convnd_fwd_xdl.cpp 14.3 KB
Newer Older
1
2
3
4
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
5
6

#include "check_err.hpp"
7
#include "config.hpp"
8
#include "conv_fwd_util.hpp"
9
10
11
12
13
14
15
16
17
#include "device.hpp"
#include "device_tensor.hpp"
#include "device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "reference_conv_fwd.hpp"
#include "tensor_layout.hpp"

18
19
namespace {

20
21
22
23
24
25
26
27
using InDataType  = float;
using WeiDataType = float;
using OutDataType = float;
using AccDataType = float;

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

Chao Liu's avatar
Chao Liu committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
struct Relu
{
    __host__ __device__ constexpr void operator()(float& y, const float& x) const
    {
        const float a = x;
        y             = a > 0 ? a : 0;
    }

    __host__ __device__ constexpr void operator()(ck::half_t& y, const ck::half_t& x) const
    {
        const ck::half_t a = x;
        y                  = a > 0 ? a : 0;
    }
};

struct Hardswish
{
    __host__ __device__ constexpr void operator()(float& y, const float& x) const
    {
        float a = x;
        float b = a + float{3};
        float c = (b > 0) * (b > float{6} ? float{6} : b) * a * float{0.166667};
        y       = c;
    }

    __host__ __device__ constexpr void operator()(ck::half_t& y, const ck::half_t& x) const
    {
        float a = x;
        float b = a + float{3};
        float c = (b > 0) * (b > float{6} ? float{6} : b) * a * float{0.166667};
        y       = c;
    }
};

using InElementOp  = Relu;
63
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
Chao Liu's avatar
Chao Liu committed
64
using OutElementOp = Hardswish;
65
66

static constexpr auto ConvFwdDefault =
67
    ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

using DeviceConvFwdBasePtr =
    ck::tensor_operation::device::DeviceConvFwdPtr<InElementOp, WeiElementOp, OutElementOp>;

template <ck::index_t NumDimSpatial>
using DeviceConvNDFwdInstance = ck::tensor_operation::device::
    DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
        // clang-format off
        InDataType,         // 
        WeiDataType,        //
        OutDataType,        //
        AccDataType,        // 
        InElementOp,        // Input Elementwise Operation
        WeiElementOp,       // Weights Elementwise Operation
        OutElementOp,       // Output Elementwise Operation
        ConvFwdDefault,     // ConvForwardSpecialization
        NumDimSpatial,      // NumDimSpatial
        256,                // BlockSize
        256,                // MPerBlock
        128,                // NPerBlock
        4,                  // K0PerBlock
        4,                  // K1
        32,                 // MPerXDL
        32,                 // NPerXDL
        4,                  // MXdlPerWave
        2,                  // NXdlPerWave
        S<4, 64, 1>,        // ABlockTransferThreadClusterLengths_K0_M_K1
        S<1, 0, 2>,         // ABlockTransferThreadClusterArrangeOrder
        S<1, 0, 2>,         // ABlockTransferSrcAccessOrder
        2,                  // ABlockTransferSrcVectorDim
        4,                  // ABlockTransferSrcScalarPerVector
        4,                  // ABlockTransferDstScalarPerVector_K1
        true,               // ABlockLdsAddExtraM
        S<4, 64, 1>,        // BBlockTransferThreadClusterLengths_K0_N_K1
        S<1, 0, 2>,         // BBlockTransferThreadClusterArrangeOrder
        S<1, 0, 2>,         // BBlockTransferSrcAccessOrder
        2,                  // BBlockTransferSrcVectorDim
        4,                  // BBlockTransferSrcScalarPerVector
        4,                  // BBlockTransferDstScalarPerVector_K1
        true,               // BBlockTransferAddExtraN
        7,                  // CThreadTransferSrcDstVectorDim
        1>;                 // CThreadTransferDstScalarPerVector
// clang-format on

template <ck::index_t NumDimSpatial>
using ReferenceConvNDFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<InDataType,
                                                                                WeiDataType,
                                                                                OutDataType,
                                                                                InElementOp,
                                                                                WeiElementOp,
                                                                                OutElementOp,
                                                                                NumDimSpatial>;

121
DeviceConvFwdBasePtr get_conv_instance(int num_dim_spatial)
122
123
124
{
    switch(num_dim_spatial)
    {
125
126
127
    case 3: {
        return std::make_unique<DeviceConvNDFwdInstance<3>>();
    }
128
129
130
131
132
133
134
135
136
137
138
139
    case 2: {
        return std::make_unique<DeviceConvNDFwdInstance<2>>();
    }
    case 1: {
        return std::make_unique<DeviceConvNDFwdInstance<1>>();
    }
    default: {
        throw std::runtime_error("Unsupported number of spatial dimensions provided!");
    }
    }
}

140
void print_use_msg()
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
{
    std::cout << "arg1: verification (0=no, 1=yes)\n"
              << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
              << "arg3: run kernel # of times (>1)\n"
              << "arg4: N spatial dimensions (default 2)\n"
              << "Following arguments (depending on number of spatial dims):\n"
              << " N, K, C, \n"
              << " <filter spatial dimensions>, (ie Y, X for 2D)\n"
              << " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
              << " <strides>, (ie Sy, Sx for 2D)\n"
              << " <dilations>, (ie Dy, Dx for 2D)\n"
              << " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
              << " <right padding>, (ie RightPy, RightPx for 2D)\n"
              << std::endl;
}

157
ck::utils::conv::ConvParams parse_conv_params(int num_dim_spatial, int argc, char* argv[])
158
159
160
161
162
163
{
    // (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
    int conv_args     = 3 + num_dim_spatial * 6;
    int cmdline_nargs = conv_args + 5;
    if(cmdline_nargs != argc)
    {
164
        print_use_msg();
165
166
167
        exit(0);
    }

168
    ck::utils::conv::ConvParams params;
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    int arg_idx = 5;

    params.num_dim_spatial = num_dim_spatial;
    params.N               = std::stoi(argv[arg_idx++]);
    params.K               = std::stoi(argv[arg_idx++]);
    params.C               = std::stoi(argv[arg_idx++]);

    params.filter_spatial_lengths.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.filter_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
    }
    params.input_spatial_lengths.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.input_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
    }
    params.conv_filter_strides.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.conv_filter_strides[i] = std::stoi(argv[arg_idx++]);
    }
    params.conv_filter_dilations.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.conv_filter_dilations[i] = std::stoi(argv[arg_idx++]);
    }
    params.input_left_pads.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.input_left_pads[i] = std::stoi(argv[arg_idx++]);
    }
    params.input_right_pads.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.input_right_pads[i] = std::stoi(argv[arg_idx++]);
    }

    return params;
}

210
} // anonymous namespace
211
212
213

int main(int argc, char* argv[])
{
214
215
    using namespace ck::utils::conv;

216
217
218
219
220
    bool do_verification = 0;
    int init_method      = 0;
    int nrepeat          = 5;
    int num_dim_spatial  = 2;

221
    ck::utils::conv::ConvParams params;
222
223
224
225
226
227
228
229
230
231
232

    if(argc >= 5)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);
        num_dim_spatial = std::stoi(argv[4]);
    }

    if(argc >= 6)
    {
233
        params = parse_conv_params(num_dim_spatial, argc, argv);
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    }

    std::vector<std::size_t> input_dims{static_cast<std::size_t>(params.N),
                                        static_cast<std::size_t>(params.C)};
    input_dims.insert(std::end(input_dims),
                      std::begin(params.input_spatial_lengths),
                      std::end(params.input_spatial_lengths));

    std::vector<std::size_t> filter_dims{static_cast<std::size_t>(params.K),
                                         static_cast<std::size_t>(params.C)};
    filter_dims.insert(std::end(filter_dims),
                       std::begin(params.filter_spatial_lengths),
                       std::end(params.filter_spatial_lengths));

    const std::vector<ck::index_t>& output_spatial_lengths = params.GetOutputSpatialLengths();
    std::vector<std::size_t> output_dims{static_cast<std::size_t>(params.N),
                                         static_cast<std::size_t>(params.K)};
    output_dims.insert(std::end(output_dims),
                       std::begin(output_spatial_lengths),
                       std::end(output_spatial_lengths));

255
256
257
258
259
260
    Tensor<InDataType> input(get_input_host_tensor_descriptor(input_dims, num_dim_spatial));
    Tensor<WeiDataType> weights(get_filters_host_tensor_descriptor(filter_dims, num_dim_spatial));
    Tensor<OutDataType> host_output(
        get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
    Tensor<OutDataType> device_output(
        get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

    std::cout << "input: " << input.mDesc << std::endl;
    std::cout << "weights: " << weights.mDesc << std::endl;
    std::cout << "output: " << host_output.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        input.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
        weights.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
        break;
    default:
        input.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
        weights.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
    }

    DeviceMem in_device_buf(sizeof(InDataType) * input.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(sizeof(WeiDataType) * weights.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) * device_output.mDesc.GetElementSpace());

    in_device_buf.ToDevice(input.mData.data());
    wei_device_buf.ToDevice(weights.mData.data());

    // do GEMM
286
    auto conv    = get_conv_instance(num_dim_spatial);
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
    auto invoker = conv->MakeInvokerPointer();
    auto argument =
        conv->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
                                  static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
                                  static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
                                  params.N,
                                  params.K,
                                  params.C,
                                  params.input_spatial_lengths,
                                  params.filter_spatial_lengths,
                                  output_spatial_lengths,
                                  params.conv_filter_strides,
                                  params.conv_filter_dilations,
                                  params.input_left_pads,
                                  params.input_right_pads,
                                  InElementOp{},
                                  WeiElementOp{},
                                  OutElementOp{});

    if(!conv->IsSupportedArgument(argument.get()))
    {
        throw std::runtime_error(
            "wrong! device_conv with the specified compilation parameters does "
            "not support this Conv problem");
    }

    float ave_time = invoker->Run(argument.get(), nrepeat);

315
    std::size_t flop = get_flops(
316
317
        params.N, params.C, params.K, params.filter_spatial_lengths, output_spatial_lengths);
    std::size_t num_btype =
318
319
320
321
322
323
        get_btype<InDataType, WeiDataType, OutDataType>(params.N,
                                                        params.C,
                                                        params.K,
                                                        params.input_spatial_lengths,
                                                        params.filter_spatial_lengths,
                                                        output_spatial_lengths);
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

    float tflops     = static_cast<float>(flop) / 1.E9 / ave_time;
    float gb_per_sec = num_btype / 1.E6 / ave_time;
    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
              << std::endl;

    if(do_verification)
    {
        auto verify_f = [&input, &weights, &host_output, &params, &out_device_buf, &device_output](
                            const auto& ref_conv) {
            auto ref_invoker  = ref_conv.MakeInvoker();
            auto ref_argument = ref_conv.MakeArgument(input,
                                                      weights,
                                                      host_output,
                                                      params.conv_filter_strides,
                                                      params.conv_filter_dilations,
                                                      params.input_left_pads,
                                                      params.input_right_pads,
                                                      InElementOp{},
                                                      WeiElementOp{},
                                                      OutElementOp{});

            ref_invoker.Run(ref_argument);
            out_device_buf.FromDevice(device_output.mData.data());
348
349
            ck::utils::check_err(
                host_output.mData, device_output.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
350
351
352
353
        };

        switch(num_dim_spatial)
        {
354
355
356
357
358
        case 3: {
            auto ref_conv = ReferenceConvNDFwdInstance<3>();
            verify_f(ref_conv);
            break;
        }
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
        case 2: {
            auto ref_conv = ReferenceConvNDFwdInstance<2>();
            verify_f(ref_conv);
            break;
        }
        case 1: {
            auto ref_conv = ReferenceConvNDFwdInstance<1>();
            verify_f(ref_conv);
            break;
        }
        default: {
            throw std::runtime_error("Unsupported number of spatial dimensions provided!");
        }
        }
    }
}