results[i].mData, ",")
                            << std::endl;
                        LogRangeAsType<float>(
                            std::cout << "c_host  : ", c_m_n_host_result.mData, ",")
                            << std::endl;
                    }
                }
            }
        }
        else
        {
            std::cout << "does not support this GEMM problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
} // namespace profiler

} // namespace profiler
} // namespace ck