layernorm_blockwise.cpp 6.33 KB
Newer Older
rocking5566's avatar
rocking5566 committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

4
5
#include <cstdlib>
#include <initializer_list>
rocking5566's avatar
rocking5566 committed
6
7
#include <iostream>
#include <numeric>
8

rocking5566's avatar
rocking5566 committed
9
10
11
#include <getopt.h>

#include "ck/ck.hpp"
rocking5566's avatar
rocking5566 committed
12
#include "ck/tensor_operation/gpu/device/device_layernorm_impl.hpp"
rocking5566's avatar
rocking5566 committed
13
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
14
#include "ck/utility/reduction_enums.hpp"
rocking5566's avatar
rocking5566 committed
15

16
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
rocking5566's avatar
rocking5566 committed
17
#include "ck/library/utility/check_err.hpp"
18
19
20
21
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
22
23
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/ranges.hpp"
rocking5566's avatar
rocking5566 committed
24
25
26
27
28
29
30
31
32
33
34

using XDataType     = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType  = ck::half_t;
using YDataType     = ck::half_t;
using AccDataType   = float;
using PassThrough   = ck::tensor_operation::element_wise::PassThrough;

constexpr int Rank         = 2;
constexpr int NumReduceDim = 1;

rocking5566's avatar
rocking5566 committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
using DeviceInstance =
    ck::tensor_operation::device::DeviceLayernormImpl<XDataType,
                                                      GammaDataType,
                                                      BetaDataType,
                                                      AccDataType,
                                                      YDataType,
                                                      PassThrough,
                                                      Rank,
                                                      NumReduceDim,
                                                      256, // BlockSize
                                                      8,   // ClusterM
                                                      32,  // ClusterK
                                                      1,   // SliceM
                                                      8,   // SliceK
                                                      1,   // SrcVecDim (0=M, 1=K)
                                                      8,   // SrcScalarPerVector
                                                      1,   // GammaVecDim (0=M, 1=K)
                                                      8,   // GammaScalarPerVector
                                                      1,   // BetaVecDim (0=M, 1=K)
                                                      8,   // BetaScalarPerVector
                                                      8>;  // OutScalarPerVector
rocking5566's avatar
rocking5566 committed
56
57
58
59
60
61
62
63
64

int main()
{
    bool time_kernel = false;

    ck::index_t M      = 1024;
    ck::index_t N      = 1024;
    ck::index_t Stride = N;

65
66
    using namespace ck::literals;

rocking5566's avatar
rocking5566 committed
67
    auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
68
        return HostTensorDescriptor({len}, {stride});
rocking5566's avatar
rocking5566 committed
69
70
71
    };

    auto f_host_tensor_descriptor2d = [](std::size_t row, std::size_t col, std::size_t stride) {
72
        return HostTensorDescriptor({row, col}, {stride, 1_uz});
rocking5566's avatar
rocking5566 committed
73
74
75
76
77
78
79
80
81
82
83
    };

    Tensor<XDataType> x(f_host_tensor_descriptor2d(M, N, Stride));
    Tensor<GammaDataType> gamma(f_host_tensor_descriptor1d(N, 1));
    Tensor<BetaDataType> beta(f_host_tensor_descriptor1d(N, 1));
    Tensor<YDataType> y(f_host_tensor_descriptor2d(M, N, Stride));

    x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0.0, 1.0});
    gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{0.0, 1.0});
    beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{0.0, 1.0});

84
85
86
87
88
89
90
91
    DeviceMem x_dev(x.GetMemorySize());
    DeviceMem gamma_dev(gamma.GetMemorySize());
    DeviceMem beta_dev(beta.GetMemorySize());
    DeviceMem y_dev(y.GetMemorySize());

    x_dev.ToDevice(x.data());
    gamma_dev.ToDevice(gamma.data());
    beta_dev.ToDevice(beta.data());
rocking5566's avatar
rocking5566 committed
92

93
    using Indices = std::vector<ck::index_t>;
rocking5566's avatar
rocking5566 committed
94
95

    auto device_instance = DeviceInstance{};
96
97
98
99
100
101
102
103
104
105
106
107
    auto argument_ptr    = device_instance.MakeArgumentPointer({M, N},
                                                            ck::ranges::to<Indices>(x.GetStrides()),
                                                            {0, 1},
                                                            {0, 1},
                                                            ck::ranges::to<Indices>(y.GetStrides()),
                                                            {1},
                                                            1e-4,
                                                            x_dev.GetDeviceBuffer(),
                                                            gamma_dev.GetDeviceBuffer(),
                                                            beta_dev.GetDeviceBuffer(),
                                                            y_dev.GetDeviceBuffer(),
                                                            PassThrough{});
rocking5566's avatar
rocking5566 committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

    if(!device_instance.IsSupportedArgument(argument_ptr.get()))
    {
        std::cout << "The runtime parameters are not supported" << std::endl;
        return 1;
    };

    auto invoker_ptr = device_instance.MakeInvokerPointer();
    invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

    bool pass = true;
    {
        Tensor<YDataType> host_y(f_host_tensor_descriptor2d(M, N, Stride));
        using ReferenceInstance = ck::tensor_operation::host::ReferenceLayernorm<XDataType,
                                                                                 GammaDataType,
                                                                                 BetaDataType,
                                                                                 YDataType,
                                                                                 AccDataType,
                                                                                 PassThrough,
                                                                                 Rank,
                                                                                 NumReduceDim>;

        ReferenceInstance ref;
        auto ref_argument =
            ref.MakeArgument(x, gamma, beta, host_y, PassThrough{}, {M, N}, {1}, 1e-4);
        auto ref_invoker = ref.MakeInvoker();
        ref_invoker.Run(ref_argument);

136
137
        y_dev.FromDevice(y.data());
        pass &= ck::utils::check_err(y, host_y, "Error: Incorrect results d1", 1e-3, 1e-3);
rocking5566's avatar
rocking5566 committed
138
139
140
    }
    return (pass ? 0 : 1);
}