elementwise_add_1d.cpp 5.25 KB
Newer Older
myamlak's avatar
myamlak committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/*******************************************************************************
 *
 * MIT License
 *
 * Copyright (c) 2020 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 *******************************************************************************/
rocking5566's avatar
rocking5566 committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include <iostream>
#include <cstdlib>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"

#include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp"

using F16 = ck::half_t;
using F32 = float;

using ABDataType             = F16;
using CDataType              = F16;
using EltwiseComputeDataType = F32;

myamlak's avatar
myamlak committed
45
46
using Add = ck::tensor_operation::binary_element_wise::
    Add<EltwiseComputeDataType, EltwiseComputeDataType, EltwiseComputeDataType>;
rocking5566's avatar
rocking5566 committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

using DeviceElementwiseAddInstance = ck::tensor_operation::device::
    DeviceBinaryElementwise<ABDataType, ABDataType, CDataType, EltwiseComputeDataType, Add, 1, 8>;

template <typename HostTensorA,
          typename HostTensorB,
          typename HostTensorC,
          typename ComputeDataType,
          typename Functor>
void host_elementwise1D(
    HostTensorC& C, const HostTensorA& A, const HostTensorB& B, int M, Functor functor)
{
    using ctype = ck::remove_reference_t<decltype(C(0))>;

    for(int m = 0; m < M; ++m)
    {
myamlak's avatar
myamlak committed
63
64
        ComputeDataType Am = ck::type_convert<ComputeDataType>(A(m));
        ComputeDataType Bm = ck::type_convert<ComputeDataType>(B(m));
rocking5566's avatar
rocking5566 committed
65
66
        ComputeDataType Cm = 0;
        functor(Cm, Am, Bm);
myamlak's avatar
myamlak committed
67
        C(m) = ck::type_convert<ctype>(Cm);
rocking5566's avatar
rocking5566 committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    }
}

int main()
{
    bool do_verification = true;
    bool time_kernel     = false;

    ck::index_t M = 1024;

    auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
        return HostTensorDescriptor(std::vector<std::size_t>({len}),
                                    std::vector<std::size_t>({stride}));
    };

    Tensor<ABDataType> a_m(f_host_tensor_descriptor1d(M, 1));
    Tensor<ABDataType> b_m(f_host_tensor_descriptor1d(M, 1));
rocking5566's avatar
rocking5566 committed
85
    Tensor<CDataType> c_m(f_host_tensor_descriptor1d(M, 1));
rocking5566's avatar
rocking5566 committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

    a_m.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0});
    b_m.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0});

    DeviceMem a_m_device_buf(sizeof(ABDataType) * a_m.mDesc.GetElementSpace());
    DeviceMem b_m_device_buf(sizeof(ABDataType) * b_m.mDesc.GetElementSpace());
    DeviceMem c_m_device_buf(sizeof(CDataType) * c_m.mDesc.GetElementSpace());

    a_m_device_buf.ToDevice(a_m.mData.data());
    b_m_device_buf.ToDevice(b_m.mData.data());

    auto broadcastAdd = DeviceElementwiseAddInstance{};
    auto argument     = broadcastAdd.MakeArgumentPointer(a_m_device_buf.GetDeviceBuffer(),
                                                     b_m_device_buf.GetDeviceBuffer(),
                                                     c_m_device_buf.GetDeviceBuffer(),
                                                     {M},
                                                     {1},
                                                     {1},
                                                     {1},
                                                     Add{});

    if(!broadcastAdd.IsSupportedArgument(argument.get()))
    {
        throw std::runtime_error("The runtime parameters seems not supported by the "
                                 "DeviceBinaryElementwise_2D instance, exiting!");
    };

    auto broadcastAdd_invoker_ptr = broadcastAdd.MakeInvokerPointer();
    float ave_time =
        broadcastAdd_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});

    std::cout << "Perf: " << ave_time << " ms" << std::endl;

    bool pass = true;
    if(do_verification)
    {
        c_m_device_buf.FromDevice(c_m.mData.data());
        Tensor<CDataType> host_c_m(f_host_tensor_descriptor1d(M, 1));

        host_elementwise1D<Tensor<ABDataType>,
                           Tensor<ABDataType>,
                           Tensor<CDataType>,
                           EltwiseComputeDataType,
                           Add>(host_c_m, a_m, b_m, M, Add{});

        pass &= ck::utils::check_err(
            c_m.mData, host_c_m.mData, "Error: Incorrect results d1", 1e-3, 1e-3);
    }

    return pass ? 0 : 1;
}