"vscode:/vscode.git/clone" did not exist on "e4e410af5b13d3ba125905efb5baca70aaa15c10"
profile_groupnorm_impl.hpp 7.26 KB
Newer Older
rocking5566's avatar
rocking5566 committed
1
2
3
4
5
6
7
8
9
10
11
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <iomanip>

#include "ck/ck.hpp"

#include "ck/library/tensor_operation_instance/gpu/layernorm.hpp"

12
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm.hpp"
rocking5566's avatar
rocking5566 committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"

namespace ck {
namespace profiler {

template <typename XDataType,
          typename GammaDataType,
          typename BetaDataType,
          typename AccDataType,
          typename YDataType>
bool profile_groupnorm_impl(int do_verification,
                            int init_method,
                            bool do_log,
                            bool time_kernel,
                            std::vector<index_t> length)
{
    using PassThrough = ck::tensor_operation::element_wise::PassThrough;

    if(length.size() != 5)
        return false;

    index_t G = length[3];
    index_t C = length[4];

    std::vector<index_t> reduce_dim      = {1, 2, 4};
    std::vector<index_t> gammaBetaLength = {G, C};
    std::vector<index_t> gammaBetaStride = {0, 0, 0, C, 1};

    Tensor<XDataType> x(length);
    Tensor<GammaDataType> gamma(gammaBetaLength);
    Tensor<BetaDataType> beta(gammaBetaLength);
    Tensor<YDataType> y(length);
    Tensor<YDataType> host_y(length);

    switch(init_method)
    {
    case 0:
        x.GenerateTensorValue(GeneratorTensor_1<XDataType>{});
        gamma.GenerateTensorValue(GeneratorTensor_1<GammaDataType>{});
        beta.GenerateTensorValue(GeneratorTensor_1<BetaDataType>{});
        break;
    case 1:
        x.GenerateTensorValue(GeneratorTensor_2<XDataType>{-5, 5});
        gamma.GenerateTensorValue(GeneratorTensor_2<GammaDataType>{-5, 5});
        beta.GenerateTensorValue(GeneratorTensor_2<BetaDataType>{-5, 5});
        break;
    default:
        x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0, 1});
        gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{-0.5, 0.5});
        beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{-0.5, 0.5});
    }

68
69
70
71
    DeviceMem x_dev(x.GetMemorySize());
    DeviceMem gamma_dev(gamma.GetMemorySize());
    DeviceMem beta_dev(beta.GetMemorySize());
    DeviceMem y_dev(y.GetMemorySize());
rocking5566's avatar
rocking5566 committed
72

73
74
75
    x_dev.ToDevice(x.data());
    gamma_dev.ToDevice(gamma.data());
    beta_dev.ToDevice(beta.data());
rocking5566's avatar
rocking5566 committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

    // add device normalization instances
    using DeviceOp = ck::tensor_operation::device::DeviceLayernorm<XDataType,
                                                                   GammaDataType,
                                                                   BetaDataType,
                                                                   AccDataType,
                                                                   YDataType,
                                                                   PassThrough,
                                                                   5,
                                                                   3>;

    // get device op instances
    const auto instance_ptrs =
        ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
            DeviceOp>::GetInstances();

    std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;

    std::string best_instance_name;
    float best_avg_time   = std::numeric_limits<float>::max();
    float best_gb_per_sec = 0;

    if(do_verification)
    {
        using ReferenceInstance = ck::tensor_operation::host::ReferenceGroupnorm<XDataType,
                                                                                 GammaDataType,
                                                                                 BetaDataType,
                                                                                 YDataType,
                                                                                 AccDataType,
                                                                                 PassThrough>;

        ReferenceInstance ref;
        auto ref_argument = ref.MakeArgument(x, gamma, beta, host_y, PassThrough{}, length, 1e-6);
        auto ref_invoker  = ref.MakeInvoker();
        ref_invoker.Run(ref_argument);
    }

    int num_kernel = 0;

    for(auto& inst_ptr : instance_ptrs)
    {
        auto argument_ptr = inst_ptr->MakeArgumentPointer(
            length,
119
            std::vector<ck::index_t>{x.GetStrides().begin(), x.GetStrides().end()},
rocking5566's avatar
rocking5566 committed
120
121
            gammaBetaStride,
            gammaBetaStride,
122
            std::vector<ck::index_t>{y.GetStrides().begin(), y.GetStrides().end()},
rocking5566's avatar
rocking5566 committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
            reduce_dim,
            1e-6,
            x_dev.GetDeviceBuffer(),
            gamma_dev.GetDeviceBuffer(),
            beta_dev.GetDeviceBuffer(),
            y_dev.GetDeviceBuffer(),
            PassThrough{});

        if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            ++num_kernel;
        }
        else
        {
            continue;
        }

        auto invoker_ptr = inst_ptr->MakeInvokerPointer();

        float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

144
145
146
147
        std::size_t num_bytes = x.GetElementSize() * sizeof(XDataType) +
                                gamma.GetElementSize() * sizeof(GammaDataType) +
                                beta.GetElementSize() * sizeof(BetaDataType) +
                                y.GetElementSize() * sizeof(YDataType);
rocking5566's avatar
rocking5566 committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

        float gb_per_sec = num_bytes / 1.E6 / avg_time;

        if(time_kernel)
            std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
                      << inst_ptr->GetTypeString() << std::endl;

        if(avg_time < best_avg_time)
        {
            best_instance_name = inst_ptr->GetTypeString();
            best_avg_time      = avg_time;
            best_gb_per_sec    = gb_per_sec;
        }

        if(do_verification)
        {
164
            y_dev.FromDevice(y.data());
rocking5566's avatar
rocking5566 committed
165

166
            bool pass = ck::utils::check_err(y, host_y, "Error: Incorrect results", 1e-3, 1e-3);
rocking5566's avatar
rocking5566 committed
167
168
169

            if(do_log)
            {
170
171
172
                LogRangeAsType<float>(std::cout << "x  : ", x, ",") << std::endl;
                LogRangeAsType<float>(std::cout << "host_y  : ", host_y, ",") << std::endl;
                LogRangeAsType<float>(std::cout << "y  : ", y, ",") << std::endl;
rocking5566's avatar
rocking5566 committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
            }

            if(!pass)
            {
                std::cout << inst_ptr->GetTypeString() << " failed verification: ";
                LogRange(std::cout << "lengths = [", length, ", ") << "]." << std::endl;
                return false;
            }
            else
            {
                if(time_kernel)
                    std::cout << "pass" << std::endl;
            }
        }
    }

    if(time_kernel)
    {
        LogRange(std::cout << "length = ", length, ",") << ", ";
        std::cout << "num_kernel = " << num_kernel << ", best perf = " << best_avg_time << " ms, "
                  << best_gb_per_sec << " GB/s, " << best_instance_name << std::endl;
    }

    if(num_kernel == 0)
    {
        std::cout << "Error: No kernel is tested" << std::endl;
        return false;
    }

    return true;
}

} // namespace profiler
} // namespace ck