elementwise_add_1d.cpp 3.97 KB
Newer Older
rocking5566's avatar
rocking5566 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <iostream>
#include <cstdlib>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"

#include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp"

using F16 = ck::half_t;
using F32 = float;

using ABDataType             = F16;
using CDataType              = F16;
using EltwiseComputeDataType = F32;

myamlak's avatar
myamlak committed
20
21
using Add = ck::tensor_operation::binary_element_wise::
    Add<EltwiseComputeDataType, EltwiseComputeDataType, EltwiseComputeDataType>;
rocking5566's avatar
rocking5566 committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

using DeviceElementwiseAddInstance = ck::tensor_operation::device::
    DeviceBinaryElementwise<ABDataType, ABDataType, CDataType, EltwiseComputeDataType, Add, 1, 8>;

template <typename HostTensorA,
          typename HostTensorB,
          typename HostTensorC,
          typename ComputeDataType,
          typename Functor>
void host_elementwise1D(
    HostTensorC& C, const HostTensorA& A, const HostTensorB& B, int M, Functor functor)
{
    using ctype = ck::remove_reference_t<decltype(C(0))>;

    for(int m = 0; m < M; ++m)
    {
myamlak's avatar
myamlak committed
38
39
        ComputeDataType Am = ck::type_convert<ComputeDataType>(A(m));
        ComputeDataType Bm = ck::type_convert<ComputeDataType>(B(m));
rocking5566's avatar
rocking5566 committed
40
41
        ComputeDataType Cm = 0;
        functor(Cm, Am, Bm);
myamlak's avatar
myamlak committed
42
        C(m) = ck::type_convert<ctype>(Cm);
rocking5566's avatar
rocking5566 committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    }
}

int main()
{
    bool do_verification = true;
    bool time_kernel     = false;

    ck::index_t M = 1024;

    auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
        return HostTensorDescriptor(std::vector<std::size_t>({len}),
                                    std::vector<std::size_t>({stride}));
    };

    Tensor<ABDataType> a_m(f_host_tensor_descriptor1d(M, 1));
    Tensor<ABDataType> b_m(f_host_tensor_descriptor1d(M, 1));
rocking5566's avatar
rocking5566 committed
60
    Tensor<CDataType> c_m(f_host_tensor_descriptor1d(M, 1));
rocking5566's avatar
rocking5566 committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

    a_m.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0});
    b_m.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0});

    DeviceMem a_m_device_buf(sizeof(ABDataType) * a_m.mDesc.GetElementSpace());
    DeviceMem b_m_device_buf(sizeof(ABDataType) * b_m.mDesc.GetElementSpace());
    DeviceMem c_m_device_buf(sizeof(CDataType) * c_m.mDesc.GetElementSpace());

    a_m_device_buf.ToDevice(a_m.mData.data());
    b_m_device_buf.ToDevice(b_m.mData.data());

    auto broadcastAdd = DeviceElementwiseAddInstance{};
    auto argument     = broadcastAdd.MakeArgumentPointer(a_m_device_buf.GetDeviceBuffer(),
                                                     b_m_device_buf.GetDeviceBuffer(),
                                                     c_m_device_buf.GetDeviceBuffer(),
                                                     {M},
                                                     {1},
                                                     {1},
                                                     {1},
                                                     Add{});

    if(!broadcastAdd.IsSupportedArgument(argument.get()))
    {
        throw std::runtime_error("The runtime parameters seems not supported by the "
                                 "DeviceBinaryElementwise_2D instance, exiting!");
    };

    auto broadcastAdd_invoker_ptr = broadcastAdd.MakeInvokerPointer();
    float ave_time =
        broadcastAdd_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});

    std::cout << "Perf: " << ave_time << " ms" << std::endl;

    bool pass = true;
    if(do_verification)
    {
        c_m_device_buf.FromDevice(c_m.mData.data());
        Tensor<CDataType> host_c_m(f_host_tensor_descriptor1d(M, 1));

        host_elementwise1D<Tensor<ABDataType>,
                           Tensor<ABDataType>,
                           Tensor<CDataType>,
                           EltwiseComputeDataType,
                           Add>(host_c_m, a_m, b_m, M, Add{});

        pass &= ck::utils::check_err(
            c_m.mData, host_c_m.mData, "Error: Incorrect results d1", 1e-3, 1e-3);
    }

    return pass ? 0 : 1;
}