Unverified Commit 4eba345f authored by rocking5566's avatar rocking5566 Committed by GitHub
Browse files

Group norm (#417)



* Add groupnorm example by layernorm
1.  Reference is not ready
2. shape of gamma and beta need to be fix

* Let shape of gamma and beta can be same as x

* Modify test, instance and client example

* [What] Fix bug of layernorm for greater than 2 dimension.
[Why] We need to get upper length from merge transform instead of embed transform.

* Add reference for groupnorm

* Fuse sigmoid after groupnorm

* [What] Rename original layernorm into layernorm2d
[Why] Prepare to add groupnorm using layernorm5d

* clang-format

* Add groupnorm test

* Refine error message

* Add groupnorm ckProfiler

* Test groupnorm kernel from device_instance

* update example

* upadte profiler

* Fix test naming

* Fix argc number

* Move descriptor and sweeponce to argument for quick debugging
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
parent f584ab0c
......@@ -81,8 +81,8 @@ int main(int argc, char* argv[])
auto argument_ptr = op_ptr->MakeArgumentPointer({M, N}, // lengths
{Stride, 1}, // xStrides
{1}, // gammaStrides
{1}, // betaStrides
{0, 1}, // gammaStrides
{0, 1}, // betaStrides
{Stride, 1}, // yStrides
{1}, // reduceDims
1e-4,
......
......@@ -29,24 +29,27 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
constexpr int Rank = 2;
constexpr int NumReduceDim = 1;
using DeviceInstance = ck::tensor_operation::device::DeviceLayernormImpl<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
PassThrough,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterM
32, // ClusterK
1, // SliceM
8, // SliceK
1, // SrcVecDim (0=M, 1=K)
8, // SrcScalarPerVector
8, // GammaScalarPerVector
8, // BetaScalarPerVector
8>; // OutScalarPerVector
using DeviceInstance =
ck::tensor_operation::device::DeviceLayernormImpl<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
PassThrough,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterM
32, // ClusterK
1, // SliceM
8, // SliceK
1, // SrcVecDim (0=M, 1=K)
8, // SrcScalarPerVector
1, // GammaVecDim (0=M, 1=K)
8, // GammaScalarPerVector
1, // BetaVecDim (0=M, 1=K)
8, // BetaScalarPerVector
8>; // OutScalarPerVector
int main()
{
......@@ -88,8 +91,8 @@ int main()
auto argument_ptr = device_instance.MakeArgumentPointer(
{M, N},
std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
std::vector<ck::index_t>{gamma.mDesc.GetStrides().begin(), gamma.mDesc.GetStrides().end()},
std::vector<ck::index_t>{beta.mDesc.GetStrides().begin(), beta.mDesc.GetStrides().end()},
{0, 1},
{0, 1},
std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
{1},
1e-4,
......
add_example_executable(example_groupnorm_sigmoid_fp16 groupnorm_sigmoid_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm_impl.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm.hpp"
constexpr int Rank = 5;
constexpr int NumReduceDim = 3;
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using AccDataType = float;
struct YElementOp
{
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
{
static_assert(ck::is_same<T, float>::value || ck::is_same<T, double>::value ||
ck::is_same<T, ck::half_t>::value,
"Data type is not supported by this operation!");
T a;
ck::tensor_operation::element_wise::Sigmoid{}(a, x);
y = x * a;
};
};
using DeviceInstance =
ck::tensor_operation::device::DeviceLayernormImpl<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
YElementOp,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterM
32, // ClusterK
1, // SliceM
8, // SliceK
1, // SrcVecDim (0=M, 1=K)
8, // SrcScalarPerVector
1, // GammaVecDim (0=M, 1=K)
8, // GammaScalarPerVector
1, // BetaVecDim (0=M, 1=K)
8, // BetaScalarPerVector
8>; // OutScalarPerVector
int main(int argc, char* argv[])
{
ck::index_t N = 128;
ck::index_t H = 16;
ck::index_t W = 16;
ck::index_t G = 32;
ck::index_t C = 40;
if(argc == 1)
{
// use default case
}
else if(argc == 6)
{
N = std::stoi(argv[1]);
H = std::stoi(argv[2]);
W = std::stoi(argv[3]);
G = std::stoi(argv[4]);
C = std::stoi(argv[5]);
}
else
{
std::cerr << "arg1 to 5: N, H, W, G, C" << std::endl;
return 1;
}
Tensor<XDataType> x({N, H, W, G, C});
Tensor<YDataType> y({N, H, W, G, C});
Tensor<GammaDataType> gamma({G, C});
Tensor<BetaDataType> beta({G, C});
ck::utils::FillUniformDistribution<XDataType>{0.f, 1.f}(x.begin(), x.end());
ck::utils::FillUniformDistribution<GammaDataType>{0.f, 1.f}(gamma.begin(), gamma.end());
ck::utils::FillUniformDistribution<BetaDataType>{0.f, 1.f}(beta.begin(), beta.end());
DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());
x_dev.ToDevice(x.mData.data());
gamma_dev.ToDevice(gamma.mData.data());
beta_dev.ToDevice(beta.mData.data());
const auto y_element_op = YElementOp{};
auto device_instance = DeviceInstance{};
auto argument_ptr = device_instance.MakeArgumentPointer(
{N, H, W, G, C},
std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
{0, 0, 0, C, 1},
{0, 0, 0, C, 1},
std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
{1, 2, 4}, // reduction dimension: [H, W, C]
1e-6,
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
y_element_op);
if(!device_instance.IsSupportedArgument(argument_ptr.get()))
{
std::cout << "The runtime parameters are not supported" << std::endl;
return 1;
};
auto invoker_ptr = device_instance.MakeInvokerPointer();
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true, true});
std::size_t num_btype = sizeof(XDataType) * N * H * W * G * C +
sizeof(YDataType) * N * H * W * G * C + sizeof(GammaDataType) * G * C +
sizeof(BetaDataType) * G * C;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << gb_per_sec << " GB/s, "
<< device_instance.GetTypeString() << std::endl;
bool pass = true;
{
Tensor<YDataType> host_y({N, H, W, G, C});
using ReferenceInstance = ck::tensor_operation::host::ReferenceGroupnorm<XDataType,
GammaDataType,
BetaDataType,
YDataType,
AccDataType,
YElementOp>;
ReferenceInstance ref;
auto ref_argument =
ref.MakeArgument(x, gamma, beta, host_y, y_element_op, {N, H, W, G, C}, 1e-6);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
y_dev.FromDevice(y.mData.data());
pass &= ck::utils::check_err(y.mData, host_y.mData, "Error: Incorrect results", 1e-3, 1e-3);
}
return (pass ? 0 : 1);
}
......@@ -23,11 +23,10 @@ template <typename GridwiseReduction,
typename YDataType,
typename AccDataType,
typename AccElementwiseOperation,
typename GridDesc_M_K,
typename GridDesc_K>
typename GridDesc_M_K>
__global__ void kernel_layernorm(const GridDesc_M_K x_grid_desc_m_k,
const GridDesc_K gamma_grid_desc_k,
const GridDesc_K beta_grid_desc_k,
const GridDesc_M_K gamma_grid_desc_m_k,
const GridDesc_M_K beta_grid_desc_m_k,
const GridDesc_M_K y_grid_desc_m_k,
index_t num_k_block_tile_iteration,
AccDataType epsilon,
......@@ -38,8 +37,8 @@ __global__ void kernel_layernorm(const GridDesc_M_K x_grid_desc_m_k,
const AccElementwiseOperation acc_elementwise_op)
{
GridwiseReduction::Run(x_grid_desc_m_k,
gamma_grid_desc_k,
beta_grid_desc_k,
gamma_grid_desc_m_k,
beta_grid_desc_m_k,
y_grid_desc_m_k,
num_k_block_tile_iteration,
epsilon,
......@@ -71,7 +70,9 @@ template <typename XDataType,
index_t KThreadSliceSize,
index_t XYSrcVectorDim,
index_t XSrcVectorSize,
index_t GammaSrcVectorDim,
index_t GammaSrcVectorSize,
index_t BetaSrcVectorDim,
index_t BetaSrcVectorSize,
index_t YDstVectorSize>
struct DeviceLayernormImpl : public DeviceLayernorm<XDataType,
......@@ -84,11 +85,13 @@ struct DeviceLayernormImpl : public DeviceLayernorm<XDataType,
NumReduceDim>
{
static_assert(
(KThreadSliceSize % GammaSrcVectorSize == 0),
((GammaSrcVectorDim == 0 && MThreadSliceSize % GammaSrcVectorSize == 0) ||
(GammaSrcVectorDim == 1 && KThreadSliceSize % GammaSrcVectorSize == 0)),
"Invalid thread slice sizes and/or gamma vector sizes configuration, please check!");
static_assert(
(KThreadSliceSize % BetaSrcVectorSize == 0),
((BetaSrcVectorDim == 0 && MThreadSliceSize % BetaSrcVectorSize == 0) ||
(BetaSrcVectorDim == 1 && KThreadSliceSize % BetaSrcVectorSize == 0)),
"Invalid thread slice sizes and/or beta vector sizes configuration, please check!");
using PassThrough = tensor_operation::element_wise::PassThrough;
......@@ -162,38 +165,7 @@ struct DeviceLayernormImpl : public DeviceLayernorm<XDataType,
return (in_grid_desc_m_k_padded);
};
static auto MakeAffine1dDescriptor(const std::vector<index_t>& Lengths,
const std::vector<index_t>& Strides,
int blkGroupSize,
int numBlockTileIteration)
{
const auto tupleLengths = make_tuple_from_array(Lengths, Number<NumReduceDim>{});
const auto tupleStrides = make_tuple_from_array(Strides, Number<NumReduceDim>{});
auto desc = make_naive_tensor_descriptor(tupleLengths, tupleStrides);
auto grid_desc_k = transform_tensor_descriptor(
desc,
make_tuple(make_merge_transform(tupleLengths)),
make_tuple(typename arithmetic_sequence_gen<0, NumReduceDim, 1>::type{}),
make_tuple(Sequence<0>{}));
const auto reduceTotalLength = grid_desc_k.GetLength(Number<0>{});
const int reduceSizePerBlock = K_BlockTileSize * numBlockTileIteration;
const auto Pad_K = reduceSizePerBlock * blkGroupSize - reduceTotalLength;
auto grid_desc_k_padded = transform_tensor_descriptor(
grid_desc_k,
make_tuple(make_right_pad_transform(reduceTotalLength, Pad_K)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return (grid_desc_k_padded);
};
using GridDesc_M_K = decltype(MakeSrc2dDescriptor({1}, {1}, 1, 1));
using GridDesc_K = decltype(MakeAffine1dDescriptor({1}, {1}, 1, 1));
using GridwiseReduceLayernormGeneric =
GridwiseLayernormWelfordVariance_mk_to_mk<XDataType,
......@@ -203,7 +175,6 @@ struct DeviceLayernormImpl : public DeviceLayernorm<XDataType,
AccDataType,
AccElementwiseOperation,
GridDesc_M_K,
GridDesc_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
......@@ -211,12 +182,13 @@ struct DeviceLayernormImpl : public DeviceLayernorm<XDataType,
KThreadSliceSize,
XYSrcVectorDim,
XSrcVectorSize,
GammaSrcVectorDim,
GammaSrcVectorSize,
BetaSrcVectorDim,
BetaSrcVectorSize,
XYSrcVectorDim,
YDstVectorSize,
false>;
using GridwiseReduceLayernormSweepOnce =
GridwiseLayernormWelfordVariance_mk_to_mk<XDataType,
GammaDataType,
......@@ -225,7 +197,6 @@ struct DeviceLayernormImpl : public DeviceLayernorm<XDataType,
AccDataType,
AccElementwiseOperation,
GridDesc_M_K,
GridDesc_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
......@@ -233,7 +204,9 @@ struct DeviceLayernormImpl : public DeviceLayernorm<XDataType,
KThreadSliceSize,
XYSrcVectorDim,
XSrcVectorSize,
GammaSrcVectorDim,
GammaSrcVectorSize,
BetaSrcVectorDim,
BetaSrcVectorSize,
XYSrcVectorDim,
YDstVectorSize,
......@@ -258,13 +231,13 @@ struct DeviceLayernormImpl : public DeviceLayernorm<XDataType,
p_gamma_(p_gamma),
p_beta_(p_beta),
p_y_(p_y),
gammaStrides_(gammaStrides),
betaStrides_(betaStrides),
acc_elementwise_op_(acc_elementwise_op)
{
Lengths_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(lengths, reduceDims);
xStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(xStrides, reduceDims);
yStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(yStrides, reduceDims);
Lengths_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(lengths, reduceDims);
xStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(xStrides, reduceDims);
yStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(yStrides, reduceDims);
gammaStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(gammaStrides, reduceDims);
betaStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(betaStrides, reduceDims);
long_index_t invariant_total_length;
long_index_t reduce_total_length;
......@@ -278,12 +251,17 @@ struct DeviceLayernormImpl : public DeviceLayernorm<XDataType,
gridSize_ = math::integer_least_multiple(invariant_total_length, M_BlockTileSize) /
M_BlockTileSize * blkGroupSize_;
reduceLengths_.resize(NumReduceDim);
for(int i = 0; i < NumReduceDim; ++i)
{
reduceLengths_[i] = lengths[reduceDims[i]];
}
x_grid_desc_m_k_ =
MakeSrc2dDescriptor(Lengths_, xStrides_, blkGroupSize_, numBlockTileIteration_);
gamma_grid_desc_m_k_ =
MakeSrc2dDescriptor(Lengths_, gammaStrides_, blkGroupSize_, numBlockTileIteration_);
beta_grid_desc_m_k_ =
MakeSrc2dDescriptor(Lengths_, betaStrides_, blkGroupSize_, numBlockTileIteration_);
y_grid_desc_m_k_ =
MakeSrc2dDescriptor(Lengths_, yStrides_, blkGroupSize_, numBlockTileIteration_);
isSweeponce_ =
x_grid_desc_m_k_.GetLength(Number<1>{}) <= KThreadClusterSize * KThreadSliceSize;
}
AccDataType epsilon_;
......@@ -295,7 +273,6 @@ struct DeviceLayernormImpl : public DeviceLayernorm<XDataType,
std::vector<index_t> Lengths_;
std::vector<index_t> xStrides_;
std::vector<index_t> reduceLengths_;
std::vector<index_t> gammaStrides_;
std::vector<index_t> betaStrides_;
std::vector<index_t> yStrides_;
......@@ -305,46 +282,35 @@ struct DeviceLayernormImpl : public DeviceLayernorm<XDataType,
int blkGroupSize_;
int numBlockTileIteration_;
size_t gridSize_;
GridDesc_M_K x_grid_desc_m_k_;
GridDesc_M_K gamma_grid_desc_m_k_;
GridDesc_M_K beta_grid_desc_m_k_;
GridDesc_M_K y_grid_desc_m_k_;
bool isSweeponce_;
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
const auto x_grid_desc_m_k = MakeSrc2dDescriptor(
arg.Lengths_, arg.xStrides_, arg.blkGroupSize_, arg.numBlockTileIteration_);
const auto gamma_grid_desc_k = MakeAffine1dDescriptor(arg.reduceLengths_,
arg.gammaStrides_,
arg.blkGroupSize_,
arg.numBlockTileIteration_);
const auto beta_grid_desc_k = MakeAffine1dDescriptor(arg.reduceLengths_,
arg.betaStrides_,
arg.blkGroupSize_,
arg.numBlockTileIteration_);
const auto y_grid_desc_m_k = MakeSrc2dDescriptor(
arg.Lengths_, arg.yStrides_, arg.blkGroupSize_, arg.numBlockTileIteration_);
bool sweep_once =
x_grid_desc_m_k.GetLength(Number<1>{}) <= KThreadClusterSize * KThreadSliceSize;
const auto kernel_main = sweep_once ? kernel_layernorm<GridwiseReduceLayernormSweepOnce,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
AccDataType,
AccElementwiseOperation,
GridDesc_M_K,
GridDesc_K>
: kernel_layernorm<GridwiseReduceLayernormGeneric,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
AccDataType,
AccElementwiseOperation,
GridDesc_M_K,
GridDesc_K>;
const auto kernel_main = arg.isSweeponce_
? kernel_layernorm<GridwiseReduceLayernormSweepOnce,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
AccDataType,
AccElementwiseOperation,
GridDesc_M_K>
: kernel_layernorm<GridwiseReduceLayernormGeneric,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
AccDataType,
AccElementwiseOperation,
GridDesc_M_K>;
float avg_time = 0;
avg_time += launch_and_time_kernel(stream_config,
......@@ -352,10 +318,10 @@ struct DeviceLayernormImpl : public DeviceLayernorm<XDataType,
dim3(arg.gridSize_),
dim3(BlockSize),
0,
x_grid_desc_m_k,
gamma_grid_desc_k,
beta_grid_desc_k,
y_grid_desc_m_k,
arg.x_grid_desc_m_k_,
arg.gamma_grid_desc_m_k_,
arg.beta_grid_desc_m_k_,
arg.y_grid_desc_m_k_,
arg.numBlockTileIteration_,
arg.epsilon_,
arg.p_x_,
......@@ -409,26 +375,41 @@ struct DeviceLayernormImpl : public DeviceLayernorm<XDataType,
return false;
}
if(p_arg_->gammaStrides_.size() != NumReduceDim ||
p_arg_->betaStrides_.size() != NumReduceDim)
return false;
// if fastest dim is not reduced
if constexpr(GammaSrcVectorDim == 0)
{
if(p_arg_->gammaStrides_[NumInvariantDim - 1] != 1)
return (false);
auto IsScalarPerVectorValid = [](bool isLastDimensionCoalesced, int scalarPerVector) {
bool ret = true;
if(p_arg_->Lengths_[Rank - 1] % GammaSrcVectorSize != 0)
return (false);
}
else // if fastest dim is reduced
{
if(p_arg_->gammaStrides_[Rank - 1] != 1)
return (false);
if(!isLastDimensionCoalesced)
ret = scalarPerVector == 1;
else
ret = KThreadSliceSize % scalarPerVector == 0;
if(p_arg_->Lengths_[Rank - 1] % GammaSrcVectorSize != 0)
return (false);
}
return ret;
};
// if fastest dim is not reduced
if constexpr(BetaSrcVectorDim == 0)
{
if(p_arg_->betaStrides_[NumInvariantDim - 1] != 1)
return (false);
if(!IsScalarPerVectorValid(p_arg_->gammaStrides_.back() == 1, GammaSrcVectorSize))
return false;
if(p_arg_->invariant_lowest_length % BetaSrcVectorSize != 0)
return (false);
}
else // if fastest dim is reduced
{
if(p_arg_->betaStrides_[Rank - 1] != 1)
return (false);
if(!IsScalarPerVectorValid(p_arg_->betaStrides_.back() == 1, BetaSrcVectorSize))
return false;
if(p_arg_->Lengths_[Rank - 1] % BetaSrcVectorSize != 0)
return (false);
}
return true;
};
......
......@@ -232,6 +232,21 @@ struct Gelu
}
};
struct Sigmoid
{
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value,
"Data type is not supported by this operation!");
y = 1 / (ck::type_convert<T>(1) + exp(-x));
};
int32_t divider_ = 1;
};
} // namespace element_wise
} // namespace tensor_operation
} // namespace ck
......@@ -22,7 +22,6 @@ template <typename XDataType,
typename AccDataType,
typename AccElementwiseOperation,
typename GridDesc_M_K,
typename GridDesc_K,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
......@@ -30,7 +29,9 @@ template <typename XDataType,
index_t KThreadSliceSize,
index_t XSrcVectorDim,
index_t XSrcVectorSize,
index_t GammaSrcVectorDim,
index_t GammaSrcVectorSize,
index_t BetaSrcVectorDim,
index_t BetaSrcVectorSize,
index_t YDstVectorDim,
index_t YDstVectorSize,
......@@ -78,13 +79,14 @@ struct GridwiseLayernormNaiveVariance_mk_to_mk
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
__device__ static void Run(const GridDesc_M_K& x_grid_desc_m_k,
const GridDesc_K& gamma_grid_desc_k,
const GridDesc_K& beta_grid_desc_k,
const GridDesc_M_K& gamma_grid_desc_m_k,
const GridDesc_M_K& beta_grid_desc_m_k,
const GridDesc_M_K& y_grid_desc_m_k,
index_t num_k_block_tile_iteration,
AccDataType epsilon,
......@@ -111,11 +113,14 @@ struct GridwiseLayernormNaiveVariance_mk_to_mk
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
x_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, KThreadSliceSize, true> gamma_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, KThreadSliceSize, true>& beta_thread_buf =
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
gamma_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr,
AccDataType,
MThreadSliceSize * KThreadSliceSize,
true>& beta_thread_buf = gamma_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
y_thread_buf;
......@@ -127,7 +132,7 @@ struct GridwiseLayernormNaiveVariance_mk_to_mk
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>
mean_square_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>& var_value_buf =
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>& var_thread_buf =
mean_square_thread_buf;
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
......@@ -145,11 +150,8 @@ struct GridwiseLayernormNaiveVariance_mk_to_mk
const auto thread_k_cluster_id = thread_cluster_idx[I1];
using ThreadBufferLengths_M_K = Sequence<MThreadSliceSize, KThreadSliceSize>;
using ThreadBufferLengths_K = Sequence<KThreadSliceSize>;
constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{}));
constexpr auto thread_buffer_desc_k =
make_naive_tensor_descriptor_packed(make_tuple(Number<KThreadSliceSize>{}));
auto threadwise_x_load = ThreadwiseTensorSliceTransfer_v2<XDataType,
AccDataType,
......@@ -169,27 +171,34 @@ struct GridwiseLayernormNaiveVariance_mk_to_mk
auto threadwise_gamma_load =
ThreadwiseTensorSliceTransfer_v2<GammaDataType,
AccDataType,
GridDesc_K,
decltype(thread_buffer_desc_k),
ThreadBufferLengths_K,
Sequence<0>,
0,
GridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
GammaSrcVectorDim,
GammaSrcVectorSize,
1,
true>(
gamma_grid_desc_k, make_multi_index(thread_k_cluster_id * KThreadSliceSize));
auto threadwise_beta_load = ThreadwiseTensorSliceTransfer_v2<BetaDataType,
AccDataType,
GridDesc_K,
decltype(thread_buffer_desc_k),
ThreadBufferLengths_K,
Sequence<0>,
0,
BetaSrcVectorSize,
1,
true>(
beta_grid_desc_k, make_multi_index(thread_k_cluster_id * KThreadSliceSize));
gamma_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize));
auto threadwise_beta_load =
ThreadwiseTensorSliceTransfer_v2<BetaDataType,
AccDataType,
GridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
BetaSrcVectorDim,
BetaSrcVectorSize,
1,
true>(
beta_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize));
auto threadwise_y_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
......@@ -212,9 +221,6 @@ struct GridwiseLayernormNaiveVariance_mk_to_mk
// Copy x from Cache
// one pass: fwd, second pass: bwd
constexpr auto thread_copy_fwd_step_k = make_multi_index(SweepOnce ? 0 : K_BlockTileSize);
constexpr auto thread_copy_bwd_step_k = make_multi_index(SweepOnce ? 0 : -K_BlockTileSize);
constexpr auto thread_copy_fwd_step_m_k =
make_multi_index(0, SweepOnce ? 0 : K_BlockTileSize);
constexpr auto thread_copy_bwd_step_m_k =
......@@ -224,13 +230,14 @@ struct GridwiseLayernormNaiveVariance_mk_to_mk
p_x_global, x_grid_desc_m_k.GetElementSpaceSize());
const auto gamma_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_gamma_global, gamma_grid_desc_k.GetElementSpaceSize());
p_gamma_global, gamma_grid_desc_m_k.GetElementSpaceSize());
const auto beta_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_beta_global, beta_grid_desc_k.GetElementSpaceSize());
p_beta_global, beta_grid_desc_m_k.GetElementSpaceSize());
// E(x), E[x^2], var(x)
int reduce_length = x_grid_desc_m_k.GetTransforms()[I0].GetUpperLengths()[I1];
// FIXME: Should not hack the transform from deviceOP
int reduce_length = x_grid_desc_m_k.GetTransforms()[I2].GetUpperLengths()[I0];
index_t reducedTiles = 0;
do
......@@ -271,17 +278,16 @@ struct GridwiseLayernormNaiveVariance_mk_to_mk
mean_square_thread_buf(I) = mean_square_thread_buf(I) / reduce_length;
// var(x) = E[x^2] - E[x]^2
var_value_buf(I) =
var_thread_buf(I) =
mean_square_thread_buf(I) - (mean_thread_buf(I) * mean_thread_buf(I));
});
// y = (x - E[x]) / sqrt(var[x] + epsilon)
auto thread_copy_tail_m_k = (num_k_block_tile_iteration - 1) * thread_copy_fwd_step_m_k;
auto thread_copy_tail_k = (num_k_block_tile_iteration - 1) * thread_copy_fwd_step_k;
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_bwd_step_m_k);
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_k, thread_copy_tail_k);
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_k, thread_copy_tail_k);
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_m_k, thread_copy_tail_m_k);
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_m_k, thread_copy_tail_m_k);
threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k, thread_copy_tail_m_k);
reducedTiles = 0;
......@@ -296,10 +302,10 @@ struct GridwiseLayernormNaiveVariance_mk_to_mk
x_thread_buf);
}
threadwise_gamma_load.Run(gamma_grid_desc_k,
threadwise_gamma_load.Run(gamma_grid_desc_m_k,
gamma_global_val_buf,
thread_buffer_desc_k,
make_tuple(I0),
thread_buffer_desc_m_k,
make_tuple(I0, I0),
gamma_thread_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
......@@ -307,23 +313,21 @@ struct GridwiseLayernormNaiveVariance_mk_to_mk
constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK));
constexpr auto offset_k = thread_buffer_desc_k.CalculateOffset(make_tuple(iK));
// normalize
y_thread_buf(Number<offset_m_k>{}) =
(x_thread_buf(Number<offset_m_k>{}) - mean_thread_buf(iM)) /
sqrt(var_value_buf(iM) + epsilon);
sqrt(var_thread_buf(iM) + epsilon);
// gamma
y_thread_buf(Number<offset_m_k>{}) =
y_thread_buf(Number<offset_m_k>{}) * gamma_thread_buf(Number<offset_k>{});
y_thread_buf(Number<offset_m_k>{}) * gamma_thread_buf(Number<offset_m_k>{});
});
});
threadwise_beta_load.Run(beta_grid_desc_k,
threadwise_beta_load.Run(beta_grid_desc_m_k,
beta_global_val_buf,
thread_buffer_desc_k,
make_tuple(I0),
thread_buffer_desc_m_k,
make_tuple(I0, I0),
beta_thread_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
......@@ -331,11 +335,9 @@ struct GridwiseLayernormNaiveVariance_mk_to_mk
constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK));
constexpr auto offset_k = thread_buffer_desc_k.CalculateOffset(make_tuple(iK));
// beta
y_thread_buf(Number<offset_m_k>{}) =
y_thread_buf(Number<offset_m_k>{}) + beta_thread_buf(Number<offset_k>{});
y_thread_buf(Number<offset_m_k>{}) + beta_thread_buf(Number<offset_m_k>{});
});
});
......@@ -346,8 +348,8 @@ struct GridwiseLayernormNaiveVariance_mk_to_mk
y_global_val_buf);
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_bwd_step_m_k);
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_k, thread_copy_bwd_step_k);
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_k, thread_copy_bwd_step_k);
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_m_k, thread_copy_bwd_step_m_k);
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_m_k, thread_copy_bwd_step_m_k);
threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k, thread_copy_bwd_step_m_k);
++reducedTiles;
......
......@@ -19,7 +19,6 @@ template <typename XDataType,
typename AccDataType,
typename AccElementwiseOperation,
typename GridDesc_M_K,
typename GridDesc_K,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
......@@ -27,7 +26,9 @@ template <typename XDataType,
index_t KThreadSliceSize,
index_t XSrcVectorDim,
index_t XSrcVectorSize,
index_t GammaSrcVectorDim,
index_t GammaSrcVectorSize,
index_t BetaSrcVectorDim,
index_t BetaSrcVectorSize,
index_t YDstVectorDim,
index_t YDstVectorSize,
......@@ -70,6 +71,7 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
......@@ -77,7 +79,8 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
__device__ static int GetKPerThread(const GridDesc_M_K& x_grid_desc_m_k,
int thread_k_cluster_id)
{
int kPerBlock = x_grid_desc_m_k.GetTransforms()[I0].GetUpperLengths()[I1];
// FIXME: Should not hack the transform from deviceOP
int kPerBlock = x_grid_desc_m_k.GetTransforms()[I2].GetUpperLengths()[I0];
int kPerThread =
kPerBlock < K_BlockTileSize ? 0 : KThreadSliceSize * (kPerBlock / K_BlockTileSize);
int kPerBlockTail = kPerBlock - kPerThread * KThreadClusterSize;
......@@ -94,8 +97,8 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
}
__device__ static void Run(const GridDesc_M_K& x_grid_desc_m_k,
const GridDesc_K& gamma_grid_desc_k,
const GridDesc_K& beta_grid_desc_k,
const GridDesc_M_K& gamma_grid_desc_m_k,
const GridDesc_M_K& beta_grid_desc_m_k,
const GridDesc_M_K& y_grid_desc_m_k,
index_t num_k_block_tile_iteration,
AccDataType epsilon,
......@@ -116,11 +119,14 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
x_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, KThreadSliceSize, true> gamma_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, KThreadSliceSize, true>& beta_thread_buf =
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
gamma_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr,
AccDataType,
MThreadSliceSize * KThreadSliceSize,
true>& beta_thread_buf = gamma_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
y_thread_buf;
......@@ -137,11 +143,8 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
const auto thread_k_cluster_id = thread_cluster_idx[I1];
using ThreadBufferLengths_M_K = Sequence<MThreadSliceSize, KThreadSliceSize>;
using ThreadBufferLengths_K = Sequence<KThreadSliceSize>;
constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{}));
constexpr auto thread_buffer_desc_k =
make_naive_tensor_descriptor_packed(make_tuple(Number<KThreadSliceSize>{}));
auto threadwise_x_load = ThreadwiseTensorSliceTransfer_v2<XDataType,
AccDataType,
......@@ -161,27 +164,34 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
auto threadwise_gamma_load =
ThreadwiseTensorSliceTransfer_v2<GammaDataType,
AccDataType,
GridDesc_K,
decltype(thread_buffer_desc_k),
ThreadBufferLengths_K,
Sequence<0>,
0,
GridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
GammaSrcVectorDim,
GammaSrcVectorSize,
1,
true>(
gamma_grid_desc_k, make_multi_index(thread_k_cluster_id * KThreadSliceSize));
auto threadwise_beta_load = ThreadwiseTensorSliceTransfer_v2<BetaDataType,
AccDataType,
GridDesc_K,
decltype(thread_buffer_desc_k),
ThreadBufferLengths_K,
Sequence<0>,
0,
BetaSrcVectorSize,
1,
true>(
beta_grid_desc_k, make_multi_index(thread_k_cluster_id * KThreadSliceSize));
gamma_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize));
auto threadwise_beta_load =
ThreadwiseTensorSliceTransfer_v2<BetaDataType,
AccDataType,
GridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
BetaSrcVectorDim,
BetaSrcVectorSize,
1,
true>(
beta_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize));
auto threadwise_y_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
......@@ -204,9 +214,6 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
// Copy x from Cache
// one pass: fwd, second pass: bwd
constexpr auto thread_copy_fwd_step_k = make_multi_index(SweepOnce ? 0 : K_BlockTileSize);
constexpr auto thread_copy_bwd_step_k = make_multi_index(SweepOnce ? 0 : -K_BlockTileSize);
constexpr auto thread_copy_fwd_step_m_k =
make_multi_index(0, SweepOnce ? 0 : K_BlockTileSize);
constexpr auto thread_copy_bwd_step_m_k =
......@@ -216,10 +223,10 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
p_x_global, x_grid_desc_m_k.GetElementSpaceSize());
const auto gamma_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_gamma_global, gamma_grid_desc_k.GetElementSpaceSize());
p_gamma_global, gamma_grid_desc_m_k.GetElementSpaceSize());
const auto beta_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_beta_global, beta_grid_desc_k.GetElementSpaceSize());
p_beta_global, beta_grid_desc_m_k.GetElementSpaceSize());
auto threadwise_welford = ThreadwiseWelford();
threadwise_welford.max_count_ = GetKPerThread(x_grid_desc_m_k, thread_k_cluster_id);
......@@ -250,11 +257,10 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
});
auto thread_copy_tail_m_k = (num_k_block_tile_iteration - 1) * thread_copy_fwd_step_m_k;
auto thread_copy_tail_k = (num_k_block_tile_iteration - 1) * thread_copy_fwd_step_k;
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_bwd_step_m_k);
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_k, thread_copy_tail_k);
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_k, thread_copy_tail_k);
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_m_k, thread_copy_tail_m_k);
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_m_k, thread_copy_tail_m_k);
threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k, thread_copy_tail_m_k);
for(index_t reducedTiles = 0; reducedTiles < num_k_block_tile_iteration; ++reducedTiles)
......@@ -268,10 +274,10 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
x_thread_buf);
}
threadwise_gamma_load.Run(gamma_grid_desc_k,
threadwise_gamma_load.Run(gamma_grid_desc_m_k,
gamma_global_val_buf,
thread_buffer_desc_k,
make_tuple(I0),
thread_buffer_desc_m_k,
make_tuple(I0, I0),
gamma_thread_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
......@@ -279,8 +285,6 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK));
constexpr auto offset_k = thread_buffer_desc_k.CalculateOffset(make_tuple(iK));
// normalize
y_thread_buf(Number<offset_m_k>{}) =
(x_thread_buf(Number<offset_m_k>{}) - mean_thread_buf(iM)) /
......@@ -288,14 +292,14 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
// gamma
y_thread_buf(Number<offset_m_k>{}) =
y_thread_buf(Number<offset_m_k>{}) * gamma_thread_buf(Number<offset_k>{});
y_thread_buf(Number<offset_m_k>{}) * gamma_thread_buf(Number<offset_m_k>{});
});
});
threadwise_beta_load.Run(beta_grid_desc_k,
threadwise_beta_load.Run(beta_grid_desc_m_k,
beta_global_val_buf,
thread_buffer_desc_k,
make_tuple(I0),
thread_buffer_desc_m_k,
make_tuple(I0, I0),
beta_thread_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
......@@ -303,11 +307,9 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK));
constexpr auto offset_k = thread_buffer_desc_k.CalculateOffset(make_tuple(iK));
// beta
y_thread_buf(Number<offset_m_k>{}) =
y_thread_buf(Number<offset_m_k>{}) + beta_thread_buf(Number<offset_k>{});
y_thread_buf(Number<offset_m_k>{}) + beta_thread_buf(Number<offset_m_k>{});
});
});
......@@ -318,8 +320,8 @@ struct GridwiseLayernormWelfordVariance_mk_to_mk
y_global_val_buf);
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_bwd_step_m_k);
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_k, thread_copy_bwd_step_k);
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_k, thread_copy_bwd_step_k);
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_m_k, thread_copy_bwd_step_m_k);
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_m_k, thread_copy_bwd_step_m_k);
threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k, thread_copy_bwd_step_m_k);
}
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include <vector>
#include <algorithm>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename AccDataType,
typename AccElementwiseOperation>
struct ReferenceGroupnorm : public device::BaseOperator
{
// x = [N, H, W, G, C]
// y = [N, H, W, G, C]
// reduce dim [H, W, C], mean, var = [N, G]
// gamma, beta = [G, C]
// beta: [G, C]
struct Argument : public device::BaseArgument
{
Argument(const Tensor<XDataType>& x,
const Tensor<GammaDataType>& gamma,
const Tensor<BetaDataType>& beta,
Tensor<YDataType>& y,
AccElementwiseOperation acc_elementwise_op,
const std::vector<index_t> lengths,
AccDataType epsilon)
: x_(x),
gamma_(gamma),
beta_(beta),
y_(y),
acc_elementwise_op_(acc_elementwise_op),
lengths_(lengths),
epsilon_(epsilon)
{
}
const Tensor<XDataType> x_;
const Tensor<XDataType> gamma_;
const Tensor<XDataType> beta_;
Tensor<YDataType>& y_;
AccElementwiseOperation acc_elementwise_op_;
std::vector<index_t> lengths_;
AccDataType epsilon_;
};
// Invoker
struct Invoker : public device::BaseInvoker
{
float Run(const Argument& arg)
{
int N = arg.lengths_[0];
int H = arg.lengths_[1];
int W = arg.lengths_[2];
int G = arg.lengths_[3];
int C = arg.lengths_[4];
Tensor<AccDataType> mean({N, G});
Tensor<AccDataType> var({N, G});
// Compute mean & var in [H, W, C] by Welford Algorithm
// TODO - parallel for each HWC
// TODO - address calculation
for(int n = 0; n < N; ++n)
{
for(int g = 0; g < G; ++g)
{
AccDataType mean_val = type_convert<AccDataType>(0.0f);
AccDataType var_val = type_convert<AccDataType>(0.0f);
int32_t curr_count = 0;
for(int h = 0; h < H; ++h)
{
for(int w = 0; w < W; ++w)
{
for(int c = 0; c < C; ++c)
{
curr_count++;
AccDataType x = type_convert<AccDataType>(arg.x_(n, h, w, g, c));
AccDataType delta = x - mean_val;
mean_val += delta / curr_count;
AccDataType delta2 = x - mean_val;
var_val += delta * delta2;
}
}
}
mean(n, g) = mean_val;
var(n, g) = var_val / curr_count;
}
}
// Normalization
for(int n = 0; n < N; ++n)
{
for(int h = 0; h < H; ++h)
{
for(int w = 0; w < W; ++w)
{
for(int g = 0; g < G; ++g)
{
for(int c = 0; c < C; ++c)
{
AccDataType x = type_convert<AccDataType>(arg.x_(n, h, w, g, c));
AccDataType gamma = type_convert<AccDataType>(arg.gamma_(g, c));
AccDataType beta = type_convert<AccDataType>(arg.beta_(g, c));
AccDataType mean_val = type_convert<AccDataType>(mean(n, g));
AccDataType var_val = type_convert<AccDataType>(var(n, g));
AccDataType y = gamma * (x - mean_val) /
ck::math::sqrt(arg.epsilon_ + var_val) +
beta;
arg.acc_elementwise_op_(y, y);
arg.y_(n, h, w, g, c) = type_convert<YDataType>(y);
}
}
}
}
}
return 0;
}
float Run(const device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const device::BaseArgument* p_arg) override
{
const Argument* p_arg_ = dynamic_cast<const Argument*>(p_arg);
if(p_arg_->lengths_.size() != 5)
return false;
return true;
}
static auto MakeArgument(const Tensor<XDataType>& x,
const Tensor<GammaDataType>& gamma,
const Tensor<BetaDataType>& beta,
Tensor<YDataType>& y,
AccElementwiseOperation acc_elementwise_op,
const std::vector<index_t> lengths,
AccDataType epsilon)
{
return Argument{x, gamma, beta, y, acc_elementwise_op, lengths, epsilon};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceLayernorm"
<< std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
......@@ -17,17 +17,25 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_layernorm_f16_rank2_instances(
std::vector<DeviceLayernormPtr<F16, F16, F16, F32, F16, PassThrough, 2, 1>>&);
// FP16
void add_device_layernorm_rank_2_1_f16_instances(
std::vector<std::unique_ptr<DeviceLayernorm<F16, F16, F16, F32, F16, PassThrough, 2, 1>>>&);
void add_device_layernorm_f16_rank4_instances(
std::vector<DeviceLayernormPtr<F16, F16, F16, F32, F16, PassThrough, 4, 3>>&);
void add_device_layernorm_rank_4_3_f16_instances(
std::vector<std::unique_ptr<DeviceLayernorm<F16, F16, F16, F32, F16, PassThrough, 4, 3>>>&);
void add_device_layernorm_f32_rank2_instances(
std::vector<DeviceLayernormPtr<F32, F32, F32, F32, F32, PassThrough, 2, 1>>&);
void add_device_layernorm_rank_5_3_f16_instances(
std::vector<std::unique_ptr<DeviceLayernorm<F16, F16, F16, F32, F16, PassThrough, 5, 3>>>&);
void add_device_layernorm_f32_rank4_instances(
std::vector<DeviceLayernormPtr<F32, F32, F32, F32, F32, PassThrough, 4, 3>>&);
// FP32
void add_device_layernorm_rank_2_1_f32_instances(
std::vector<std::unique_ptr<DeviceLayernorm<F32, F32, F32, F32, F32, PassThrough, 2, 1>>>&);
void add_device_layernorm_rank_4_3_f32_instances(
std::vector<std::unique_ptr<DeviceLayernorm<F32, F32, F32, F32, F32, PassThrough, 4, 3>>>&);
void add_device_layernorm_rank_5_3_f32_instances(
std::vector<std::unique_ptr<DeviceLayernorm<F32, F32, F32, F32, F32, PassThrough, 5, 3>>>&);
template <typename XDataType,
typename GammaDataType,
......@@ -62,17 +70,33 @@ struct DeviceOperationInstanceFactory<
is_same_v<BetaDataType, F16> && is_same_v<YDataType, F16>)
{
if constexpr(Rank == 2 && NumReduceDim == 1)
add_device_layernorm_f16_rank2_instances(op_ptrs);
{
add_device_layernorm_rank_2_1_f16_instances(op_ptrs);
}
else if constexpr(Rank == 4 && NumReduceDim == 3)
add_device_layernorm_f16_rank4_instances(op_ptrs);
{
add_device_layernorm_rank_4_3_f16_instances(op_ptrs);
}
else if constexpr(Rank == 5 && NumReduceDim == 3)
{
add_device_layernorm_rank_5_3_f16_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, F32> && is_same_v<GammaDataType, F32> &&
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F32>)
{
if constexpr(Rank == 2 && NumReduceDim == 1)
add_device_layernorm_f32_rank2_instances(op_ptrs);
{
add_device_layernorm_rank_2_1_f32_instances(op_ptrs);
}
else if constexpr(Rank == 4 && NumReduceDim == 3)
add_device_layernorm_f32_rank4_instances(op_ptrs);
{
add_device_layernorm_rank_4_3_f32_instances(op_ptrs);
}
else if constexpr(Rank == 5 && NumReduceDim == 3)
{
add_device_layernorm_rank_5_3_f32_instances(op_ptrs);
}
}
return op_ptrs;
......
......@@ -17,34 +17,40 @@ using F32 = float;
using Pass = ck::tensor_operation::element_wise::PassThrough;
template <index_t Rank, index_t Reduce>
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_layernorm_f16_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 1, 1, 1, 1>, // fallback kernel
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 2, 2, 2, 2>, // fallback kernel
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 4, 4, 4, 4>, // fallback kernel
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 8, 8, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 4, 64, 1, 8, 1, 8, 8, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 2, 128, 1, 8, 1, 8, 8, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 2, 128, 1, 16, 1, 8, 8, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 2, 128, 1, 32, 1, 8, 8, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 8, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 1, 256, 1, 16, 1, 8, 8, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 1, 256, 1, 32, 1, 8, 8, 8, 8>
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize>
DeviceLayernormImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 8, 32, 1, 8, 1, 1, 1, 1, 1, 1, 1>, // fallback kernel
DeviceLayernormImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 8, 32, 1, 8, 1, 2, 1, 2, 1, 2, 2>, // fallback kernel
DeviceLayernormImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 8, 32, 1, 8, 1, 4, 1, 4, 1, 4, 4>, // fallback kernel
DeviceLayernormImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 8, 32, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 4, 64, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 2, 128, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 2, 128, 1, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 2, 128, 1, 32, 1, 8, 1, 8, 1, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 1, 8, 1, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 8, 1, 8, 1, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 8, 1, 8, 1, 8, 8>
// clang-format on
>;
void add_device_layernorm_f16_rank2_instances(
std::vector<DeviceLayernormPtr<F16, F16, F16, F32, F16, Pass, 2, 1>>& instances)
void add_device_layernorm_rank_2_1_f16_instances(
std::vector<std::unique_ptr<DeviceLayernorm<F16, F16, F16, F32, F16, Pass, 2, 1>>>& instances)
{
add_device_operation_instances(instances, device_layernorm_f16_instances<2, 1>{});
add_device_operation_instances(instances, device_layernorm_f16_instances<Pass, 2, 1>{});
}
void add_device_layernorm_f16_rank4_instances(
std::vector<DeviceLayernormPtr<F16, F16, F16, F32, F16, Pass, 4, 3>>& instances)
void add_device_layernorm_rank_4_3_f16_instances(
std::vector<std::unique_ptr<DeviceLayernorm<F16, F16, F16, F32, F16, Pass, 4, 3>>>& instances)
{
add_device_operation_instances(instances, device_layernorm_f16_instances<4, 3>{});
add_device_operation_instances(instances, device_layernorm_f16_instances<Pass, 4, 3>{});
}
void add_device_layernorm_rank_5_3_f16_instances(
std::vector<std::unique_ptr<DeviceLayernorm<F16, F16, F16, F32, F16, Pass, 5, 3>>>& instances)
{
add_device_operation_instances(instances, device_layernorm_f16_instances<Pass, 5, 3>{});
}
} // namespace instance
......
......@@ -16,33 +16,39 @@ using F32 = float;
using Pass = ck::tensor_operation::element_wise::PassThrough;
template <index_t Rank, index_t Reduce>
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_layernorm_f32_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 1, 1, 1, 1>, // fallback kernel
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 2, 2, 2, 2>, // fallback kernel
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 4, 4, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 4, 64, 1, 8, 1, 4, 4, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 2, 128, 1, 8, 1, 4, 4, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 2, 128, 1, 16, 1, 4, 4, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 2, 128, 1, 32, 1, 4, 4, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 4, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 4, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 4, 4, 4>
DeviceLayernormImpl<F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 8, 32, 1, 8, 1, 1, 1, 1, 1, 1, 1>, // fallback kernel
DeviceLayernormImpl<F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 8, 32, 1, 8, 1, 2, 1, 2, 1, 2, 2>, // fallback kernel
DeviceLayernormImpl<F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 8, 32, 1, 8, 1, 4, 1, 4, 1, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 4, 64, 1, 8, 1, 4, 1, 4, 1, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 2, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 2, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 2, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4>
// clang-format on
>;
void add_device_layernorm_f32_rank2_instances(
std::vector<DeviceLayernormPtr<F32, F32, F32, F32, F32, Pass, 2, 1>>& instances)
void add_device_layernorm_rank_2_1_f32_instances(
std::vector<std::unique_ptr<DeviceLayernorm<F32, F32, F32, F32, F32, Pass, 2, 1>>>& instances)
{
add_device_operation_instances(instances, device_layernorm_f32_instances<2, 1>{});
add_device_operation_instances(instances, device_layernorm_f32_instances<Pass, 2, 1>{});
}
void add_device_layernorm_f32_rank4_instances(
std::vector<DeviceLayernormPtr<F32, F32, F32, F32, F32, Pass, 4, 3>>& instances)
void add_device_layernorm_rank_4_3_f32_instances(
std::vector<std::unique_ptr<DeviceLayernorm<F32, F32, F32, F32, F32, Pass, 4, 3>>>& instances)
{
add_device_operation_instances(instances, device_layernorm_f32_instances<4, 3>{});
add_device_operation_instances(instances, device_layernorm_f32_instances<Pass, 4, 3>{});
}
void add_device_layernorm_rank_5_3_f32_instances(
std::vector<std::unique_ptr<DeviceLayernorm<F32, F32, F32, F32, F32, Pass, 5, 3>>>& instances)
{
add_device_operation_instances(instances, device_layernorm_f32_instances<Pass, 5, 3>{});
}
} // namespace instance
......
......@@ -23,6 +23,7 @@ set(PROFILER_SOURCE
src/profile_conv_bwd_weight.cpp
src/profile_grouped_conv_fwd.cpp
src/profile_reduce.cpp
src/profile_groupnorm.cpp
src/profile_layernorm.cpp
src/profile_normalization.cpp
)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/layernorm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm.hpp"
namespace ck {
namespace profiler {
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename AccDataType,
typename YDataType>
bool profile_groupnorm_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
std::vector<index_t> length)
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
if(length.size() != 5)
return false;
index_t G = length[3];
index_t C = length[4];
std::vector<index_t> reduce_dim = {1, 2, 4};
std::vector<index_t> gammaBetaLength = {G, C};
std::vector<index_t> gammaBetaStride = {0, 0, 0, C, 1};
Tensor<XDataType> x(length);
Tensor<GammaDataType> gamma(gammaBetaLength);
Tensor<BetaDataType> beta(gammaBetaLength);
Tensor<YDataType> y(length);
Tensor<YDataType> host_y(length);
switch(init_method)
{
case 0:
x.GenerateTensorValue(GeneratorTensor_1<XDataType>{});
gamma.GenerateTensorValue(GeneratorTensor_1<GammaDataType>{});
beta.GenerateTensorValue(GeneratorTensor_1<BetaDataType>{});
break;
case 1:
x.GenerateTensorValue(GeneratorTensor_2<XDataType>{-5, 5});
gamma.GenerateTensorValue(GeneratorTensor_2<GammaDataType>{-5, 5});
beta.GenerateTensorValue(GeneratorTensor_2<BetaDataType>{-5, 5});
break;
default:
x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0, 1});
gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{-0.5, 0.5});
beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{-0.5, 0.5});
}
DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());
x_dev.ToDevice(x.mData.data());
gamma_dev.ToDevice(gamma.mData.data());
beta_dev.ToDevice(beta.mData.data());
// add device normalization instances
using DeviceOp = ck::tensor_operation::device::DeviceLayernorm<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
PassThrough,
5,
3>;
// get device op instances
const auto instance_ptrs =
ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;
std::string best_instance_name;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
if(do_verification)
{
using ReferenceInstance = ck::tensor_operation::host::ReferenceGroupnorm<XDataType,
GammaDataType,
BetaDataType,
YDataType,
AccDataType,
PassThrough>;
ReferenceInstance ref;
auto ref_argument = ref.MakeArgument(x, gamma, beta, host_y, PassThrough{}, length, 1e-6);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
}
int num_kernel = 0;
for(auto& inst_ptr : instance_ptrs)
{
auto argument_ptr = inst_ptr->MakeArgumentPointer(
length,
std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
gammaBetaStride,
gammaBetaStride,
std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
reduce_dim,
1e-6,
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
PassThrough{});
if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
{
++num_kernel;
}
else
{
continue;
}
auto invoker_ptr = inst_ptr->MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t num_bytes = x.mDesc.GetElementSize() * sizeof(XDataType) +
gamma.mDesc.GetElementSize() * sizeof(GammaDataType) +
beta.mDesc.GetElementSize() * sizeof(BetaDataType) +
y.mDesc.GetElementSize() * sizeof(YDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
if(time_kernel)
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
<< inst_ptr->GetTypeString() << std::endl;
if(avg_time < best_avg_time)
{
best_instance_name = inst_ptr->GetTypeString();
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
y_dev.FromDevice(y.mData.data());
bool pass =
ck::utils::check_err(y.mData, host_y.mData, "Error: Incorrect results", 1e-3, 1e-3);
if(do_log)
{
LogRangeAsType<float>(std::cout << "x : ", x.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "host_y : ", host_y.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "y : ", y.mData, ",") << std::endl;
}
if(!pass)
{
std::cout << inst_ptr->GetTypeString() << " failed verification: ";
LogRange(std::cout << "lengths = [", length, ", ") << "]." << std::endl;
return false;
}
else
{
if(time_kernel)
std::cout << "pass" << std::endl;
}
}
}
if(time_kernel)
{
LogRange(std::cout << "length = ", length, ",") << ", ";
std::cout << "num_kernel = " << num_kernel << ", best perf = " << best_avg_time << " ms, "
<< best_gb_per_sec << " GB/s, " << best_instance_name << std::endl;
}
if(num_kernel == 0)
{
std::cout << "Error: No kernel is tested" << std::endl;
return false;
}
return true;
}
} // namespace profiler
} // namespace ck
......@@ -6,8 +6,8 @@
#include <iomanip>
#include "ck/ck.hpp"
#include "profiler/include/data_type_enum.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm_impl.hpp"
#include "ck/library/tensor_operation_instance/gpu/layernorm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
......@@ -15,26 +15,6 @@
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
void add_device_layernorm_f16_rank2_instances(
std::vector<DeviceLayernormPtr<F16, F16, F16, F32, F16, PassThrough, 2, 1>>&);
void add_device_layernorm_f32_rank2_instances(
std::vector<DeviceLayernormPtr<F32, F32, F32, F32, F32, PassThrough, 2, 1>>&);
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck {
namespace profiler {
......@@ -53,8 +33,6 @@ void profile_layernorm_impl(int do_verification,
std::vector<index_t> strideGamma,
std::vector<index_t> strideBeta)
{
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
if(length.size() < 2)
......@@ -103,37 +81,24 @@ void profile_layernorm_impl(int do_verification,
gamma_dev.ToDevice(gamma.mData.data());
beta_dev.ToDevice(beta.mData.data());
// add device normalization instances
constexpr int NumReduceDim = Rank - 1;
std::vector<tensor_operation::device::DeviceLayernormPtr<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
PassThrough,
Rank,
NumReduceDim>>
instances;
if constexpr(is_same<XDataType, F16>::value && is_same<GammaDataType, F16>::value &&
is_same<BetaDataType, F16>::value && is_same<YDataType, F16>::value &&
is_same<AccDataType, F32>::value)
{
if(length.size() == 2)
tensor_operation::device::instance::add_device_layernorm_f16_rank2_instances(instances);
}
else if constexpr(is_same<XDataType, F32>::value && is_same<GammaDataType, F32>::value &&
is_same<BetaDataType, F32>::value && is_same<YDataType, F32>::value &&
is_same<AccDataType, F32>::value)
{
if(length.size() == 2)
tensor_operation::device::instance::add_device_layernorm_f32_rank2_instances(instances);
}
if(instances.size() <= 0)
{
throw std::runtime_error("wrong! no device normalization instance found");
}
// add device normalization instances
using DeviceOp = ck::tensor_operation::device::DeviceLayernorm<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
PassThrough,
Rank,
NumReduceDim>;
// get device op instances
const auto instance_ptrs =
ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;
std::string best_instance_name;
float best_avg_time = std::numeric_limits<float>::max();
......@@ -157,7 +122,7 @@ void profile_layernorm_impl(int do_verification,
ref_invoker.Run(ref_argument);
}
for(auto& inst_ptr : instances)
for(auto& inst_ptr : instance_ptrs)
{
auto argument_ptr = inst_ptr->MakeArgumentPointer(length,
strideXY,
......@@ -175,9 +140,9 @@ void profile_layernorm_impl(int do_verification,
if(!inst_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::cout << inst_ptr->GetTypeString() << " skipped due to unsupported argument: ";
LogRange(std::cout << "input lengths = [", length, "], ") << std::endl;
LogRange(std::cout << "input lengths = ", length, ", ") << std::endl;
return;
continue;
}
auto invoker_ptr = inst_ptr->MakeInvokerPointer();
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <unordered_map>
#include "profiler/include/data_type_enum.hpp"
#include "profiler/include/profile_groupnorm_impl.hpp"
using ck::index_t;
struct GroupnormArgParser
{
std::unordered_map<std::string, std::vector<int>> long_opts = {{"length", {}}};
bool parse_opt(int argc, char* argv[], const std::string& key, int i)
{
if(std::string("--") + key == argv[i])
{
int pos = i;
while(++i < argc && argv[i][0] != '-') {}
int end = i;
for(int j = pos + 1; j < end; j++)
{
long_opts[key].push_back(std::stoi(argv[j]));
}
return true;
}
return false;
}
void operator()(int argc, char* argv[])
{
for(auto& kv : long_opts)
{
for(int i = 1; i < argc; i++)
{
if(parse_opt(argc, argv, kv.first, i))
break;
}
}
}
};
void print_help_groupnorm()
{
std::cout << "arg1: tensor operation (groupnorm: Group normalization)\n"
<< "arg2: data type (0: fp16; 1: fp32)\n"
<< "arg3: verification (0: no; 1: yes)\n"
<< "arg4: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg5: print tensor value (0: no; 1: yes)\n"
<< "arg6: time kernel (0=no, 1=yes)\n"
<< "--length: tensor extents (e.g, --length 1 16 16 32 40) \n"
<< std::endl;
}
int profile_groupnorm(int argc, char* argv[])
{
ck::DataTypeEnum data_type = ck::DataTypeEnum::Half;
bool do_verification = false;
int init_method = 0;
bool do_log = 0;
bool time_kernel = 1;
std::vector<index_t> length = {64, 16, 16, 32, 40};
if(argc != 1 && argc != 13)
{
print_help_groupnorm();
return 0;
}
if(argc == 13)
{
data_type = static_cast<ck::DataTypeEnum>(std::stoi(argv[2]));
do_verification = std::stoi(argv[3]);
init_method = std::stoi(argv[4]);
do_log = std::stoi(argv[5]);
time_kernel = std::stoi(argv[6]);
// parse the long options
GroupnormArgParser arg_parser;
arg_parser(argc, argv);
length = arg_parser.long_opts["length"];
}
using F16 = ck::half_t;
using F32 = float;
if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_groupnorm_impl<F32, F32, F32, F32, F32>(
do_verification, init_method, do_log, time_kernel, length);
}
else if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_groupnorm_impl<F16, F16, F16, F32, F16>(
do_verification, init_method, do_log, time_kernel, length);
}
else
{
throw std::runtime_error("not implemented yet");
}
return 0;
}
......@@ -5,6 +5,7 @@
#include <vector>
#include <unordered_map>
#include "profiler/include/data_type_enum.hpp"
#include "profiler/include/profile_layernorm_impl.hpp"
using ck::index_t;
......@@ -49,7 +50,7 @@ void print_help_layernorm()
<< "arg2: verification (0: no; 1: yes)\n"
<< "arg3: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg4: print tensor value (0: no; 1: yes)\n"
<< "arg5: time kernel (0=n0, 1=yes)\n"
<< "arg5: time kernel (0=no, 1=yes)\n"
<< "--length: tensor extents (e.g, --length 1024 1024) \n"
<< "--strideXY: tensor strides (e.g, --strideXY 1024 1)\n"
<< "--strideGamma: tensor strides (e.g, --strideGamma 1)\n"
......@@ -114,10 +115,3 @@ int profile_layernorm(int argc, char* argv[])
return 0;
}
// hijack main() for quick debugging
// int main(int argc, char* argv[])
// {
// profile_layernorm(argc, argv);
// return 0;
// }
......@@ -3,26 +3,27 @@
#include <cstring>
int profile_gemm(int, char*[]);
int profile_gemm_splitk(int, char*[]);
int profile_gemm_bilinear(int, char*[]);
int profile_gemm_add_add_fastgelu(int, char*[]);
int profile_gemm_reduce(int, char*[]);
int profile_gemm_bias_add_reduce(int, char*[]);
int profile_batched_gemm(int, char*[]);
int profile_batched_gemm_gemm(int, char*[]);
int profile_batched_gemm_add_relu_gemm_add(int, char*[]);
int profile_batched_gemm_reduce(int, char*[]);
int profile_grouped_gemm(int, char*[]);
int profile_conv_fwd(int, char*[]);
int profile_conv_fwd_bias_relu(int, char*[]);
int profile_conv_fwd_bias_relu_add(int, char*[]);
int profile_conv_bwd_data(int, char*[]);
int profile_conv_bwd_weight(int, char*[]);
int profile_grouped_conv_fwd(int, char*[]);
int profile_normalization(int, char*[]);
// int profile_gemm(int, char*[]);
// int profile_gemm_splitk(int, char*[]);
// int profile_gemm_bilinear(int, char*[]);
// int profile_gemm_add_add_fastgelu(int, char*[]);
// int profile_gemm_reduce(int, char*[]);
// int profile_gemm_bias_add_reduce(int, char*[]);
// int profile_batched_gemm(int, char*[]);
// int profile_batched_gemm_gemm(int, char*[]);
// int profile_batched_gemm_add_relu_gemm_add(int, char*[]);
// int profile_batched_gemm_reduce(int, char*[]);
// int profile_grouped_gemm(int, char*[]);
// int profile_conv_fwd(int, char*[]);
// int profile_conv_fwd_bias_relu(int, char*[]);
// int profile_conv_fwd_bias_relu_add(int, char*[]);
// int profile_conv_bwd_data(int, char*[]);
// int profile_conv_bwd_weight(int, char*[]);
// int profile_grouped_conv_fwd(int, char*[]);
// int profile_normalization(int, char*[]);
int profile_layernorm(int, char*[]);
int profile_reduce(int, char*[]);
int profile_groupnorm(int, char*[]);
// int profile_reduce(int, char*[]);
static void print_helper_message()
{
......@@ -56,6 +57,7 @@ int main(int argc, char* argv[])
return 0;
}
#if 0
else if(strcmp(argv[1], "gemm") == 0)
{
return profile_gemm(argc, argv);
......@@ -132,10 +134,15 @@ int main(int argc, char* argv[])
{
return profile_normalization(argc, argv);
}
#endif
else if(strcmp(argv[1], "layernorm") == 0)
{
return profile_layernorm(argc, argv);
}
else if(strcmp(argv[1], "groupnorm") == 0)
{
return profile_groupnorm(argc, argv);
}
else
{
print_helper_message();
......
add_custom_target(test_layernorm)
add_gtest_executable(test_layernorm_fp32 test_layernorm_fp32.cpp)
add_gtest_executable(test_layernorm_fp16 test_layernorm_fp16.cpp)
add_gtest_executable(test_layernorm2d_fp32 test_layernorm2d_fp32.cpp)
add_gtest_executable(test_layernorm2d_fp16 test_layernorm2d_fp16.cpp)
add_gtest_executable(test_groupnorm_fp16 test_groupnorm_fp16.cpp)
add_gtest_executable(test_groupnorm_fp32 test_groupnorm_fp32.cpp)
target_link_libraries(test_layernorm_fp32 PRIVATE utility)
target_link_libraries(test_layernorm_fp16 PRIVATE utility)
target_link_libraries(test_layernorm2d_fp32 PRIVATE utility)
target_link_libraries(test_layernorm2d_fp16 PRIVATE utility)
target_link_libraries(test_groupnorm_fp16 PRIVATE utility device_normalization_instance)
target_link_libraries(test_groupnorm_fp32 PRIVATE utility device_normalization_instance)
add_dependencies(test_layernorm test_layernorm2d_fp32)
add_dependencies(test_layernorm test_layernorm2d_fp16)
add_dependencies(test_layernorm test_groupnorm_fp16)
add_dependencies(test_layernorm test_groupnorm_fp32)
add_dependencies(test_layernorm test_layernorm_fp32)
add_dependencies(test_layernorm test_layernorm_fp16)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/include/profile_groupnorm_impl.hpp"
using F16 = ck::half_t;
using F32 = float;
using ck::index_t;
template <typename Tuple>
class TestGroupnorm : public ::testing::Test
{
protected:
using XDataType = std::tuple_element_t<0, Tuple>;
using GammaDataType = std::tuple_element_t<1, Tuple>;
using BetaDataType = std::tuple_element_t<2, Tuple>;
using AccDataType = std::tuple_element_t<3, Tuple>;
using YDataType = std::tuple_element_t<4, Tuple>;
void Run()
{
// N, H, W, G, C
std::vector<std::vector<ck::index_t>> lengths = {{1, 1, 1, 1, 1},
{1, 2, 3, 4, 5},
{256, 9, 9, 9, 9},
{1, 64, 64, 32, 10},
{1, 32, 32, 32, 20},
{1, 16, 16, 32, 40}};
for(auto length : lengths)
{
bool success =
ck::profiler::profile_groupnorm_impl<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType>(true, 2, false, false, length);
EXPECT_TRUE(success);
}
}
};
using KernelTypes = ::testing::Types<
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType>
std::tuple<F16, F16, F16, F32, F16>,
std::tuple<F16, F16, F16, F32, F16>,
std::tuple<F16, F16, F16, F32, F16>,
std::tuple<F16, F16, F16, F32, F16>,
std::tuple<F16, F16, F16, F32, F16>,
std::tuple<F16, F16, F16, F32, F16>,
std::tuple<F16, F16, F16, F32, F16>,
std::tuple<F16, F16, F16, F32, F16>>;
TYPED_TEST_SUITE(TestGroupnorm, KernelTypes);
TYPED_TEST(TestGroupnorm, Test_FP16) { this->Run(); }
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment